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Abstract Firefly algorithm (FA) is a swarm-intelligence-based, meta-heuristic algo-
rithm and has been widely applied since its establishment in 2009. In this paper, a
modified FA based on light intensity difference (LFA) is proposed. The light inten-
sity of a firefly is determined by the landscape of the objective function in FA. The
modifications are established in consideration of the variation trend of light intensity
differences. As the light intensity differences vary with movements of fireflies, the
parameter settings could be adjusted pertinently and self-adaptively at any moment
for different problems. The applications to numeric experiments show that, LFA iswell
adaptive and efficient for different problems, and can make a trade-off between global
exploration and local exploitation so as to decrease the risk of premature convergence
effectively.

Keywords Firefly algorithm · Swarm intelligence · Optimization · Light intensity
difference

1 Introduction

Nowadays, problems in many fields are highly non-linear and usually have multiple
local optimum. To cope with these problems, global optimization algorithms based on
swarm intelligence are widely used. Firefly algorithm (FA), one of the recent swarm-
intelligence-based global optimization methods, is developed by Yang (2010a), Yang
(2010b, 2009) in 2009. It is a kind of stochastic, nature-inspired, meta-heuristic algo-
rithm that can be applied for solving the hardest optimization problems (also NP-hard
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problems) (Fister et al. 2013). The performance study of FA shows that FA is pro-
vided with higher efficiency and better accuracy comparing with other algorithms,
such as genetic algorithm, in solving non-linear benchmark functions (Yang 2010b;
Senthilnath et al. 2011;Bhushan andPillai 2013;Vashistha et al. 2013;Arora andSingh
2013; Basu and Mahanti 2011). Nowadays, FA and its variants have been adopted for
solvingmany optimization and engineering problems. Farahani et al. (2011) andNasiri
and Meybodi (2012) have studied FA for its applications to continuous optimization
problems in dynamic environments. Gandomi et al. (2011), Miguel et al. (2013) and
Younes et al. (2014) adopted FA to solve multi-objective continuous/discrete opti-
mization problems. Azad and Azad (2011), Talatahari et al. (2014) and Kamarian et
al. (2014) carried out the optimum design of structures with both sizing and geometry
design variables based on Hassanzadeh et al. (2011), Horng (2012), Agarwal et al.
(2014) segmented and compressed images by using FA in image processing. Besides,
Sayadi et al. (2010), Jati (2011) and Marichelvam et al. (2014) used FA to deal with
many NP-hard problems, such as travelling salesman problem.

The basic FA has some potential drawbacks such as premature convergence when
dealing with multimodal problems with many local peaks and valleys. What’s more,
it will converge quite slowly while solving optimization problems with large search
domain because of the adoption of absolute distance between fireflies. To improve the
performance of FA, it is an effective approach to enhance the global exploration and
mutation by modifications of parameter settings. And as far as now, there are three
methodologies to implement the modifications of parameter settings. First, modify
the parameters by optical choice. Yang (2009) has suggested the variation range of
light absorption coefficient and randomization coefficient. Arora and Singh (2013)
and Mo et al. (2013) studied the optical choice range of each parameter for different
cases in numeric experiments. Second, tune the parameters referring to some laws.
Bidar and Rashidy (2013) proposed a new method in which fuzzy controller used
as parameter controller in FA with the aim of gaining balance between exploration
and exploitation. Yang and He (2013), Olamaei et al. (2013) and Gandomi et al.
(2013) generated the randomization coefficient using a function to the geometrical
annealing schedule. Third, change the structure of some elements. Łukasik and Żak
(2009) proposed a novel formulation of light absorption coefficient based on the max-
imum distance in search domain. Yang (2010b), Gandomi et al. (2011), Yang and
Deb (2009) and Farahani et al. (2011) has studied to generate the vector of random
numbers with uniform distribution, Gaussian distribution and Levy flights. However,
the method of parameters’ optical choice can heighten the performance of FA limit-
edly due to the fixed alterations doesn’t improve the conformation of FA essentially.
And the other two methodologies can enhance the performance of FA effectively, yet
they are not targeted and self-adaptive for various problems. That means, they may
be quite helpful in some problems, but is of poor effect in others. Besides, modifica-
tions suggested in some literatures are unilateral or segmental. Some modifications
can only affect the mutation of FA, and other improvements would influence the
global exploration partially. Hence, there are still many problems we need to work
on.

The purpose of this paper is to present a modified FA based on the light intensity
difference (LFA). The light intensity is determined by the landscape of the objective
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function in FA. In consideration of the variation trend of light intensity differences
through the whole optimization process, the modifications are established. As the light
intensity differences vary with the movements of fireflies, the values of parameters
could be changed pertinently and self-adaptively at any moment for any problems.
Moreover, the experimental study on LFA shows that the LFA is well adaptive and
efficient for different problems, and its capacity of global optimization and mutation
is enhanced so as to decrease the risk of premature convergence. The structure of this
paper is as follows: Sect. 2 discusses the fundamentals of theFA.Thebionic principle of
FA is stated firstly, and the algorithmic structure is then presented. Section 3 expounds
the modifications of FA based on the light intensity difference. The mechanism of
movements of fireflies which is related to the light intensity in the FA is discussed.
Based on various definitions of light intensity differences, the modifications are then
presented. And in Sect. 4, the modified FA is applied to six benchmark functions, and
the results are presented following from that.

2 Fundamentals of firefly algorithm

2.1 Bionic principle of FA

Fireflies are characterized by their flashing light produced by biochemical process
bioluminescence (Fister et al. 2013). Such flashing light may serve as the primary
courtship signals for mating, or to warn off potential predators. And as they are living
in harmony, the flashing light behavior is also used to communicate among group
members and make their collective decisions in order to achieve the overall goals.
Simulating the social behavior of fireflies and the phenomenon of bioluminescent
communication, the FA is developed (Mo et al. 2013).

In order to formulate theFA, there are three theoretical rules as followingwhichmust
be obeyed (Yang 2009): (1) All fireflies are unsex so that one firefly will be attracted
to other fireflies regardless of their sex. The brightness of a firefly is determined by
the landscape of the objective function, the better position has the higher brightness;
(2) Attractiveness is proportional to their brightness, thus for any two fireflies, the less
brighter one will be attracted to the brighter one and the attractiveness decrease as
their distance increases; (3) If there is no brighter one than a particular firefly, it will
move randomly.

In FA, it use the point of the search space to simulate individual firefly in the nature,
the process of search and optimization is simulated as the process of attraction and
moving of a firefly, the measurement of advantages and disadvantages of individual
locations based on objective function, and a firefly move to another which is located
a better position in the neighborhood structure so as to evolution its position (Mo et
al. 2013). Therefore, there are two important issues: the brightness and attractiveness.
Brightness reflects the advantages and disadvantages of the location of the firefly, and
determines the direction of movement. Attractiveness decides the moving distance. As
the brightness and attractiveness are constantly updated, we can achieve the objective
optimization gradually.
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2.2 Descriptions of FA

For designing the brightness and attractiveness properly, two important issues need to
be defined: the variation of light intensity and the formulation of attractiveness.

In the basic FA, the light intensity I of a firefly representing the solution x is
proportional to the value of objective function I (x) ∝ f (x), and decreases with the
increase in the square of the distance r2 because of absorption in the light propagation
media. Therefore, as the distance from the light source increases, the light absorption
causes that light becomes weaker andweaker. And the light intensity I (r) can be given
by:

I (r) = I0 × e−γ r2 (1)

where I0 denotes the light intensity of the source, and γ is the light absorption coef-
ficient of the propagation media.

The attractiveness β of a firefly is proportional to its light intensity I (r). Therefore,
the attractiveness β can be defined in a similar pattern as Eq. (1):

β = β0 × e−γ r2 (2)

where β0 is the attractiveness at r = 0. In some way, the light intensity I and attrac-
tiveness β are synonymous for each firefly. While the intensity is referred to as an
absolute measure of flash by the firefly, the attractiveness is a relative measure of its
light that should be seen and judged by other fireflies.

The distance between any two fireflies xi and x j is expressed as the Euclidean
distance by the basic FA, as follows:

ri j = ∥
∥xi − x j

∥
∥ =

√
√
√
√

d
∑

k=1

(xi,k − x j,k)2 (3)

where d denotes the dimensionality of the problem, and xi,k is the kth component of
the firefly xi .

While the firefly xi is attracted to another more attractive firefly x j , the movement
of the ith firefly is determined by the following equation:

xt+1
i = xti + β0e

−γ r2i j × (xtj − xti ) + α × (rand − 1/2) (4)

where t is the iteration number, α is the randomization parameter deciding the size of
random walk, and rand is a random number generator uniformly distributed in [0, 1].
For most cases, we can take β0 = 1, γ = 1, and α ∈ [0, 1]. In addition, if the scales
vary significantly in different dimensions, it is better to replace α by αSk where the
parameters Sk(k = 1, · · · , d) are the actual scales of the d-dimensions problem.

The movements of fireflies consist of three terms: the current position of ith firefly,
themovement towards to another brighter firefly affected by attraction β, and a random
walk constituted by a randomization parameter α and the random generated number
rand. Therefore, the parameter γ , which mainly determines the attraction β, has a
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crucial impact on the convergence speed which affects the global exploration of FA,
and the parameter α determine the size of random walk which affects the mutation
and local exploitation of FA. Hence, lots of studies or modifications are focus on the
settings of these three parameters so as to make a balanced trade-off between local
exploitation and global exploration for different problems. Schematically, the basic
FA can be summarized as the pseudo code in pseudo Code 1.

Code 1. Pseudo code of the base Firefly Algorithm

Objective function ( ) ( )1, , , T
df x x=x x L

Generate initial population of fireflies ( )1, ,i i n=x L

Light intensity iI at ix is determined by ( )if x

Define light absorption coefficient γ

While (t<MaxGeneration)

For i=1:n (all N fireflies)

For j=1:i (all N fireflies)

If ( j iI I> ), Move firefly i towards j in all dimensions(Apply Eq.(4)); End if

Attractiveness varies with distance r via exp[ 2rγ− ]

Evaluate new solutions and update light intensity

End for j

End for i

Rank the fireflies and find the current best

End while

Post process results and visualization

3 Modified FA based on light intensity difference

In this section, a new modified FA based on the light intensity difference is proposed
to change the values of parameters pertinently and self-adaptively at any moment
for any problems. The definitions of light intensity difference in different situations
are expounded. And the modifications are established with the purpose of enhanc-

123



1050 J Comb Optim (2016) 31:1045–1060

ing the global exploration and mutation of FA so as to reduce the risk of premature
convergence.

3.1 Definitions of light intensity differences

According to Eq. (4) and the pseudo Code 1, the direction of movement is deter-
mined by the comparison of light intensities of any two fireflies in the basic FA, and
the displacement of movement depends on the attractiveness function. Since the light
absorption coefficient and the initial attractiveness are generally constant, the attrac-
tiveness is only decided by the distance between fireflies. Therefore, the displacement
of movement only depends on the distance between fireflies. And that means, light
intensities are only used to determine the direction of movement, but not to affect the
displacement of movement for different fireflies. However, for any two fireflies with
distance r , firefly i both move towards firefly j while they are in different cases of
I j > Ii and I j � Ii , and they will possess same displacements on account of the
same distance r . However, the corresponding solution of firefly j is obviously better
than the corresponding solution of firefly i with different degrees. Accordingly, the
movements should be of different displacements. Thinking about this reason, we will
make use of the light intensity to determine the displacement of movement according
to different situations. Therefore, some modifications for FA are proposed based on
light intensity difference which can change the values of parameters pertinently and
self-adaptively at any moment for any problems.

So as to measure the light intensity differences in different situations, some defini-
tions of light intensity differences are presented firstly.

Definition 1 The light intensity difference between fireflies in the tth iteration cycle
is

�I ti j = I tj − I ti (5)

where I tj > I ti , i, j ∈ [1, N ], t ∈ [1, T ], N is the population size, T is the total
iteration generations.

Definition 2 The max light intensity difference in the tth iteration cycle is

�I tmax = max(I t ) − min(I t ) (6)

where I t are the light intensities of all fireflies in the tth iteration cycle.

Definition 3 The global light intensity difference in the last t iteration cycles is

�Imax = max(I ) − min(I ) (7)

where I are all the light intensities of fireflies emerged in the last t iteration cycles.
For any two fireflies with a certain distance r , firefly i need move quickly to firefly

j while the value of �I ti j is large, and it implies that there are multiple optimum if
�I ti j is small. Similarly, for fireflies with a changeless light intensity difference �I ti j ,
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there are multiple optimum if the distance r is large, and the two fireflies are in the
vicinity of the same optima while the distance r is quite small.

As is shown in many optimization processes, light intensity differences of fireflies
are generally large at the beginning, hence the inferior fireflies should move towards
the superior fireflies with larger spans and randomizations which will speed up the
convergence and increase the diversification. And in the last phase fireflies are concen-
trated near optimum and the light intensity differences are always quite small, so the
movement of fireflies should be with smaller spans and randomizations which would
increase the capacity of exploitation and suppress the oscillation near the optimum.
However, how much should the light intensity difference be that we can say it is big or
small? In order to measure the values of the light intensity differences, we will define
the ratios of light intensity difference in different cases.

Definition 4 The ratio of light intensity difference between fireflies in the t th iteration
cycle is

ξ t = �I ti j/�I tmax (8)

Hence, while ξ t is comparatively big at the beginning of optimization, the values
of attractiveness function β and randomization coefficient α also should be big; while
ξ t is enough small in the last phase, the values of attractiveness β and randomization
coefficient α should turn to small. But, the ratio of light intensity difference ξ t will
change with the iteration number t , so it is proper to choose a ratio of global light
intensity difference as the measure criterion.

Definition 5 The ratio of global light intensity difference in the last t iteration cycles
is

ξ = �I ti j/�Imax (9)

As the global light intensity difference �Imax always changes not big enough, so
it is more effective to measure the corresponding solutions by the ratio of global light
intensity difference. That means, the larger the value of ξ is, the more inferior the
corresponding solutions are; and the smaller the value of ξ is, the more superior the
corresponding solutions are. Moreover, the corresponding solutions are in the vicinity
of global optimum while the value of ξ is approximately equal to zero.

3.2 The proposed modifications

Based on the definitions of light intensity difference, the modifications for FA are
established as follows. The modifications about the light absorption coefficient and
initial attractiveness are with the purpose of enhancing the global exploration, and
the modification about randomization coefficient could increase the mutation so as to
decrease the risk of premature convergence.

3.2.1 Light absorption coefficient γ

As is known, the displacement of movement is mainly determined by the attractive-
ness β and the parameter γ has a crucial impact on the attractiveness and convergence
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speed. As the value of light absorption coefficient γ is always constant, the attractive-
ness β decreases with the increase in the square of the distance r2 according to Eq.
(2). Thinking about the characteristic of exponential term of the attractiveness func-
tion, it implies that, if the span of search domain S is rather big, it will decrease the
convergence speed and solving efficiency of the FA. Therefore, some modifications
are required to make.

Combined with the achievements in literatures, we can let

γ = γ0/r
2
max (10)

where rmax = max d(xi , x j ),∀xi , x j ∈ S is the max distance in search domain S, γ0 is
the initial light absorption constant. Based on this modification, the attractiveness will
be a second order function of non-dimensional distance which is the ratio of distance
r and max distance rmax referred to Eq. (2). Thus, FA can have a suitable convergence
speed for any problems.

On the other hand, a characteristic distance over which the attractiveness changes
significantly from β0 to β0e−1 is defined as

� = 1/
√

γ (11)

Mathematically, the characteristic distance � controls the average distance of a
group of fireflies that can be seen by adjacent groups and affects the global exploration
of FA. Therefore, the characteristic distance of the modified FA in this paper is

� = rmax/
√

γ0 (12)

As a result, the global exploration of the modified FA would be strong enough if
γ0 ≤ 4, and the local exploitation of the modified FA shall be better when the value
of γ0 is fairly large. Hence, it should determine the value of γ0 based on practical
situations in applications.

3.2.2 Initial attractiveness β0

As is shown in Eq. (2), the value of the attractiveness β is affected by the initial attrac-
tiveness β0 which determines its amplitude and has a crucial effect on the convergence
speed of FA. Thinking about the common pattern of optimization process, we can let

β0 =
{

ξ(ξ > η1)

η1(ξ ≤ η1)
(13)

As ξ ∈ [0, 1], so the value of β0 is changed in the domain of
[

η1, 1
]

. At the same
time, thinking about that η1 with a very small value may lead to a slow convergence
speed in the last phase, we can let the value of η1 is 0.3.

So, if the ratio of light intensity difference is generally large at the beginning of
optimization process, large values of initial attractiveness β0 will increase the conver-
gence speed and the possibility to find diverse optimum. With the iterations carrying
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on, the ratio of light intensity difference and the displacements of movements will
decrease. While the value of β0 equals to η1 with no decay in the last phase, fireflies
are all in the vicinity of optimum, and small displacements of movements which is
affected by a small value of β0 will lead fireflies to move towards to optimum slowly
with little oscillations.

3.2.3 Randomization coefficient α

As the randomization coefficientα essentially control the randomness of the FA, a large
value of the randomization coefficient α will encourage fireflies to explore unknown
regions and avoid the FA trapping in local optimum. At the same time, a small value
will let fireflies focusing on local exploitation with little oscillations. Similarly, we
can let

α = α0 × 0.02rmax, α0 =
{

ξ (ξ > η2)

η2 (ξ ≤ η2)
(14)

where α0 is the randomization ratio, the value of η2 may be arranged to 0.1. The
constant 0.02 comes from the fact that random walks requires a number of steps to
reach the optimum for fireflies while balancing the local exploitation without jumping
too far in a few steps.

Based on this modification, the random walks of FA will be fairly big at the begin-
ning of optimization process. Hence, the mutation of FA will be enhanced so as to
avoid premature convergence. And in the last phase, the random walks will be small
enough to suppress the oscillation and enhance the local exploitation.

4 Experiments and results

In this section, numeric experiments are designed to study the performance of LFA
and verify the availability of the modifications. Some benchmark functions are tested
in experiments, and simulation results of LFA are compared with other algorithms.
Finally, some important conclusions have been got.

4.1 Numeric experiments

Performance of LFA is tested on six typical benchmark functions (Table 1) which have
been extensively used in literatures (Yang 2009; Bhushan and Pillai 2013; Arora and
Singh 2013; Mo et al. 2013; Farahani et al. 2011). The six benchmark functions could
be subdivide in two types. The previous three functions, which are highly nonlinear
with lots of local optimum, are adopted to verify the global exploration and mutation
of different algorithms. And remaining three functions are used to verify the local
exploitation and convergence speed of algorithms. The function, the equation, the
admissible range of the variable xi , and the global optima are summarized in Table 1.
Each experiment was run with uniform random initial values of x in range [xmin, xmax]
indicated in Table 1. During the optimization process the fireflies were not allowed to
fly outside the region defined by [xmin, xmax]. For simplicity, the simulations of the six
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Table 1 Informations of benchmark functions

Function Equation Range xi Global optima

Rastrigin f1(x) =
D∑

i=1

[

x2i − 10 cos(2πxi ) + 10
]

[−5.12, 5.12] 0

Ackley

f2(x) = 20 − 20 exp

(

−0.2

√

1
D

D∑

i=1
x2i

)

− exp

(

1
D

D∑

i=1
cos(2πxi )

)

+ e

[−10, 10] 0

Schaffer f3(x) =
sin2

√

D∑

i=1
x2i −0.5

[

1+0.001(
D∑

i=1
x2i )

]2 + 0.5 [−50, 50] 0

Rosenbrock f4(x) =
D−1∑

i=1

[

100(xi+1 − x2i )2 + (xi − 1)2
]

[−2, 2] 0

Schwefel f5(x) =
D∑

i=1
|xi | +

D∏

i=1
|xi | [−10, 10] 0

Sphere f6(x) =
D∑

i=1
x2i [−50, 50] 0

benchmark functions are all with 2 dimensions. Because all of the six test functions
have the unique global optima 0 at [0,0], we can view the convergence process of
algorithms intuitively and effectively only through the convergence curves of function
fitness.

The genetic algorithm (GA) (Goldberg 1989) and particle swarm optimization
(PSO) (Kennedy and Eberhart 1995; Kennedy et al. 2001), two typical bio-inspired
meta-heuristic algorithms, are widely used in performance researches (Yang 2010b;
Yang 2009; Gandomi et al. 2011; Yang and Deb 2009; Mohammadi et al. 2013).
Hence, the GA, PSO and the basic FA are adopted to be the contrast. The population
sizes of groups are 20 all the time, and other parameter settings of the four algorithms
are illustrated as follows:

(1) GA: mutation probability pm = 0.05, crossover probability pc = 0.8, gene length
l = 10;

(2) PSO: weight constant w = 1, learning parameters α = β = 2;
(3) FA: β0 = γ = 1, α = 0.02;
(4) LFA: γ0 = 4,η1 = 0.3,η2 = 0.1.

4.2 Results and discussions

When the initial positions were determined randomly, the numeric experiments can
be carried out by compiling MATLAB programs. The results of numeric experiments
are shown in Table 2, and the function fitness which are varied with iteration numbers
are illustrated in Figs. 1, 2, 3, 4, 5, and 6. The fitness in figures means the transient
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Table 2 Comparison of results of different algorithms

Algorithm Optimal values

Rastrigin Ackley Schaffer Rosenbrock Schwefel Sphere

GA 0.089 0.0442 0.037377 1.5344e−4 0.0196 4.777e−3

PSO 8.45e−4 0.2506 0.078663 1.4423e−4 0.01416 8.069e−3

FA 8.158e−5 0.0018 0.22769 8.331e−8 0.0953 0.62305

LFA 1.79e−5 3.404e−4 3.1229e−6 1.502e−9 1.73077e−4 5.0906e−8

values of objective functions during the optimization process. Besides, the ranges of
vertical axis are trimmed in order to exhibit the comparison of convergence curves
more clearly.

There are many criteria in literatures for evaluating the performance of the algo-
rithms. Here, the successful optimization is defined as error of optimal values are not
big than 0.001. As is shown in Table 2, LFA has achieved all the six global optimum
successfully in the light of this criteria. It implies that LFA has better performance of
global exploration and mutation which lead to get rid of trapping into local optimum
and approach the global optima finally. Moreover, LFA also has better performance of
local exploitation, which means better computational accuracy, than other algorithms.
In addition, the basic FA has terrible results for the functions of Schaffer and Sphere
owing to their large search domain.

For the previous three functions which are of many peaks and valleys, the goal of
numeric experiments is to verify theLFA’s capacity of global exploration andmutation.
The comparisons of convergence curves are shown in Figs. 1, 2, and 3. In general, LFA
converges quickly to the global optima without trapping into local optimum for all
the three functions, which demonstrates the good capacity of global exploration and
mutation to avoid premature convergence. And, the basic FAhave a better performance
of optimization efficiency than GA and PSO for functions of Rastrigin and Ackley as
is shown in Figs. 1 and 2. In addition, because of a large search domain in Schaffer
Function, both of the attractiveness and random walks of FA appears to be so small
that the convergence curve of FA seems to be changeless as is illustrated in Fig. 3.

For the rest three functions which are of only one optima, the goal of numeric
experiments is mainly to test the local exploitation and convergence speed of LFA.
The comparisons of function fitness are illustrated in Figs. 4, 5, and 6. Due to a small
search domain for the Rosenbrock Function, all the four algorithms find the optimal
solution successfully in the given iteration generation, yet LFA is more efficient and
more precise referred to Fig. 4 and Table 2. Similar to the functions of Schwefel and
Sphere, LFA approach the global optima rapidly which reveals its advantage of local
exploitation and convergence speed. And owing to the large span of search domain
which lead to small value of attractiveness, FA converges so slowly that it couldn’t
reach the global optima in the given generations. As is implied in Figs. 5 and 6, the
larger the span of search domain, the slower the convergence speed of FA.

In summary, the results of numeric experiments have demonstrated the advantage
of LFA. Based on the proposed modifications, LFA is not only well adaptive, but also
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Fig. 1 Comparison of function fitness of Rastrigin function

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

iteration numbers ( population size is 20 )

fu
nc

tio
n 

fit
ne

ss
 (

 A
ck

le
y 

)

GA

PSO

FA

LFA

Fig. 2 Comparison of function fitness of Ackley function

of stronger ability of global exploration and local exploitation than other algorithms.
After improving, the attractiveness is a function of non-dimensional distance which
is the ratio of absolute distance between fireflies and max distance of search domain,
and the random walk is also related to the max distance of search domain. As a result,
the convergence speed is upgraded and the risk of premature is reduced effectively,
especially for multimodal problems with large search domain. Hence, the modified FA
could have a suitable ability of global exploration and mutation for any optimization
problems. At the same time, parameter settings of initial attractiveness and randomiza-
tion ratio are proposed to depend on the ratio of global light intensity difference. And
as the light intensity differences vary with the movements of fireflies, their values can
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Fig. 4 Comparison of function fitness of Rosenbrock function

be adjusted pertinently and self-adaptively at any moment for different problems. As a
result, the capability of global exploration and mutation for LFA will be reinforced at
the beginning, while the ability of local exploitation will be enhanced in the last phase.
Additionally, we can adjust the performance of LFA and make a trade-off between
local exploitation and global exploration by tuning the parameter settings involved in
the modifications mentioned above.
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Fig. 5 Comparison of function fitness of Schwefel’s problem
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Fig. 6 Comparison of function fitness of Sphere function

5 Conclusions

This paper proposed a modified FA based on the light intensity difference (LFA).
In FA, the light intensity is determined by the landscape of the objective function.
After analyzing the movement mechanism of fireflies, we find that the light intensity
can not only decide the direction of movement, but also be used to determine the
displacement of movement according to practical situations. Therefore, the modifica-
tions, which can alter the values of parameters pertinently and self-adaptively at any
moment for different problems, are established in consideration of the variation trend
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of light intensity differences. The structure improvements about the light absorption
coefficient and randomization coefficient are suggested to avoid converging slowly
and enhance the mutation for problems with large search domains. At the same time,
initial attractiveness and randomization ratio are depending on light intensity differ-
ences. Thus, their values will decrease gradually and self-adaptively in pace with light
intensity differences of fireflies trend to zero by the whole optimization process. As a
result, the capability of global exploration and mutation for LFA will be reinforced at
the beginning, while the ability of local exploitation is enhanced in the last phase. In
order to effectively verify the performance of LFA, we make a carefully comparison
between GA, PSO, the basic FA and LFA. The investigated results show that, when
comparing with GA, PSO and the basic FA, LFA is well adaptive and efficient, and
it also can perform much better in terms of global optimization and mutation so as to
decrease the risk of premature convergence.
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