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Abstract In 1965, Motzkin and Straus provided a connection between the order
of a maximum clique in a graph G and a global solution of a quadratic optimiza-
tion problem determined by G which is called the Lagrangian function of G. This
connection and its extensions have been useful in both combinatorics and optimiza-
tion. In 2009, Rota Bulò and Pelillo extended the Motzkin–Straus result to r -uniform
hypergraphs by establishing a one-to-one correspondence between local (global) min-
imizers of a family of homogeneous polynomial functions of degree r (different
from Lagrangian function) and the maximal (maximum) cliques of an r -uniform
hypergraph. In this paper, we study similar optimization problems related to non-
uniform hypergraphs and obtain some extensions of their results to non-uniform
hypergraphs. In particular, we provide a one-to-one correspondence between local
(global) minimizers of a family of non-homogeneous polynomial functions and the
maximal (maximum) cliques of {1, r}-hypergraphs. An application of a main result
gives an upper bound on the Turán density of complete {1, r}-hypergraphs. The
approach applied in the proof follows from the approach in Rota Bulò and Pelillo
(2009).
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1 Introduction and main results

A hypergraph H = (V, E) consists of a vertex set V and an edge set E ⊂ 2V , where
2V is the family of all subset of V . For a hypergraph H , let V (H) denote the vertex set
of H and E(H) denote the edge set of H . If all edges of H have the same cardinality
r , then H is an r-uniform hypergraph or r-graph. The set T (H) = {|e| : e ∈ E(H)}
is called the set of edge types of hypergraph H . Hypergraph H is non-uniform if
it has at least two edge types. If T (H) = {r1, r2, . . . , rl}(r1 < r2 < . . . < rl),
then we say that H is an {r1, r2, . . . , rl} − hypergraph. For any r ∈ T (H), the r-th
level hypergraph Hr is the r -uniform hypergraph consisting of all edges of H with
r vertices. For a positive integer r , let V (r) be the family of all r -subsets of V . We
write H

r = V (r)\Hr , then the complement of H is H = (V, H
r1 ∪ H

r2 ∪ . . .∪ H
rl
).

For any integer n ∈ N, denote the set {1, 2, . . . , n} by [n]. Let [t]{r1,r2,...,rl } denote the
complete {r1, r2, . . . , rl}-hypergraph of order t , that is, the {r1, r2, . . . , rl}-hypergraph
of order t containing all ri -subsets of the vertex set V for 1 ≤ i ≤ l. A hypergraph
H is a subhypergraph of a hypergraph G, denoted by H ⊆ G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A complete subhypergraph of a hypergraph H with the same edge
type as T (H) is called a clique of H . If U ⊆ V (H), then the subhypergraph of H
induced by U is denoted by H [U ]. We assume that all hypergraphs or graphs have the
vertex set [n] throughout the paper if it is not specified. The characteristic vector of
a set U , denoted by �xU = (xU

1 , xU
2 , . . . , xU

n ), is the vector in S defined as:

xU
i = 1i∈U

|U |

where |U | denotes the cardinality of U and 1P is the indicator function returning 1 if
property P is satisfied and 0 otherwise.

Definition 1.1 Let H be an r -uniform hypergraph. Let S = {�x = (x1, x2, . . . , xn) ∈
R

n : ∑n
i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n} and let �x = (x1, x2, . . . , xn) ∈ S. The

Lagrange function of H , denoted by λ(H, �x), is

λ(H, �x) =
∑

e∈E(H)

∏

i∈e

xi .

The Lagrangian of H , denoted by λ(H), is

λ(H) = max{λ(H, �x) : �x ∈ S}.

We call �x = (x1, x2, . . . , xn) ∈ R
n a feasible weighting for H if and only

if �x ∈ S. A vector �y ∈ S is called an optimal weighting for H if and only if
λ(H, �y) = λ(H).

Lagrangians were introduced for 2-graphs by Motzkin and Straus (1965). They
determined the following expression for the Lagrangian of a 2-graph.
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Theorem 1.1 (Motzkin and Straus (1965)) If G is a 2-graph and the order of its
maximum cliques is t , then

λ(G) = λ
(
[t](2)

)
= 1

2

(

1 − 1

t

)

.

Moreover, the characteristic vector of a maximum clique of G is an optimal weighting
for G.

This result and its extensions have applications in both combinatorics and optimiza-
tion. The Lagrangian of a hypergraph has been a useful tool in hypergraph extremal
problems. For example, Sidorenko (1987) and Frankl and Füredi (1989) applied graph-
Lagrangians of hypergraphs in findingTurán densities of hypergraphs. Frankl andRödl
(1984) applied it in disproving Erdös long standing jumping constant conjecture. The
Motzkin–Straus result and its extensionwere successfully employed in optimization to
provide heuristics for the maximum clique problem Bomze (1997); Budinich (2003);
Busygin (2006); Gibbons et al. (1997); Pardalos and Phillips (1990). However, the
obvious generalization of Motzkin and Straus’ result to hypergraphs is false, i.e., the
Lagrangian of a hypergraph is not always the same as the Lagrangian of its maxi-
mum cliques. In fact, there are many examples of hypergraphs that do not achieve
their Lagrangian on any proper subhypergraph. A generalization of Theorem 1.1 to
r -uniform hypergraphs was given by Rota Bulò and Pelillo (2009) by associating the
edge set of an r -uniform hypergraph H to a polynomial function of degree r different
from the Lagrange function. In Rota Bulò and Pelillo (2009) considered the following
non-linear program:

minimize hH (�x) = λ(H , �x) + τ

n∑

i=1

xr
i =

∑

e∈H

∏

i∈e

xi + τ

n∑

i=1

xr
i

subject to �x ∈ S, (1)

where τ ∈ R and λ(H , �x) = ∑

e∈H

∏

i∈e
xi is the Lagrangian of H . They obtained the

following generalization of Motzkin–Straus Theorem.

Theorem 1.2 (Rota Bulò and Pelillo (2009)) Let H be an r-uniform hypergraph and
0 < τ ≤ 1

r(r−1) (with strict inequality for r = 2). A vector �x ∈ S is a local (global)
solution of (1) if and only if it is the characteristic vector of a maximal (maximum)
clique of H. If H has a maximum clique of order t , then h attains its minimum over S
at τ t1−r and the characteristic vector of a maximum clique is a global solution of (1)
(This is true for r = 2 and τ = 1

2 as well).

If H is a 2-graph on n vertices, then

1 = (x1 + x2 + . . . + xn)2

=
n∑

i=1

x2i + 2

⎛

⎝
∑

{i, j}∈E(H)

xi x j +
∑

{i, j}∈E(H)

xi x j

⎞

⎠
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=
n∑

i=1

x2i + 2
(
λ(H, �x) + λ(H , �x)

)
.

So

λ(H, �x) = 1

2
−

(
1

2

n∑

i=1

x2i + λ(H , �x)

)

. (2)

By (2), to obtain the maximal (maximum) value of λ(H, �x) is equivalent to find the
minimal (minimum) value of 1

2

∑n
i=1 x2i + λ(H , �x). So Theorem 1.2 generalizes the

Motzkin–Straus result.
Very recently, the study of extremal problems of non-uniform hypergraphs have

been motivated by extremal poset problems. We will study a similar problem for
non-uniform hypergraphs and explore its applications in determining Turán densities
of non-uniform hypergraphs. Given an {r1, r2, . . . , rl}-hypergraph H , consider the
following non-linear programming.

minimize gH (�x) =
∑

r∈T (H)

αr

∑

e∈H
r

∏

i∈e

xi +
∑

r∈T (H)

βr

n∑

i=1

xr
i

subject to �x ∈ S, (3)

where αr , βr ∈ R, for all r ∈ T (H). In this paper, we study problem (3) for {r1, r2}-
hypergraphs and {1, r}-hypergraphs.

When r3 = r4 = . . . = rl = 0, that is, H is an {r1, r2}-hypergraph, (3) can be
written as

minimize pH (�x) = α
∑

e∈H
r1

∏

i∈e

xi + β
∑

e∈H
r2

∏

i∈e

xi + γ

n∑

i=1

xr1
i + τ

n∑

i=1

xr2
i

subject to �x ∈ S, (4)

where α, β, γ, τ ∈ R. Let pH = min
�x∈S

pH (�x).

Furthermore, when r1 = 1 and r2 = r , it is clear that γ
∑n

i=1 xi = γ is a constant,
so we can write fH (�x) = pH (�x) − γ for simplification,

minimize fH (�x) = α
∑

i∈H
1

xi + β
∑

e∈H
r

∏

i∈e

xi + τ

n∑

i=1

xr
i

subject to �x ∈ S. (5)

In order to simplify the notation we write fH (�x) as f (�x) where the context is non
ambiguous. Let fH = min

�x∈S
f (�x).

We call �x = (x1, x2, . . . , xn) a feasible weighting for a non-uniform hypergraph H
with n vertices if �x ∈ S. A local solution of (5) is a vector �x ∈ S for which there exists
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a neighborhood �(�x) of �x such that f (�y) ≥ f (�x) for all �y ∈ �(�x). A global solution
is a vector �x ∈ S such that f (�y) ≥ f (�x), for all �y ∈ S. We say that �x is a strict local
(global) solution if the inequalities are strict for �y 	= �x . Applying an approach similar
in Rota Bulò and Pelillo (2009), we obtain the following results for {1, r}-hypergraphs
and {r1, r2}-hypergraphs.
Theorem 1.3 Let τ > 0, α ≥ τr and β ≥ τr(r −1) (with strict inequality for r = 2)
be constants, let H be a {1, r}-hypergraph. A feasible weighting �x is a local (global)
solution of (5) if and only if it is the characteristic vector of a maximal (maximum)
clique of H. In particular, if H has a maximum clique of order t , then fH = τ t1−r

and the characteristic vector of a maximum clique is a global solution of (5).

Theorem 1.4 Let β, γ, τ > 0, r2 > r1 aand α ≥ γ r1(r1 − 1) + τr2(r2 − 1) be
constants. Let H be an {r1, r2}-hypergraph and U be the vertex set of a maximum
clique of Hr1 , then pH = pH [U ].

The concept of Turán density of a non-uniform hypergraph F was given in [7]. For
a non-uniform hypergraph H on n vertices, the Lubell function of H is defined to be

hn(H) =
∑

r∈T (H)

|E(Hr )|
(n

r

) .

Given a hypergraph F with edge-types T , the Turán density of F is defined to be

π(F) = lim
n→∞max{hn(H) : |v(H)| = n, H ⊆ K T

n , and

H does not contain F as a subhypergraph.}.

The proof of the existence of this limit can be found in [7]. Determining the Turán
density of a hypergraph in general has been a very challenging problem. Very few
results are known and a survey on this topic can be found in [9]. Applying Theorem
1.3, we give an upper bound of the Turán densities of complete {1, r}−hypergraphs.

Corollary 1.5 (a) Let α ≥ τr, β ≥ τr(r − 1), τ > 0 be constants, let H be a
{1, r}-hypergraph on n vertices. If H doesn’t contain a maximum complete {1, r}-
subhypergraph of order t , then

α|E(H1)|
n

+ β|E(Hr )|
nr

≤ α +
(

n

r

)
β

nr
− τ

[
(t − 1)1−r − n1−r

]
.

(b) The Turán density of [t]{1,r} satisfies π([t]{1,r}) ≤ 2 − 1
r (t − 1)1−r .

2 Proofs of the main results

The support of a vector �x ∈ S, denoted by σ(�x), is the set of indices corresponding to
positive components of �x , i.e.,

σ(�x) = {i : xi > 0, 1 ≤ i ≤ n}.
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For �x ∈ S and function g(�x), let ∂ j g(�x) denote the partial derivative of g(�x) with
respect to x j and ∂ jl g(�x) will denote the partial derivative with respect to x j and xl .
In particular,

∂ j pH (�x) = α
∑

e∈H
r1

1 j∈e

∏

i∈e\{ j}
xi +β

∑

e∈H
r2

1 j∈e

∏

i∈e\{ j}
xi +γ r1xr1−1

j +τr2xr2−1
j , (6)

∂ jl pH (�x) = 1 j 	=l

⎛

⎝α
∑

e∈H
r1

1 j,l∈e

∏

i∈e\{ j,l}
xi + β

∑

e∈H
r2

1 j,l∈e

∏

i∈e\{ j,l}
xi

⎞

⎠

+ 1 j=l

[
γ r1(r1 − 1)xr1−2

j + τr2(r2 − 1)xr2−2
j

]
. (7)

∂ j f (�x) = α1
j∈H

1 + β
∑

e∈H
r

1 j∈e

∏

i∈e\{ j}
xi + τr xr−1

j , (8)

∂ jl f (�x) = β1 j 	=l

∑

e∈H
r

1 j,l∈e

∏

i∈e\{ j,l}
xi + 1 j=lτr(r − 1)xr−2

j . (9)

Lemma 2.1 (KKT necessary condition, Luenberger (1984)) If a feasible weighting
�x = (x1, x2, . . . , xn) is a local solution of (3), then there exists θ ∈ R such that for
all j ∈ [n],

∂ j gH (�x)

{= θ, j ∈ σ(�x),

≥ θ, j /∈ σ(�x).
(10)

Lemma 2.2 A sufficient condition for a feasible weighting �x ∈ S to be a local solution
of (3) is to be a KKT point and to have the Hessian matrix of gH (�x) in �x positive definite
on the subspace M(�x) defined as

M(�x) = {�ε ∈ R
n :

∑n

i=1
εi = 0, and ε j = 0 f or all j such that ∂ j gH (�x) > θ},

where the Hessian matrix of gH (�x) in �x is defined as

H(�x) = [
∂ jl gH (�x)

]
j,l∈[n] .

In other words, if �x is a KKT point and for all �ε ∈ M(�x)\{�0}, �ε′ H(�x)�ε > 0, then �x is
a (strict) local solution of (3).

Certainly, Lemmas 2.1 and 2.2 are also suitable for (4) and (5).

2.1 Proofs of Theorem 1.3 and Corollary 1.5

Lemma 2.3 Let α, β, τ > 0 be constants. Let H be a {1, r}-hypergraph and let a
feasible weighting �x be a local (global) solution of (5) . If H [σ(�x)] is a clique of H,
then it is a maximal (maximum) clique of H and �x is the characteristic vector of σ(�x).
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Proof If �x is a local solution of (5), then it satisfies the KKT necessary condition in
Lemma 2.1. Therefore for every j ∈ σ(�x), we have that θ = ∂ j f (�x) = τr xr−1

j > 0,
and it follows that �x is the characteristic vector of σ(�x). Moreover if there exists a setC
that contains σ(�x), such that H [C] is a clique of H , then for any j ∈ C\σ(�x), j ∈ H1

and x j = 0, then ∂ j f (�x) = 0 < θ . This contradicts the KKT necessary condition in
Lemma 2.1. Hence, H [C] is a maximal clique of H .

If �x is the characteristic vector of a maximal clique of order s, then by a direct
calculation, fH (�x) = τ s1−r and fH (�x) = τ s1−r decreases as s increases. So fH

= τ t1−r , where t is the maximum clique of H . Combining with the conclusion
obtained for a local solution in the previous paragraph, we obtain the conclusion
for a global solution.

Hence Lemma 2.3 holds. 
�
Lemma 2.4 Let �x be a local (global) solution of (5). If both the following conditions
hold:

1. α > 0, τ > 0 and β ≥ τr(r − 1),
2. For r = 2, α > 0, τ > 0, and β = 2τ , the support size of �x is minimum among

all feasible weighting �y such that f (�y) = f (�x), then Hr [σ(�x)] is a clique in Hr .

Proof Suppose that there exists ẽ ∈ σ(�x)(r) such that ẽ /∈ Hr .We define a new feasible
weighting �y for H as follows. Let j, l ∈ ẽ such that x j ≤ xl ≤ xi for all i ∈ ẽ\{ j, l}
and take yi = xi for i 	= j, l, y j = x j + ε and yl = xl − ε, where 0 < ε ≤ xl . Then
�y is clearly a feasible weighting for H .

We study the sign of f (�y) − f (�x) in a neighbourhood of �x as ε → 0 by means of
the Taylor expansion of f . By Lemma 2.1, ∂ j f (�x) = ∂l f (�x) for j, l ∈ σ(x).

f (�y)− f (�x) = ε∂ j f (�x)−ε∂l f (�x)+ ε2

2! ∂ j j f (�x) − 2ε2

2! ∂ jl f (�x)+ ε2

2! ∂ll f (�x)+O(ε3)

= ε2

2

[
∂ j j f (�x) + ∂ll f (�x) − 2∂ jl f (�x)

] + O(ε3)

= ε2

2

⎡

⎣τr(r − 1)(xr−2
j + xr−2

l ) − 2β
∑

e∈H
r

1 j,l∈e

∏

i∈e\{ j,l}
xi

⎤

⎦ + O(ε3).

(11)

We will distinguish 2 cases, each of which yields a contradiction, hence proving
that Hr [σ(�x)] is a clique in Hr .

Case a: β > τr(r − 1).
In this case, since at least ẽ ∈ H

r
and x j ≤ xl ≤ xi for all i ∈ ẽ\{ j, l}, (11) can be

written as

f (�y) − f (�x) ≤ ε2

2
[τr(r − 1)(xr−2

l + xr−2
l ) − 2βxr−2

l ] + O(ε3)

≤ ε2[τr(r − 1) − β]xr−2
l + O(ε3). (12)
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So f (�y)− f (�x) < 0 for sufficiently small value of ε. This contradicts the assumption
that �x is a local solution of f .

Case b: β = τr(r − 1).
Then

f (�y)− f (�x) = ε2

2

⎡

⎣τr(r −1)
(

xr−2
j +xr−2

l

)
−2β

∑

e∈H
r

1 j,l∈e

∏

i∈e\{ j,l}
xi

⎤

⎦+O(ε3)

= ε2

2
τr(r − 1)

⎡

⎣
(

xr−2
j + xr−2

l

)
− 2

∑

e∈H
r

1 j,l∈e

∏

i∈e\{ j,l}
xi

⎤

⎦ + O(ε3).

(13)

Let μ = 2
∑

e∈H
r
1 j,l∈e

∏

i∈e\{ j,l}
xi − (xr−2

j + xr−2
l ). It is obvious that μ ≥ 0 since at

least ẽ ∈ H
r
and x j ≤ xl ≤ xi for all i ∈ ẽ\{ j, l}.

Case b1: μ > 0.
In this case, f (�y) − f (�x) < 0 for sufficiently small value of ε. But �x is a local

solution of f , this is a contradiction.
Case b2: μ = 0 and r = 2.
Since r = 2, O(ε3) ismissing in (13), then f (�y)− f (�x) = 0. Taking ε = xl , we get

another local solution �y with smaller support size. This contradicts to the minimality
of the support size of �x .

Case b3: μ = 0 and r ≥ 3.
If μ = 0, then ẽ is the only edge in H

r
with vertices in σ(x)(r) that contains both

j and l, and xi = x j for all i, k ∈ ẽ. Setting xi = ξ for all i ∈ ẽ.
We define a new feasible weighting �z as follows. Let m ∈ ẽ\{ j, l} and take zi = xi

for i 	= j, l, m, z j = x j + ε
2 , zl = xl + ε

2 and zm = xm − ε where 0 < ε ≤ xm . We
study the sign of f (�z)− f (�x) in a neighbourhood of �x as ε → 0 bymeans of the Taylor
expansion of f . By Lemma 2.1 ∂ j f (�x) = ∂l f (�x) = ∂m f (�x) for j, l, m ∈ σ(x).

f (�z)− f (�x) =ε2

2

[
∂ j j f (�x)+∂ll f (�x)

4
+∂mm f (�x)−∂ jm f (�x)−∂lm f (�x)+ ∂ jl f (�x)

2

]

+ ε3

6

[
∂ j j j f (�x) + ∂lll f (�x)

8
− ∂mmm f (�x) − 3∂ jlm f (�x)

2

]

+ O(ε4),

where ∂ jlm denotes the partial derivative of f with respect to x j , xl , and xm , i.e.

∂ jlm f (�x) = 1 j 	=l1l 	=m1 j 	=mβ
∑

e∈H
r

1 j,l,m∈e

∏

i∈e\{ j,l,m}
xi + 1 j=l=mβ(r − 2)xr−3

j .

Recall that x j = ξ for all j ∈ ẽ, then ∀ j, l ∈ ẽ, ∂ j j f (�x) = τr(r − 1)ξ r−2

= βξ r−2, ∂ jl f (�x) = βξ r−2, and ∀ j, l, m ∈ ẽ, ∂ j j j f (�x) = τr(r − 1)(r − 2)ξ r−3

= β(r−2)ξ r−3 and ∂ jlm f (�x) = βξ r−3. Hence, the sign of f (�z)− f (�x) for sufficiently
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small values of ε is given by the sign of − r−1
4 βε3ξ r−3 which is clearly negative and

this contradicts the local minimality of �x .
Hence Lemma 2.4 holds. 
�

Lemma 2.5 Let β > 0, τ > 0 and α ≥ τr be constants. If �x is a local (global)
solution of (5), then σ(�x)(1) ⊆ H1.

Proof If σ(�x)(1) � H1, then there are two possible cases to consider.
Case 1: ∃ j, l ∈ σ(�x) such that j ∈ H1 but l /∈ H1.
Since �x is a local solution of (5), it satisfies the KKT necessary condition in Lemma

2.1. Therefore ∀ j, l ∈ σ(�x), we have θ = ∂ j f (�x) = ∂l f (�x). But ∂ j f (�x) = τr xr−1
j ,

∂l f (�x) = α + τr xr−1
l , so τr xr−1

j = α + τr xr−1
l i.e. τr(xr−1

j − xr−1
l ) = α, then

xr−1
j = α

τr + xr−1
l > 1 since α ≥ τr and 0 < xi < 1 for all i ∈ σ(x). It is a

contradiction.
Case 2: ∀ j ∈ σ(x), j /∈ H1.

For j ∈ σ(x) but j ∈ H
1
, θ = ∂ j f (�x) = α + τr xr−1

j . Let l /∈ σ(x), then
∂l f (�x) = α < θ , this contradicts the KKT condition.

Hence Lemma 2.5 holds. 
�
Applying Lemmas 2.4 and 2.5, we will obtain the following claim:

Claim 2.6 (a) Let τ > 0, α ≥ τr and β ≥ τr(r −1) (with strict inequality if r = 2)
be constants. If �x is a local (global) solution of (5), then H [σ(x)] is a clique of H.

(b) For r = 2, α > 0, τ > 0, and β = 2τ , if �x is a local (global) solution of (5) such
that the support size of �x is minimum among all feasible weighting �y such that
f (�y) = f (�x), then H [σ(x)] is a clique of H.

By Lemma 2.3 and Claim 2.6, we can get the following claim:

Claim 2.7 (a) Let τ > 0, α ≥ τr and β ≥ τr(r −1) (with strict inequality if r = 2)
be constants. If �x is a local (global) solution of (5), then H [σ(x)] is a maximal
(maximum) clique of H and �x is the characteristic vector of σ(x).

(b) For r = 2, α > 0, τ > 0, and β = 2τ , if �x is a local (global) solution of (5) such
that the support size of �x is minimum among all feasible weighting �y such that
f (�y) = f (�x), then H [σ(x)] is a maximal (maximum) clique of H and �x is the
characteristic vector of σ(x).

Lemma 2.8 Let τ > 0, α ≥ τr and β ≥ τr(r − 1) be constants. Let H be a
{1, r}-hypergraph. If �x is the characteristic vector of a maximal (maximum) clique C
of H, then �x is a strict local (global) solution of (5).

Proof We will show that �x is a strict local solution of (5), by showing that it satis-
fies the sufficient conditions in Lemma 2.2. First we prove that �x satisfies the KKT
necessary condition in Lemma 2.1, for all j ∈ σ(x) we have θ = ∂ j f (�x) = τr xr−1

j

= τr |V (C)|1−r , since �x is the characteristic vector of C . For all j /∈ σ(x), since C is
a maximal clique of H , then there exists at least one edge in H

r
joining j and r − 1

vertices in C , so ∂ j f (�x) ≥ β|V (C)|1−r ≥ τr(r − 1)|V (C)|1−r ≥ (r − 1)θ ≥ θ .
Hence �x is a KKT point.
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Next we show that H(�x) is positive definite on the subspace M(�x). Since H(�x)|σ(x)

is a diagonal matrix with positive diagonal entries,

H(�x)|σ(x) = τr(r − 1)|V (C)|r−2I,

where I is the identity matrix. So all eigenvalues of H(�x)|σ(x) are positive.This implies
that H(�x) is positive definite on the subspace M(�x).

By a direct calculation, f (�x) = τ |V (C)|1−r attains its global minimum when |C |
is as large as possible, i.e., a maximum clique. 
�
Proof of Theorem 1.3 Following from Claim 2.7 and Lemma 2.8, we can obtain the
first part. Let �x be global solution of (5) with theminimum support size. Then byClaim
2.7, �x is the characteristic vector of a maximum clique of H . By a direct calculation,
fH = f (�x) = τ t1−r . 
�
Proof of Corollary 1.5 (a) Since H doesn’t contain a clique of order t , then the order
of its maximum cliques is at most t − 1. By Theorem 1.3, f (�x) ≥ τ(t − 1)1−r . In
particular if we take �x = ( 1n , 1

n , . . . , 1
n ), then f (( 1n , 1

n , . . . , 1
n )) ≥ τ(t − 1)1−r . By a

direct calculation, we obtain that

α|E(H1)|
n

+ β|E(Hr )|
nr

≤ α +
(

n

r

)
β

nr
− τ

[
(t − 1)1−r − n1−r

]
.

(b) Taking α = 1, β = r !, and τ = 1
r , we obtain that

π([t]{1,r}) = lim
n→∞

(
|E(H1)|

(n
1

) + |E(Hr )|
(n

r

)

)

= lim
n→∞

( |E(H1)|
n

+ r !|E(Hr )|
nr

)

≤ lim
n→∞

{

1 +
(

n

r

)
r !
nr

− 1

r

[
(t − 1)1−r − n1−r

]}

= 2 − 1

r
(t − 1)1−r .


�

2.2 Proof of Theorem 1.4

Lemma 2.9 Let H be an {r1, r2}-hypergraph. If �x is a local (global) solution of (4),
then Hr1 [σ(x)] is a clique of Hr1 provided that β, γ, τ > 0 and α ≥ γ r1(r1 − 1)
+ τr2(r2 − 1).

Proof Suppose that there exists ẽ ∈ σ(x)(r1) such that ẽ /∈ Hr1 . We define a new
feasible weighting �y for H as follows. Let j, l ∈ ẽ such that x j ≤ xl ≤ xi for all
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i ∈ ẽ\{ j, l} and take yi = xi for i 	= j, l, y j = x j + ε and yl = xl − ε, where
0 < ε ≤ xl . Then �y is clearly a feasible weighting for H .

We study the sign of pH (�y) − pH (�x) in a neighbourhood of �x as ε → 0 by means
of the Taylor expansion of pH . By Lemma 2.1, ∂ j pH (�x) = ∂l pH (�x) for j, l ∈ σ(x).

pH (�y) − pH (�x) = ε∂ j pH (�x) − ε∂l pH (�x) + ε2

2! ∂ j j pH (�x)

− 2ε2

2! ∂ jl pH (�x) + ε2

2! ∂ll pH (�x) + O(ε3)

= ε2

2

[
∂ j j pH (�x) + ∂ll pH (�x) − 2∂ jl pH (�x)

] + O(ε3)

= ε2

2

[

γ r1(r1−1)
(

xr1−2
j +xr1−2

l

)
+τr2(r2−1)

(
xr2−2

j +xr2−2
l

)

−2

⎛

⎝α
∑

e∈H
r1

1 j,l∈e

∏

i∈e\{ j,l}
xi +β

∑

e∈H
r2

1 j,l∈e

∏

i∈e\{ j,l}
xi

⎞

⎠
]

+O(ε3).

(14)

Since x j ≤ xl ≤ xi for all i ∈ ẽ\{ j, l} and r1 < r2, we can estimate (14) as

pH (�y)− pH (�x)<
ε2

2

[
2γ r1(r1−1)xr1−2

l +2τr2(r2−1)xr2−2
l −2αxr1−2

l

]
+O(ε3)

= ε2
[
γ r1(r1 − 1)xr1−2

l + τr2(r2 − 1)xr1−2
l − αxr1−2

l

]

+ ε2τr2(r2 − 1)
(

xr2−2
l − xr1−2

l

)
+ O(ε3)

= ε2
[
γ r1(r1 − 1) + τr2(r2 − 1) − α

]
xr1−2

l

+ ε2τr2(r2 − 1)
(

xr2−2
l − xr1−2

l

)
+ O(ε3). (15)

The value of pH (�y) − pH (�x) is less than zero for small enough ε since r2 > r1 and
α ≥ γ r1(r1 − 1)+ τr2(r2 − 1). This contradicts to that �x is a local solution of pH (�x).
Hence Lemma 2.9 holds. 
�
Proof of Theorem 1.4 Clearly, pH ≤ pH [U ]. By Lemma 2.9, σ(x)(r1) ⊆ Hr1 , then
σ(x) ⊆ U since U is the vertex set of a maximum complete r1-subhypergraph in H .
So we obtain that pH = pH [σ(x)] ≥ pH [U ]. Hence pH = pH [U ]. 
�

3 Remarks

For {r1, r2}-hypergraphs, we are not able to obtain a result to similar to Theorem 1.3.
The obstruction is that we are not able to verify that the vertices corresponding to the
support of a solution (with minimum number of positive weights) induce a complete
r2-subgraph in the r2-level hypergraph. There is no evidence that this is not true, but
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we are not able to confirm it by the current method. A result similar to Theorem 1.4
can be obtained for {r1, r2, . . . , rl}-hypergraphs.
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