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Abstract LetH = (V, E) be a hypergraph with set of vertices V, n := |V | and set of
(hyper-)edges E,m := |E |. Let l be the maximum size of an edge, Δ be the maximum
vertex degree and D be the maximum edge degree. The k-partial vertex cover problem
in hypergraphs is the problem of finding a minimum cardinality subset of vertices in
which at least k hyperedges are incident. For the case of k = m and constant l it
known that an approximation ratio better than l cannot be achieved in polynomial
time under the unique games conjecture (UGC) (Khot and Ragev J Comput Syst
Sci, 74(3):335–349, 2008), but an l-approximation ratio can be proved for arbitrary
k (Gandhi et al. J Algorithms, 53(1):55–84, 2004). The open problem in this context
has been to give an αl-ratio approximation with α < 1, as small as possible, for
interesting classes of hypergraphs. In this paper we present a randomized polynomial-
time approximation algorithm which not only achieves this goal, but whose analysis
exhibits approximation phenomena for hypergraphs with l ≥ 3 not visible in graphs:
if Δ and l are constant, and 2 ≤ l ≤ 4Δ, we prove for l-uniform hypergraphs a ratio
of l

(
1 − l−1

4Δ

)
, which tends to the optimal ratio 1 as l ≥ 3 tends to 4Δ. For the larger

class of hypergraphs where l, l ≥ 3, is not constant, but D is a constant, we show a
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ratio of l(1− 1/6D). Finally for hypergraphs with non-constant l, but constant Δ, we

get a ratio of l(1 − 2−√
3

6Δ ) for k ≥ m/4, leaving open the problem of finding such an
approximation for k < m/4.

Keywords Combinatorial optimization ·Approximation algorithms ·Hypergraphs ·
Vertex cover · Probabilistic methods

1 Introduction

A hypergraph H = (V, E) consists of a set V , say |V | = n, and a set E of subsets of
V , |E | = m. We call the elements of V vertices and the elements of E (hyper-)edges.
The k-partial vertex cover in hypergraphs can be stated as follows. A set X ⊆ V
is called a k-partial vertex cover for H if at least k edges of H are incident in X .
The (unweighted) k-partial vertex cover problem for hypergraphs is to find a k-vertex
cover of minimum cardinality. If k is equal to the number of hyperedges, we have
the well-known hitting set problem in hypergraphs. For graphs it is the vertex cover
problem, whose approximation complexity has been studied for nearly 4 decades.

Among the motivations to study hypergraphs are not only the natural question of
generalizing graph theory to hypergraphs (Berge 1989), but also relevant applications
in areas where hypergraphs are most natural, e.g. data structures in computational
geometry like ε-nets (Matousek and Wagner 2004), which are a kind of hitting sets,
or discrepancy theory (Matousek 2010).

1.1 Previous work

Consider amimimization problem. For ρ ≥ 1we say that a polynomial-time algorithm
achieves an ρ-approximation or an approximation ratio of ρ, if it computes for all
instances a solution of value at most ρ · Opt, where Opt is the value of an optimal
solution to the problem.

For the k-partial vertex cover problem in graphs it has been an open question for
which graphs the well-known 2-approximation can be improved. For graphs with
maximum vertex degree at most a constant Δ, Gandhi et al. (2004) gave the first
algorithm with approximation ratio smaller than 2. Further improvements have been
obtained by Halperin and Srinivasan (2002).
For hypergraphs the hitting set and the set cover problem have been investgated inten-
sively in the context of polynomial-time approximations (Chvátal 1979; Hochbaum
1982; Lovász 1975; Duh and Fürer 1997; Halperin 2000; Krivelevich 1997) as well as
non-approximability (Alon et al. 2006; Feige 1998; Lund and Yannakakis 1994; Raz
and Safra 1997).
For the hitting set problem in l-uniform hypergraphs with constant l an approximation
with a ratio strictly smaller than l cannot be achieved in polynomial time under the
unique games conjecture (UGC) (Khot and Regev 2008). Since the hitting set problem
in hypergraphs is a special case of the k-vertex cover problem in hypergraphs, namely
with k = m, this hardness of approximationholds also for the k-vertex cover problem in
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hypergraphs. On the other hand, for the k-partial vertex cover problem in hypergraphs
with edge size at most l (l not necessarily constant) Gandhi et al. (2004) gave a
polynomial time l-approximation based on the primal/dual approach.
Thus polynomial-time approximations below the l-ratio for significant classes of
hypergraphs are complexity-theoretic and algorithmically interesting and would
extend the approximation theory for the k-partial vertex cover problem from graphs to
hypergraphs. Our work is a contribution to this specific task, and to an approximation
theory for problems in hypergraphs.

1.2 Our contribution

We give a randomized algorithm of hybrid type, combining linear programming (LP)
based randomized rounding and afterwards greedy repairing to ensure the feasibility
of the randomized solution. While the algorithm is a straightforward generalization
of the algorithm of Gandhi et al. (2004) from graphs to hypergraphs, the main chal-
lenge is its analysis in different hypergraph settings. In general, the analysis of hybrid
randomized algorithms is a difficult task, as the probabilistic analysis has to combine
different dependent subroutines (e.g. maximum graph bisection Frieze and Jerrum
(1997), maximum graph partitioning Feige and Langberg (2001); Jäger and Srivastav
(2005) and vertex cover and partial vertex cover problem for graphs Gandhi et al.
(2004); Halperin (2000)). Similar problems appear also in our proofs.

We show the following approximation results: If both Δ and l are constant, 2 ≤
l ≤ 4Δ, we prove for a l-uniform hypergraph with maximum vertex degree Δ an
approximation ratio of l

(
1 − l−1

4Δ

)
. This ratio tends to the optimal ratio 1 as l is at

least 3 and tends to 4Δ. Thus for hypergraphs with large l the approximability is much
better than for graphs, matching our intuition that large hyperedges may cause many
intersections and thus a few vertices might be sufficient to get a k-partial vertex cover.
The analysis is based on variance computation and the Chebyshev–Cantelli bound. For
the larger class of hypergraphs, where l, l ≥ 3, is not constant, the above mentioned
approach does not work. Among this class we consider hypergraphs with a constant
maximum edge degree D and show an approximation ratio of l(1−1/6D). Here again
variance computation and the Chebyshev–Cantelli bound are invoked, but more work
is needed to minimize the probability of an infeasible k-partial vertex cover. Finally
for hypergraphs with non-constant l, l ≥ 3, but constantΔ, a similar analysis as above
can be carried out, but with the severe restriction l ≤ 2, which does not reveal any new
insight. Interestingly, we can overcome this restriction with the bounded difference
inequality (based on the Azuma–Hoeffding bound) and prove for any l, l ≥ 3 and

k ≥ m/4 a ratio of l(1 − 2−√
3

Δ
).

An open problem for hypergraphs arising from our work is the question whether
for a hypergraph with maximum vertex degreeΔ,Δ a constant, but arbitrary edge size
l, an approximation ratio of l(1 − c

Δ
), c > 0 a constant, can be shown for any k, in

particular for k < m/4.
Note that the approach to lift the analysis in Gandhi et al. (2004) from the k-vertex

cover problem in graphs to hypergraphs fails. Among the reasons are the different
hypergraphs settings with different hypergraph parameters (e.g. l, D and Δ) requiring
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a situation adapted application of different concentration results in combination with
combinatorial arguments.

1.3 Outline of the paper

The paper is organised as follows: In Sect. 2 we give the necessary definitions and
state some probabilistic tools. In Sect. 3 we present the randomized algorithm for the
k-partial vertex cover for hypergraphs and state estimations for the expectation and
the variance of the random variables under consideration. In Sect. 4 we analyse the
algorithm for l-uniform hypergraphs where l and Δ are constants. In Sect. 5 resp. 6
we analyse the approximation ratio for hypergraphs with constant D resp. Δ.

2 Preliminaries and definitions

2.1 Graph-theoretical notions

For a natural number n let [n] denote the set {1, . . . , n}. Let H = (V, E) be a (finite)
hypergraph, where V is a finite set, called the set of vertices, and E is the set of
hyperedges (or simply edges) consisting of subsets of V . For v ∈ V we define the
degree of a vertex v by d(v) := |{E ∈ E; v ∈ E}| and the maximum vertex degree by
Δ := max{d(v); v ∈ V }. For a set X ⊆ V wedenote byE/X := {F ∈ E ; X∩F �= ∅}
the set of edges incident to X . For an edge E ∈ E let deg(E) := |E/E | be the (edge-)
degree of E and D := maxE∈E deg(E) is the maximum edge degree. Note that
Δ ≤ D ≤ lΔ. For l ∈ N we call the hypergraph H l-uniform resp. l-bounded,
if |E | = l resp. |E | ≤ l for all E ∈ E . In this notion l is not assumed to be a
constant. If l is assumed to be constant, we will make it explicitly clear. Otherwise, we
will say that l is non-constant. It is convenient to order the vertices and hyperedges,
V = {v1, . . . , vn} and E = {E1, . . . , Em}, and to identify vertices and edges with
their indices. This is an useful abbreviation of the notation especially when we model
the optimization problem under consideration as an integer linear program and look
at its linear programming relaxation.

2.2 Concentration inequalities

We will frequently use the Chebychev–Cantelli inequality:

Theorem 1 (see Motwani and Raghavan (1995), p 64) Let X be a non-negative ran-
dom variable with finite mean E(X) and variance Var(X). Then for any a > 0 we
have

Pr(X ≥ E(X) + a) ≤ Var(X)

Var(X) + a2
(1)

Pr(X ≤ E(X) − a) ≤ Var(X)

Var(X) + a2
· (2)

A further useful concentration result used in this paper is the bounded differences
inequality:
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Theorem 2 (seeMcDiarmid (1989), p 216) Let X = (X1, X2, . . . , Xn) be a family of
independent random variables with Xk taking values in a set Ak for each k. Suppose
that the real-valued function f defined on A1× A2 · · ·× An satisfies | f (x)− f (x ′)| ≤
ck for all pairs of vectors x and x ′ from A1 × A2 · · · × An that differ only in the k-th
coordinate, k = 1, . . . , n. Then for any t > 0 it holds

Pr [ f (X) ≤ E( f (X)) − t] ≤ exp

(
−2t2

∑n
k=1 c

2
k

)

.

Let X be the sum of finitely many 0/1 random variables, i.e. X = X1 + · · · + Xn .
For a pair i, j ∈ {1, . . . , n} we say that i and j are dependent, if Xi and X j are not
independent. Let Γ be the set of all unordered dependent pairs i, j , i.e. 2-element
sets {i, j}, and let γ = ∑

{i, j}∈Γ E(Xi X j ), The following estimate on the variance of
such a sum of dependent random variables can be proved as in the book of Alon and
Spencer (2000), p 41:

Lemma 1 We have Var(X) ≤ E(X) + 2γ .

For a sum of independent random variables we will use the large deviation inequalities
due to Angluin and Valiant (1979):

Theorem 3 (see McDiarmid (1989), p 200) Let X1, . . . , Xn be independent 0/1-
random variables and E(Xi ) = pi for all i = 1, . . . , n. Let X = ∑n

i=1 Xi with
μ = E(X). For any β > 0 it holds

Pr(X ≥ (1 + β) · μ) ≤ exp

(
−β2μ

3

)
.

3 The algorithm and estimation of mean and variance

The input is a l-bounded hypergraph H, l ≥ 2. At the moment we do not assume D
or Δ to be constants. Before we proceed to the randomized algorithm, let us rule out
trivial cases of the problem solvable to optimality in polynomial time (not optimizing
the time complexity here).

Proposition 1 Let H be a hypergraph with n vertices and m hyperedges. If k is a
constant, then the k-partial vertex cover can be solved to optimality in O(kmnk)-time.

Proof Since an optimal k-partial vertex cover has cardinality at most k, we can find
such a cover by examining all sets of vertices of cardinality r , r ≤ k. Their number is∑k

r=1

(n
r

) ≤ O(knk). The test whether or not such a r -set is a k-partial vertex cover
requires the test of at most all them edges, so the total complexity is at most O(kmnk).
��

As already said, we will identify the vertices and edges of H by their indices.
An integer linear programming formulation of the k-partial vertex cover in H is the
following:
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min
n∑

j=1

x j

(ILP−k−VC)

n∑

j=1

ai j x j ≥ zi for all i ∈ [m] := {1, . . . ,m}

m∑

i=1

zi ≥ k

x j , zi ∈ {0, 1} for all i ∈ [m], j ∈ [n].

Its linear programming (LP) relaxation LP-k-VC is given by relaxing the integrality
constraints to x j , zi ∈ [0, 1] ∀i ∈ [m], j ∈ [n]. Let Opt resp. Opt∗ be the value of an
optimal solution to ILP-k-VC resp. to LP-k-VC. Let x∗ ∈ [0, 1]n and z∗ ∈ [0, 1]m be
an optimal solution of LP-k-VC for the variables x j , zi , j ∈ {0, 1} and i ∈ {0, 1}. Note
that an optimal solution of a linear program can be computed in polynomial time, for
example with the ellipsoid method of Khachian (1979) or more efficiently with the
interior-point method of Karmarkar (1984).

3.1 The Algorithm

Algorithm 1: k-VC(H)
Input : k ∈ N and a hypergraphH = (V, E)

Output: A k-partial vertex cover C
1. Initialisation. C := ∅. Choose ε ∈ (0, 1) and λ = l(1 − ε) such that λ ≥ 1.
2. LP-Relaxation. Solve the LP relaxation of ILP-k-VC with a polynomial-time algorithm with an

optimal solution (x∗
j ) j∈[n]. Then Opt∗ = ∑

j∈[n] x∗
j should denote its value.

3. Definition of S-sets. Set S1 := { j ∈ [n] | x∗
j = 1}, S≥ := { j ∈ [n] | 1 �= x∗

j ≥ 1
λ } and

S< := { j ∈ [n] | 1 �= x∗
j < 1

λ }.
4. Pre-Cover. Take all vertices of S1 and S≥ into C .
5. Randomized Rounding. For all j ∈ S< add vertex j to C with probability λx∗

j , independently.
6. Repairing.

a) If |{E ∈ E | E ∩ C �= ∅}| ≥ k, then return C .
b) If |{E ∈ E | E ∩ C �= ∅}| < k, then pick at most k − |{E ∈ E | E ∩ C �= ∅}| additional

vertices from arbitrary not covered edges in C .
7. Return C .

The algorithm extends the randomized algorithm ofGandhi, Khuller and Srinivasan
Gandhi et al. (2004) from graphs to hypergraphs. While the extension is quite natural,
the analysis needs efforts beyond Gandhi et al. (2004) as already mentioned in the
introduction.

3.2 Computation of expection and variance

We give some basic estimates. Note that at this moment we have not to comment on the
randomized rounding parameter ε as the proofs in this section work for any ε ∈ (0, 1).
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But the choice of ε will become a crucial point when we apply the algorithm to the
different hypergraph families in later sections.

Let X1, . . . , Xn be {0, 1}-random variables defined as follows. For j ∈ [n] let

X j =
{
1 if vertex v j was picked by randomized rounding or if v j ∈ S1 ∪ S≥
0 otherwise.

(3)

Note that the random variables X1, . . . , Xn are independent and

Y :=
n∑

j=1

X j (4)

is the cardinality of the set C after randomized rounding. For all i ∈ [m] we define
the {0, 1}- random variables Zi as follows:

Zi =
{
1 if the the hyperedge Ei is covered after the rounding step

0 otherwise.
(5)

The sum of the Zi ’s

W :=
m∑

j=1

Z j (6)

is the number of covered hyperedges before entering the repairing step. Note that in
this step at most k − W further vertices are added to C . Hence, for the expected size
of the final cover C returned by the algorithm we have

Proposition 2
E(|C |) ≤ E(Y ) + E(max{k − W, 0}). (7)

For the computation of the expectation of W we need the following lemma that gives
the exact solution of a constrained optimization problem (Lemma 2.2, Peleg et al.
(1997)).

Lemma 2 For all n ∈ N, α > 0 and x1, . . . , xn, z ∈ [0, 1] with ∑n
i=1 xi ≥ z and

αxi < 1 for all i ∈ N, we have
∏n

i=1(1 − αxi ) ≤ (1 − α z
n )n, and this bound is the

tight maximum.

For the expectation and the variance the following lemma will serve as a technical
backbone.

Lemma 3 Let D and Δ be as above, not assumed to be constants, and let ε ∈ (0, 1).

(i) (1 − (1 − ε)x)2 ≤ 1 − x(1 − ε2) for all x ∈ [0, 1].
(ii) E(W ) ≥ (1 − ε2)k.
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(iii) (1) Var(W ) ≤ (D + 1)E(W ), (2) Var(|C |) ≤ lΔE(|C |).
(iv) Opt∗ ≥ k

Δ
≥ k

D .
(v) For λ ≥ 1, Opt∗ ≤ E(Y ) ≤ λOpt∗.
(vi)

∑
v∈V d(v)2 ≤ Δlm.

Proof (i) Straightforward calculations show that assertion (i) is equivalent to

x(1 + ε2 − 2ε) ≤ 1 + ε2 − 2ε.

But this is true for any x ∈ [0, 1].
(ii) Let i ∈ [m] and |Ei | = ri . If there is a j ∈ Ei with λx∗

j ≥ 1, then j ∈ S1 ∪ S≥.
Thus j belongs to the cover C , Zi = 1, and trivially Pr(Zi = 0) = 0. Otherwise, if
λx∗

j < 1 for all j ∈ Ei , we have

P(Zi = 0) =
∏

j∈Ei

(1 − λx∗
j ) ≤

Lem2

(
1 − λz∗i

ri

)ri

≤
(
1 − λz∗i

l

)ri

= (1 − (1 − ε)z∗i )ri

≤ (1 − (1 − ε)z∗i )2 ≤
Lem3(i)

1 − z∗i (1 − ε2),

so P(Zi = 0) ≤ 1 − z∗i (1 − ε2), and we get

E(W ) =
m∑

i=1

Pr(Zi = 1) =
m∑

i=1

(1 − Pr(Zi = 0))

≥
m∑

i=1

(1 − (1 − z∗i (1 − ε2)) =
m∑

i=1

z∗i (1 − ε2) = (1 − ε2)

m∑

i=1

z∗i
︸ ︷︷ ︸

≥k

≥ (1 − ε2)k.

(iii) Part (1) According to the notation of Lemma 1, let Γ = {{i, j}; i, j ∈
[m] are dependent} and put γ = ∑

{i, j}∈Γ E(Zi Z j ). Since the Zi ’s are functions of
the random variables Xk, k ∈ Ei , for every Ei , E j ∈ E the random variables Zi , Z j

are not independent iff the hyperedges Ei and E j have a non-empty intersection. Thus,
for a fixed Ei , there are at the most D random variables Z j possibly depending on Zi .
For every Ei , E j ∈ E we have

E(Zi Z j ) = Pr(Zi = 1 ∧ Z j = 1)

≤ min{Pr(Zi = 1),Pr(Z j = 1)}
≤ Pr(Zi = 1) + Pr(Z j = 1)

2
.
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So

γ =
∑

{i, j}∈Γ

E(Zi Z j )

≤
∑

{i, j}∈Γ

Pr(Zi = 1) + Pr(Z j = 1)

2

≤
m∑

i=1

D

2
Pr(Zi = 1) = D

2
E(W ).

With Lemma 1 we conclude

Var(W ) ≤ E(W ) + 2γ ≤ E(W ) + DE(W ) = (D + 1)E(W ).

(iii) Part (2) We modify the proof of (iii) part (1). Let Uj be the 0/1 random variable,
which is 1 iff the vertex j is contained in the final cover C after repairing. Accord-
ing to the notation of Lemma 1, let Γ = {{i, j}; i, j ∈ [n] are dependent} and let
γ = ∑

{i, j}∈Γ E(UiU j ). Furthermore for every pair Ui ,Uj ∈ E , Ui ,Uj are not inde-
pendent, if the selection of vertex i into the final cover depends on the selection of
vertex j into the final cover, and vice versa. We have

E(UiU j ) = Pr(Ui = 1 ∧Uj = 1)

≤ min{Pr(Ui = 1),Pr(Uj = 1)}
≤ Pr(Ui = 1) + Pr(Uj = 1)

2
.

So

γ =
∑

{i, j}∈Γ

E(UiU j )

≤
∑

{i, j}∈Γ

Pr(Ui = 1) + Pr(Uj = 1)

2

≤
n∑

i=1

Δ(l − 1)

2
Pr(Ui = 1) = Δ(l − 1)

2
E(|C |).

The last inequality is based on the following argument: for every pair Ui ,Uj ∈ E ,
Ui ,Uj are not independent, if the selection of vertex i into C depends on the selection
of vertex j , and vice versa. The selection of vertex i can be affected by vertices
contained in edges incident in i and these are at most Δ(l − 1).

With Lemma 1 we conclude

Var(|C |)≤E(|C |)+2γ ≤ E(|C |)+Δ(l−1)E(|C |)=(Δ(l − 1)+1)E(|C |) ≤ lΔE(|C |).
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(iv) Since x∗ and z∗ are optimal solutions of LP-k-VC, we have

k ≤
m∑

i=1

z∗i ≤
m∑

i=1

∑

j∈Ei

x∗
j =

n∑

j=1

d(v j )x
∗
j ≤ Δ

n∑

j=1

x∗
j = Δ · Opt∗ ≤ D · Opt∗.

(v) For a set X ⊂ V , we define Opt∗(X) := ∑n
j∈X x∗

j . By using the LP relaxation
and the definition of the sets S1, S≥ and S<, and since λ ≥ 1, we get

Opt∗ ≤ |S1| + |S≥| + λOpt∗(S<)
︸ ︷︷ ︸

=E(Y )

≤ |S1|︸︷︷︸
≤λOpt∗(S1)

+ |S≥|
︸︷︷︸

≤λOpt∗(S≥)

+ λOpt∗(S<) ≤ λOpt∗.

(vi) Let r j the size of the hyperedge E j , j ∈ [m]. Then trivially
∑

v∈V d(v)2 ≤
Δ

∑
v∈V d(v). From

∑
v∈V d(v) = ∑m

j=1 r j , and l = max j∈[m] r j the assertion (vi)
follows. ��

4 Hypergraphs with constant l and Δ

We consider in this section a l-uniform hypergraph with maximum vertex degree Δ,
where l,Δ are constants. Let A be the set of vertices added by randomized rounding
toC , and B be set of vertices added by the repairing step toC . Let Y,W be the random
variables as defined in (4) resp. (6). Then, obviously

C = S1 ∪ S≥ ∪ A ∪ B and |C | = Y + |B| ≤ Y + k − W. (8)

To run the algorithm k-VC(H) we have to choose ε. We define

ε := lOpt∗/2k (9)

It must be ensured that ε ∈ (0, 1):

Proposition 3 If ε > 1/2, thena simple polynomial-timealgorithmreturns a k-partial
vertex cover which is an approximation with ratio strictly smaller than l, without any
further assumption on the degree D and Δ, and on l.

Proof If ε > 1/2, then lOpt∗ > k. A k-partial vertex cover of cardinality k can be
found trivially by selecting k arbitrary hyperedges and picking one vertex out of each
of them. This cover approximates the optimum within a ratio strictly smaller than l. ��
By Proposition 3 we may assume w.l.o.g

0 ≤ ε ≤ 1/2, and thus λ ≥ 1 for any l ≥ 2, (10)

and run the algorithm k-VC(H) with ε as in (9).

Lemma 4 E(|C |) ≤ l
(
1 − l

4Δ

)
Opt∗
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Proof We have

E(|C |) = E(Y ) + E(|B|)
≤

Lem 3(i i),(v)
λOpt∗ + kε2 = l(1 − ε)Opt∗ + kε2

l

(
1 − lOpt∗

2k

)
Opt∗ + l2Opt∗2

4k

l

(
1 − lOpt∗

4k

)
Opt∗

≤
Lem 3(iv)

l

(
1 − l

4Δ

)
Opt∗.

��
Lemma 4 and Theorem 1 imply the following theorem.

Theorem 4 Let l,Δbe constants and letH be an l-uniformhypergraphwithmaximum
vertex degree Δ. We further assume that 2 ≤ l ≤ 4Δ. Then the algorithm k-VC(H)
returns a k-partial vertex cover C such that

|C | ≤ l

(
1 − l − 1

4Δ

)
Opt∗ with probability at least 2/3.

Proof By Proposition 1 we may assume k ≥ 32Δ4 w.l.o.g. We have

Pr

(
|C | ≥ l

(
1 − l − 1

4Δ

)
Opt∗

)
= Pr

(
|C | ≥ l

(
1 − l

4Δ

)
Opt∗ + lOpt∗

4Δ

)

≤
Lem 4

Pr

(
|C | ≥ E(|C |) + lOpt∗

4Δ

)

≤
Th 1(1)

Var(|C |)
Var(|C |) +

(
lOpt∗
4Δ

)2 = 1

1 +
(
lOpt∗
4Δ

)2

Var(|C|)

.

By Lemma 3, Var(|C |) ≤ lΔE(|C |), so
(
lOpt∗
4Δ

)2

Var(|C |) ≥
Lem 3(i i i)−(2)

(
l

(Opt∗)2

16Δ3E(|C |)
)

≥
E(|C|)≤lOpt∗

Opt∗

16Δ3

≥
Lem 3(iv)

k

16Δ4 ≥
k≥32Δ4

2.

Therefore we get Pr
(|C | ≥ l

(
1 − l−1

4Δ

)
Opt∗

) ≤ 1
1+2 = 1/3. ��
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The proof required l ≤ 4Δ. AsΔ is assumed to be constant, so l is constant as well.
That is the reason why we cannot transfer this approach to the more general setting,
where the maximum edge degree D resp. the maximum vertex degree Δ are constant,
but l is not constant, see the upcoming Sects. 5 and 6.

5 Analysis for bounded edge degree

In this section we consider hypergraphs with maximum edge size l ∈ N, l ≥ 3, not
necessarily assumed to be a constant, but with a constant maximum edge degree D.
W.l.o.g we may assume that D ≥ 1, because otherwise we only have isolated edges
and the partial vertex cover problem is trivial. We choose

ε := Opt∗(1 + β)

k
where β = 1

3D
. (11)

Again we have to ensure that w.l.o.g ε ∈ (0, 1).

Proposition 4 We can assume that

ε ≤ 1 + β

l − η
, with η = l

6D
, (12)

in particular, ε ≤ 1/2.

Proof Otherwise if ε >
1+β
l−η

, it follows from the definition of ε in (11) that Opt∗ >
k

l−η
, hence l(1 − η

l )Opt
∗ > k. Since a partial vertex cover of size k can be trivially

found by picking k arbitrary hyperedges and taking one vertex from each of them,
pairwise distinct, we get the claimed l(1 − η

l ) approximation ratio. ��
So (12) and ε ∈ (0, 1) holds w.l.o.g. and we may run the algorithm k-VC-(H) with
this ε and λ = l(1 − ε). Note that λ ≥ 1 due to l ≥ 3. The main result of this section
is:

Theorem 5 Let H be a hypergraph with edge size at most l, l ≥ 3, and constant
maximum edge degree D. The algorithm k-VC-(H) with ε defined as in (11) and
satisfying (12) returns a k-partial vertex cover C such that

|C | ≤ l

(
1 − 1

6D

)
Opt with probability at least

7

15
.

Proof Claim 1

Pr
(
W ≤ k(1 − ε2) − 2

√
kD

)
≤ 1

3

Proof of Claim 1 We can assume that k(1− ε2) − 2
√
kD is non-negative. Otherwise,

since W ≥ 0 the event ”W ≤ k(1 − ε2) − 2
√
kD” has probability 0.
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Let us consider the function

f : (D,∞) → R, f (x) = x − 2
√
Dx, x ∈ (D,∞).

Since f ′(x) = 1 −
√

D
x > 0, f is strictly monotone increasing. For k < 4D it holds

k(1 − ε2) − 2
√
kD ≤ k − 2

√
kD︸ ︷︷ ︸

= f (k)

< f (4D) = 0,

and because W ≥ 0, Pr
(
W ≤ k(1 − ε2) − 2

√
kD

)
= 0.

Therefore, we can assume k ≥ 4D. We set μ := E(W ). Using ε ≤ 1
2 we get

k(1 − ε2) ≥ 4D(1 − ε2) > 4D(1 − 1

4
) = 3D > D.

By Lemma 3(ii), k(1 − ε2) ≤ μ, and as f is monotone increasing, f (k(1 − ε2)) ≤
f (μ). We continue

Pr
(
W ≤ k(1 − ε2) − 2

√
kD

)
≤ Pr

(
W ≤ k(1 − ε2) − 2

√
k(1 − ε2)D

)

= Pr
(
W ≤ f (k(1 − ε2))

)

≤ Pr (W ≤ f (μ))

= Pr
(
W ≤ μ − 2

√
μD

)

≤
Th 1(2)

Var(W )

Var(W ) + 4μD
= 1

1 + 4μD
Var(W )

≤
Lem 3(i i i−1)

1

1 + 4μD
μ(D+1)

≤ 1

3
.

This concludes the proof of Claim 1.
Claim 2 For β = 1

3D it holds Pr (Y ≥ l · Opt∗(1 − ε)(1 + β)) < 1
5 .

Proof of Claim 2 According to Proposition 1 we may assume that

k ≥ 16D5. (13)

The random variables X1, . . . , Xn defined as in (3) are independent and an application
of the Angulin-Valiant bound, Theorem 3, shows

Pr
(
Y ≥ l(1 − ε)(1 + β)Opt∗

) ≤
Lem 3(v)

Pr (Y ≥ E(Y )(1 + β))

≤
Th 3

exp

(
−β2

E(Y )

3

)
.
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Note that
E(Y )β2

3
≥

Lem 3(v)

Opt∗

27D2 ≥
Lem 3(iv)

k

27D3 ≥ 16D2

27
.

Using D ≥ 2 we continue

Pr
(
Y ≥ l(1 − ε)(1 + β)Opt∗

) ≤ exp

(
−16D2

27

)
≤ exp

(
−64

27

)
≤ exp (−2) <

1

5
.

This concludes the proof of Claim 2.
By Claim 1 and 2 we get for the final partial vertex cover C with probability at least
1 − ( 15 + 1

3 ) = 7
15

|C | ≤ l(1 − ε)(1 + β)Opt∗ + kε2
︸ ︷︷ ︸

(∗)

+ 2
√
kD︸ ︷︷ ︸

(∗∗)

.

We estimate the terms (*) and (**) in the right hand side separately.

(∗) = l

(
(1 + β)(1 − ε) + Opt∗(1 + β)2

lk

)
Opt∗

≤ l

(
(1 + β) − (l − 1)Opt∗(1 + β)2

lk

)
Opt∗

≤
Lem 3(iv)

l

(
(1 + β) − (l − 1)(1 + β)2

lD

)
Opt∗.

Using l ≥ 3 we have

(l − 1)(1 + β)2

lD
− β ≥ 2(1 + β)2

3D
− 1

3D
≥ 1

3D
,

therefore

l(1 − ε)(1 + β)Opt∗ + kε2 ≤ l

(
1 − 1

3D

)
Opt∗.

We proceed to the second term (**). By Lemma 3(iv) we have Opt∗ ≥ k
D ≥ 16D4,

so

2
√
kD = 2D

√
k

D
≤

Lem 3(iv)
2D

√
Opt∗

= 2
√
Opt∗

√
Opt∗ D

√
Opt∗

≤
Lem 3(iv) and (13)

2Opt∗ D

4D2

= Opt∗ 1

2D
.
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Finally,

(∗) + (∗∗) ≤ lOpt∗
(
1 − 1

3D

)
+ lOpt∗ 1

2lD

≤
l≥3

l

(
1 − 1

6D

)
Opt∗,

holds with probability at least 7/15. ��

6 Analysis for constant vertex degree

In this sectionweconsider hypergraphswith edge size atmost l, l ≥ 3non-constant, but
with constant maximum vertex degree Δ. We may assume Δ ≥ 2, because otherwise
the hypergraph has only isolated edges and the k-partial vertex cover problem is trivial.
One may ask if the approach in the last section is transferable to our present situation,
just replacing D by Δ. In fact, everything works, except the proof of Claim 1. There
we would get the estimate

1

1 + 4μΔ
Var(W )

≤ 1

1 + 4μΔ
μ(D+1)

. (14)

With the (trivial) estimate D ≤ lΔ, the last term is at most 1
1+ 4Δ

lΔ+1
which is smaller

than 1/(1+ c) for a constant c > 0, if l ≤ 4/c− 1, thus l ≤ 2. We are back to graphs,
where such an approximation is known Gandhi et al. (2004), and have gained nothing.
In the following we will demonstrate, how an involvement of the Hoeffding–Azuma
bound in form of the bounded difference inequality can overcome this restriction and
can handle hypergraphs with l ≥ 3. We wish to run the algorithm k-VC-(H) and
choose

ε := Opt∗(1 + β1)

k
for β1 = 1

3Δ
. (15)

Again, w.l.o.g. we can assume ε ≤ 1/2:

Proposition 5 We can assume that

ε ≤ 1 + β1

l − η
, with η = l

6Δ
. (16)

In particular, ε ≤ 1/2

Proof Otherwise, if ε >
1+β1
l−η

, it follows from the definition of ε in (15) that Opt∗ >
k

l−η
, hence l(1 − η

l )Opt
∗ > k. Since a partial vertex cover of size k can be trivially

found by picking k arbitrary hyperedges and taking one vertex from each of them,
pairwise distinct, we get a l(1− η

l ) approximation ratio, which is even better than the
ratio in Theorem 6. ��
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So (16) and ε ∈ (0, 1) hold w.l.o.g. and we may run the algorithm k-VC-(H) with this
ε and λ = l(1 − ε). Note that λ ≥ 1 due to l ≥ 3. Its analysis gives

Theorem 6 Let H be a hypergraph with edge size at most l, l ≥ 3 non-constant,
and bounded vertex degree Δ. For k ≥ m

4 the algorithm k-VC(H) returns a k-partial
vertex cover C such that

|C | ≤ l

(

1 − 2 − √
3

6Δ

)

Opt with probability at least
3

5
.

This is an improvement over Theorem 5 because in general Δ ≤ D.
.

Proof of Theorem 6 We need the following claim and shall prove it with the bounded
difference inequality, Theorem 2.
Claim 4

Pr
(
W ≤ k(1 − ε2) − 2

√
klΔ

)
≤ 1

5
.

Proof of Claim 4 BecauseW ≥ 0, we can assume that the upper bound onW in Claim
4 is non-negative. W itself is a function

W : {0, 1}n −→ N ,W (X1, . . . , Xn) =
m∑

j=1

Z j .

W is component-wise Lipschitz bounded: Let k ∈ [n], X =(X1, . . . , Xk−1, Xk, Xk+1,

. . . , Xn) and
X

′ = (X1, . . . , Xk−1, X
′
k, Xk+1, . . . , Xn). Then

|W (X) − W (X
′
)| ≤ d(vk) for all k.

This is true, because as Xk, X
′
k differ, the two associated covers C resp. C

′
differ by

the vertex vk . But then the edges hit by C resp. C
′
differ by at most d(vk) edges. By

Theorem 2 we get for any t > 0,

Pr(W − E(W ) ≤ −t) ≤ exp

( −2t2
∑

v∈V d(v)2

)
. (17)

We choose t = 2
√

Δlk.

Pr
(
W ≤ k(1 − ε2) − 2

√
Δlk

)
≤

Lem 3 (i i)
Pr

(
W ≤ E(W ) − 2

√
Δlk

)

≤
Ineq (17)

exp

( −8Δlk
∑

v∈V d(v)2

)

≤
Lem 3(vi) and k≥m

4

e−2 <
1

5
,
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and Claim 4 is proved.
Claim 5 For β1 = 1

3Δ it holds Pr (Y ≥ l · Opt∗(1 − ε)(1 + β1)) < 1
5 .

Proof of Claim 5 Again, Proposition 1 allows to assume w.l.o.g

k ≥ 16Δ5. (18)

The Angulin-Valiant inequality yields

Pr
(
Y ≥ l(1 − ε)(1 + β1)Opt

∗) ≤
Lem 3(v)

Pr (Y ≥ E(Y )(1 + β1))

≤
Th 3

exp

(

−β2
1E(Y )

3

)

.

With Lemma 3 (iv) resp. (v), k ≥ 16Δ5 and Δ ≥ 2 we get

E(Y )β2
1

3
≥ k

27Δ3 ≥ 16Δ2

27
≥ 64

27
≥ 2.

So

Pr
(
Y ≥ l(1 − ε)(1 + β1)Opt

∗) ≤ exp (−2) <
1

5
.

This concludes the proof of Claim 5.
By Claim 4 and 5 we get an upper bound for the final cover with probability at least
1 − ( 15 + 1

5 ) ≥ 3
5 :

|C | ≤ l(1 − ε)(1 + β1)Opt
∗ + kε2

︸ ︷︷ ︸
(∗)

+ 2
√
klΔ︸ ︷︷ ︸

(∗∗)

.

As in the proof of Theorem 5 we can show

(∗) = l(1 − ε)(1 + β1)Opt
∗ + kε2 ≤ l

(
1 − 1

3Δ

)
Opt∗.

By Lemma 3(iv) and (18) it holds:

Opt∗ ≥ k

Δ
≥ 16Δ4,

so

2
√
klΔ = (2

√
l)

√
k

Δ
Δ ≤ (2

√
l)

√
Opt∗Δ = 2lOpt∗Δ√

l
√
Opt∗

≤
l≥3

lOpt∗ 2

Δ
√
48

.
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Finally the sum of (∗) and (∗∗) is

(∗) + (∗∗) ≤ lOpt∗
(
1 − 1

3Δ

)
+ lOpt∗ 2

Δ
√
48

≤ l

(
1 − 1

3Δ
+ 2

Δ
√
48

)
Opt∗

= l

(

1 − 2 − √
3

6Δ

)

Opt∗,

and this holds with probability at least 3/5. ��
This result shows again a hypergraph characteristic.An approximation ratio of the form
l
(
1 − c

Δ

)
for some constant c > 0 is valid for hypergraphs and the k-partial vertex

cover problem with k ≥ m/4, while in graphs it is valid for any k. By examining our
probabilistic arguments, there seems to be no obvious way to release the restriction
on k. We leave it as an open problem to prove or to disprove an approximation ratio
of the form l

(
1 − c

Δ

)
for constant Δ and k < m/4. In view of Theorem 4, the first

interesting hypergraph for the investigation of this problem would be a Δ-regular and
(4Δ + 1)-uniform hypergraph. For such hypergraphs, none of our results apply, if we
consider k < m/4.

7 Further work

We find it interesting to give better approximations for hypergraphs with other kind of
sparseness conditions, like uncrowdedness or small VC-dimension. Another challenge
is the derandomization of this and other hybrid algorithms combining randomized
rounding and greedy heuristic in order to obtain feasible solutions.
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