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Abstract The differential evolution algorithm (DE) is a simple and effective global
optimization algorithm. It has been successfully applied to solve a wide range of real-
world optimization problem. In this paper, the proposed algorithm uses two mutation
rules based on the rand and best individuals among the entire population. In order
to balance the exploitation and exploration of the algorithm, two new rules are com-
bined through a probability rule. Then, self-adaptive parameter setting is introduced
as uniformly random numbers to enhance the diversity of the population based on the
relative success number of the proposed two new parameters in a previous period.
In other aspects, our algorithm has a very simple structure and thus it is easy to
implement. To verify the performance of MDE, 16 benchmark functions chosen from
literature are employed. The results show that the proposed MDE algorithm clearly
outperforms the standard differential evolution algorithm with six different parame-
ter settings. Compared with some evolution algorithms (ODE, OXDE, SaDE, JADE,
jDE, CoDE, CLPSO, CMA-ES, GL-25, AFEP, MSAEP and ENAEP) from literature,
experimental results indicate that the proposed algorithm performs better than, or at
least comparable to state-of-the-art approaches from literature when considering the
quality of the solution obtained.
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1 Introduction

Many real-world problems may be formulated as optimization problems with vari-
ables in continuous domains. In the past decade, we have viewed different kinds of
evolutionary algorithms advanced to solve optimization problems, such as genetic
algorithm (GA), particle swarm optimization algorithm (PSO), estimation of distrib-
ution algorithms (EDA), ant colony optimization (ACO), simulated annealing (SA),
biogeography based optimization (BBO), differential evolution (DE), artificial bee
colony (ABC), and cuckoo search algorithm (CS) (Suman 2004; Horn et al. 1994;
Zhang and Muhlenbein 2004; Clerc and Kennedy 2002; Dorigo et al. 1996; Simon
2008; Storn and Price 1997; Yang and Deb 2009).

Recently, differential evolution algorithm (Storn and Price 1997) has been pro-
posed as a simple and powerful population-based stochastic optimization method,
which is originally motivated by the mechanism of the natural selection. This algo-
rithm searches solutions using three basic operators: mutation, crossover and greedy
selection. Mutation is used to generate a mutation vector by adding differential vec-
tors obtained from the difference of several randomly chosen parameter vectors to the
parent vector. After that, crossover operation generates the trial vector by combining
the parameters of the mutation vector with the parameters of a parent vector selected
from the population. Finally, according to the fitness value, selection operation deter-
mines which of the vectors should be chosen for the next generation by implementing
a one-to-one completion between the generated trail vectors and the corresponding
parent vectors. In order to accelerate the convergence speed and avoid trapping in the
local optima, several variations of DE have been proposed to enhance the performance
of the standard DE recently. Moreover, DE has been proved to be quite efficient when
solving real-world problems. Similar with other evolutionary algorithms, DE also has
many disadvantages. For example, while the global exploration ability is considered
adequate, its local exploitation ability is regarded weak and its convergence velocity
is too low. In the other aspects, the performance of the DE algorithm is sensitive to
the mutation strategy and respective control parameters such as the population size,
crossover rate and scale factor. The best setting for the control parameter is different
for different problems. Therefore, in order to successfully solve a complex problem,
the parameter setting and the mutation strategy are very important (Das and Suganthan
2011).

In fact, the performance of the conventional DE algorithm highly depends on the
mutation and crossover operations. Being fascinated by the prospect and potential of
DE, recently, many researches are working on the improvement of DE, and many
variants of the new algorithm are presented. A brief overview of these algorithms is
proposed in this section.

Brest et al. (2006) proposed a self adaptive parameter setting in differential evolution
algorithm in order to avoid the manual parameter setting of F and CR. The parameter
control technique is based on the self adaptation of two parameters associated with
the evolutionary process. The main goal here is to product a flexible DE, in terms of
control parameters F and CR. The result shows that the algorithm with self adaptive
control parameter setting is better than, or at least comparable to, the standard DE
algorithm and other evolutionary algorithms from literature.
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Rahnamayan et al. (2008) proposed the opposition based Differential evolution
(ODE) employing the logic based on the opposition points in order to enhance search
properties of DE and test a wide portion of the decision space. The ODE algorithm
consists of a DE framework and two opposition based components: the first after the
initial sampling and the second after the survivor selection scheme.

Liu and Lampinen (2005) introduced a new version of the differential evolution
algorithm with control parameters, called the fuzzy adaptive differential evolution
algorithm. The algorithm uses the fuzzy logic controllers to adapt the parameters.

Qin et al. (2009) proposed a self adaptive DE algorithm (SaDE), in which both trail
vector generation strategies and their associated control parameter values were gradu-
ally self-adaptive by learning from their previous experiences in generating promising
solutions. This method does not use any particular learning strategy, nor any specific
setting for the control parameters F and CR. From the results, we can conclude that
SaDE is more effective in obtaining better quality solution, which are more stable with
the relatively smaller standard deviation and higher success rate.

Zhang and Sanderson (2009) proposed a novel algorithm, named JADE, to improve
the performance of the differential evolution algorithm by proposing a novel mutation
strategy “DE/current-to-pbest/1” and then the self adaptive parameters were used to
update the parameters. Experiment results show that JADE is better than, or at least
comparable to other algorithms in terms of the solutions.

Ghosh et al. (2011) proposed an effective adaptation technique which suggested
a novel automatic tuning method for the scale factor and crossover rate of popula-
tion members in DE. This technique is proposed based on their objective function
values. Comparison with the best-known and expensive variants of DE over fourteen
well-known numerical benchmarks and a real-life engineering problem reflects the
superiority of proposed parameter tuning scheme in terms of the accuracy, conver-
gence speed, and robustness.

Das et al. (2009) described a family of improved variants of the DE/target-to-
best/1/bin scheme, which utilized the concept of the neighborhood of each population
member. In order to balance the exploration and exploitation of the algorithm, a new
hybrid mutation strategy is proposed. The local mutation model was the explorative
mutation operator and the global mutation model is the exploitative mutation operator.
Experiment results showed that the algorithm was better than other algorithms on a
test suite of 24 test problems and two real-life problems.

Wang et al. (2011a) proposed a new composite differential evolution algorithm,
which was improved by combining several effective trial vector generation strategies
with some suitable control parameter settings. This algorithm used three trail gener-
ator methods and three different parameter settings. CoDE has been tested on all the
CEC2005 test problems. Experimental results showed that the CoDE algorithm was
very competitive.

In other aspects, some studies on hybrid algorithms for DE found that the per-
formance of hybrid DE algorithms have a better solution quality with in a given
number of objective function evaluations. Therefore, there has been an increasing
interest in combining DE with other algorithms. Gong et al. (2010) proposed a hybrid
DE with BBO namely DE/BBO, for the global numerical optimization problem. The
algorithm combines the exploration of DE with the exploitation of BBO effectively.
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The experimental results show that the algorithm can obtain the high quality of the
final solutions and the high convergence rate. Sun et al. (2004) proposed a combina-
tion of DE algorithms and the estimation of distribution algorithm (EDA), in which
new promising solution was created by DE/EDA. This algorithm used a probabil-
ity model to determine promising regions in order to focus the search process on
those areas. The presented experimental results showed that the DE/EDA outper-
formed DE and EDA. Noman and Iba (2008) proposed a crossover-based adaptive
local search operation for enhancing the performance of standard differential evo-
lution algorithm; this algorithm combined the DE with fittest individual refinement
(FIR). The FIR scheme accelerated DE by applying a fixed-length crossover-based in
the neighborhood of the best solution in each generation. Gong et al. (2008) pro-
posed an improved version of DE, namely orthogonal based DE. This algorithm
employed the two level orthogonal crossovers to improve the performance of DE.
The results indicated that orthogonal based DE is able to find the optimal or close-
to-optimal in all cased. Omran et al. (2007) proposed the barebones differential evo-
lution that is a new, almost parameter-free optimization algorithm that is a hybrid of
the barebones particle swarm optimization and differential evolution. DE was used
to mutate for each individual, the attractor associated with that particle, defined as
a weighted average of its personal and neighborhood best positions. Neri and Tirro-
nen (2009) proposed the scale factor local search differential evolution. This algo-
rithm was a differential evolution based memetic algorithm which employs, within
a self adaptive scheme, two local search algorithms. These local search algorithms
aimed at detecting a value of the scale factor corresponding to an offspring with a
high performance. A statistical analysis of the optimization results has been included
in order to compare the results in terms of final solution detected and convergence
speed. Yang et al. (2008) proposed the neighborhood search differential evolution.
In this algorithm, the scale factor was adjusted by the sampling value from probabil-
ity distributions, and the mutation was updated by a logic inspired by evolutionary
programming.

Practically, based on the analysis of the above introduction, it can easy to see
that the control parameters and the new mutation strategy are the major modifica-
tions. However, compared with these two parts, the new mutation strategy seems
little to enhance the local search ability of DE or to overcome the convergence rate
of the algorithms. Then, proposing the new control parameters and the new muta-
tion model are still an open challenge direction of research. Therefore, in this paper,
we propose a new differential evolution algorithm which uses a new self adaptive
crossover rate depending on the success rate of the crossover probability. In order
to balance the exploration and exploitation of the algorithm, a probability rule is
used to combine two different mutation rules to enhance the diversity of the pop-
ulation and the convergence rate of the algorithm. In other aspect, our algorithm
has a very simple structure and thus it is easy to implement. To verify the perfor-
mance of MDE, 16 benchmark functions chosen from literature are employed. Com-
pared with other evolution algorithms from literature, experimental results indicate
that the proposed algorithm performs better than, or at least comparable to state-
of-the-art approaches from literature when considering the quality of the solution
obtained.
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2 Basic algorithm

2.1 Differential evolution algorithm

Differential Evolution (DE) is a fairly novel population based search heuristic which
is simple to implement and requires little parameter tuning compared to other search
heuristics in continuous space. Different from other algorithms, DE uses distance
and direction information from the current population to guide the search process.
The crucial idea behind DE is a scheme for producing trial vectors according to
the manipulation of target vector and difference vector. If the trail vector yields a
worse fitness than a predetermined population member, the newly trail vector will
be accepted and compared in the following generation. Sometimes, when handling
the single problem and multi-objective problem, the algorithm is superior to other
algorithms, such as genetic algorithm and particle swarm optimization. The logic of
standard differential evolution algorithm can be described as follows:
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As can be seen in pseudo-code, DE can be summarized into three major steps:
mutation, crossover and selection. In the beginning of the algorithm, the algorithm
begins with a randomly initiated population which generates NP*D matrix with uni-
form probability distribution random values. We can generate the j th component of
the i th vector as

x j,i,0 = x j,min + randi, j [0, 1] · (x j,max − x j,min) (1)

where randi, j [0, 1] is a uniformly distribution random number between 0 and 1.
i = 1, . . ., N P and j = 1, . . ., D. x j,max and x j,min are the upper bound and lower
bound of the j th column, respectively.

After initialization, mutation vectors Vi,G are generated according to each popula-
tion member or target vector Xi,G in current population. In the standard DE algorithm,
five different mutation strategies can be used with one or two different crossover meth-
ods, which are listed in the followings:
“DE/rand/1/bin”

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G)

“DE/best/1/bin”

Vi,G = Xbest,G + F · (Xr1,G − Xr2,G)

“DE/current-to-best/1/bin”

Vi,G = Xi,G + F · (Xbest,G − Xi,G) + F · (Xr1,G − Xr2,G)

“DE/best/2/bin”

Vi,G = Xbest,G + F · (Xr1,G − Xr2,G) + F · (Xr3,G − Xr4,G)

“DE/rand/2/bin”

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G) + F · (Xr4,G − Xr5,G) (2)

where r1, r2, r3, r4, r5 ∈ [1, . . . , N P] are randomly chosen integers, and r1 �= r2 �=
r3 �= r4 �= r5 �= i . F is a mutation control parameter which affects the distur-
bance added by the weight of different vectors. Xbest,G is the best individual with
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the best fitness in the current population at generation G. In this paper, we use the
“DE/rand/1/bin” mutation method to generate the offspring vector in the basic DE
algorithm.

In the crossover operation, a recombination of the offspring vector Vi,G and the
parent vector Xi,G produces a trail vector Ui,G = [u1,i,G , u2,i,G , u3,i,G , . . . , uD,i,G ].
Usually the binomial crossover is accepted, which is defined as follows:

u j,i,G =
{

v j,i,G , (rand j [0, 1] ≤ CR) or ( j = jrand)
x j,i,G , otherwise

(3)

where j = [1, . . . , D]; randi, j [0, 1] is a random number between (0,1); jrand =
[1, . . . , D] is the randomly chosen index, CR is the crossover rate and v j,i,G is the
difference vector of the j th particle in the i th dimension at the Gth iteration, and u j,i,G

denotes the trail vector of the j th individual in the i th dimension at the Gth iteration.
Selection operation is used to choose the next population (i.e. G = G+1) between

the trail population and the target population. The selection operation can be described
as follows:

Xi,G+1 = Ui,G , If f (Ui,G) ≤ f (Xi,G)

= xi,G , If f (Ui,G) > f (Xi,G) (4)

3 Modified differential evolution algorithm

In order to apply the differential evolution algorithm to more complex optimization
problems, the further improvement in performance is necessary. In this paper, we intro-
duce an efficient algorithm named modified differential evolution algorithm (MDE)
to get the global optimization solution of high quality for the numerical optimization
problems. In this section, we will use two mutation rules: DE/rand/2/bin and DE/rand
to pbest/1/bin (Zhang and Sanderson 2009). These rules are used alternately through
a probability rule. In the standard DE, scale factor F and crossover rate CR are set
to the fixed constant for the process of the algorithm. However, it is easy to make
the algorithm trap into the local solution and lead to convergence premature of the
DE algorithm. Hence, in this section, to enable all solutions to get rid of the stagna-
tion easily, an adaptive strategy of modifying the scale factor, crossover rate and the
relative success number of the two new proposed parameters in a previous period is
proposed. Overall, in this paper, three modifications are proposed in order to balance
the exploration and exploitation of the DE algorithm.

3.1 Modified mutation strategy

Global exploration and local exploitation are two important aspects in developing an
effective evolutionary algorithm. The first is to find every region of the search space and
the second denotes the ability to converge to the optimal solution as fast as possible.
The mutation strategy plays a vital role in the search capability and the convergence
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rate. As mentioned above, there are many strategies proposed in DE (Yang and Deb
2009), each one has its own characterize. However, to our best knowledge, different
optimization problems require different mutation strategies depending on the nature
of the problems and available computation resources. DE/rand/2/bin is the mutation
strategy that has been the most successful and widely used scheme in the literature.
From this mutation strategy, it can be seen that five vectors are selected at random from
the current population. Hence, it can conclude that the basic DE/rand/2/bin mutation
strategy can maintain the population diversity and global search ability. However,
it suffers for weak local exploitation ability, and its convergence rate is still lower
when the optimal solution is reached. In Zhang and Sanderson (2009), this paper
indicates that DE/current-to pbest/1/bin can maintain the diversity of the population
and the convergence rate. In this strategy, an optional external archive is used and it
can utilize historical data to provide information of the progress direction. The archive
provides the information about the progress direction and it can enhance the diversity
of the population. In this paper, because we don’t use the external archive, the random
vector will be added to the DE/current-to pbest/1/bin. The DE/rand-to pbest/1/bin can
be described as follows:
“DE/rand-to-best/1/bin”

Vi,G = Xr1,G + F · (X p
best,G

− Xr1,G) + F · (Xr2,G − Xr3,G) (5)

where X p
best,G

is randomly chosen as one of the top 100p% in the current population,
and p ∈ [0, 1]. This process explores the region according to the X p

best,G
. Moreover,

it can maintain the diversity of the population and enhance the convergence rate of
the algorithm at the same time. From the new mutation strategy, we can find that
this new strategy has two benefits. Firstly, the randomly vectors are instead of the
current individual in the original mutation strategy in Zhang and Sanderson (2009). It
can enhance the diversity of the population. Secondly, the pbest individual is selected
as the new mutation process that exploits the feasible region according to X p

best,G
.

Consequently, this new mutation strategy has the better local search ability and it can
enhance the diversity of the population. In this paper, this new mutation strategy is
combined into the original DE algorithm and it is integrated into the basic mutation
strategy DE/rand/2/bin through some probability rules. The framework of this new
mutation strategy can be described as follows:

I f rand ≤ ω then

Vi,G = Xr1,G + F · (X p
best,G

− Xr1,G) + F · (Xr2,G − Xr3,G)

else

Vi,G = Xr1,G + rand · (Xr2,G − Xr3,G) + F · (Xr4,G − Xr5,G)

end i f (6)

As can be seen in formula 6, rand returns a real number between 0 and 1 with
uniform random probability. ω is the probability value which determines to select the
mutation rule. It can observe that for each individual, only one of the two strategies
can be used for the process of generating the trail vector. Therefore, the value of ω is
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very important. In this paper, we consider three different schemes for the selection and
adaptation of ω to determine the mutation rule. We can describe them in the following:

(1) Random probability rule: in this scheme, the value of the ω of each individual is
made to vary as a uniformly distributed random number in (0, 1), i.e. ω ∈ [0, 1].
Such a choice may enhance the diversity of the population. However, it will make
the convergence speed slower.

(2) Linear increment rule: ω is linearly increased from 0 to 1:

ω = G

Gmax
(7)

Where rand is a real number between 0 and 1 with a uniform random probability
distribution and G is the current generation.Gmax is the maximum generation number.
Based on the modified search strategy, it can find that one of the two strategies is used
for producing the current individual relative to a uniformly distributed random value
within the range (0, 1). For each individual, if the random real number is smaller than
(G/Gmax), then the DE/rand-to pbest/1/bin is used. Otherwise, the DE/rand/2/bin is
used. For these rules, the probability of selecting one of these two new search strate-
gies is a function of the generation number. The value of (G/Gmax) increases zero to
one in order to balance exploration and the exploitation. In fact, in the beginning, two
different strategies are selected to produce the offspring. From the (G/Gmax), the prob-
ability of selecting the DE/rand/2/bin is greater than the probability of the DE/rand-to
pbest/1/bin. This process causes exploration. Then, as the generation increases, the
two new search methods may be used with the same probability. This process directs
the search. In the last, two search strategies are still used. However, in the opposite,
the probability of selecting the DE/rand-to-pbest/1/bin is greater than the probability
of the DE/rand/2/bin. Finally, it enhances the exploitation. Hence, based on the linear
decreasing probability rule and two new search methods, the algorithm can balance
the exploitation and exploration in the search space.

(3) Exponential increment rule: the value of ω increases from zero to one in an expo-
nential fashion inspired by the paper (Das et al. 2009):

ω = exp

(
G

Gmax
· ln(2)

)
− 1 (8)

Compared with the linear increment rule, this scheme increases the number of run-
ning the DE/rand/2/bin and reduces the number of running the DE/rand-to pbest/1/bin.
In other words, this scheme is slower in the exploitation and faster in the exploration.
The method of selecting the mutation rule is the same as the linear increment rule.

3.2 Randomized scale factor

The scale factor is a very important control parameter that controls the amplification
of the differential variation between two individuals. In the original DE algorithm,
the value of F is kept as a constant value. Small values of F lead to the premature
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convergence, and high values of F slow down the search. To our knowledge, there is
no optimal value of the F that can solve all complex benchmark problems. However,
from the formula 6, we can find that if the value of F is always the same value,
and the diversity of the population is lost as all the individuals are calculated by the
same scale factor. Hence, the scale factor must be a positive value for the search
process. In order to solve this drawback of keeping the F constant, we generate the
value of F as two Gaussian distributions. Gaussian distribution is used because it gets
most of the numbers within unity due to its short tail property. Moreover, the random
numbers generated are not bound within any limit, this is because larger values of
scale parameter ‘F’ will assist the solution space to easily escape from large plateaus
or suboptimal peaks, thereby minimizing the chances to trap to local optima. It can be
described as follows:

I f rand() ≤ rand() then
F = |Gaussian(0.3,0.3)|

else
F = |Gaussian(0.7,0.3)|

end i f

(9)

where F = |Gaussian(0.3,0.3)| is a random number with the range (0.6, 1.2) and
F = |Gaussian(0.7,0.3)| is a random number with the range (0.2, 1.6). This range
ensures both the exploitation tendency and exploration ability.

3.3 Self adaptive crossover rate

The crossover operation aims to construct an offspring by mixing components of the
current element and of that generated by mutation operator. The crossover rate reflects
the probability with which the trail individual inherits the actual individual’s genes.
Small values of CR in exploratory move parallel to a small number of axes of the search
space, while large values of CR move at angles to the search spaces’ axes. Additionally,
at the early stage of the search, the diversity of the population is large and the variance
of the population is large. Hence, the CR needs to a small value in order to avoid
exceeding the level of diversity and this can reduce the convergence rate. Then, after
some generations, the population will become similar. In this stage, in order to advance
the diversity and increase the convergence speed, the value of CR must be a large value.
The paper (Montgomery and Chen 2010) also suggests that many existing adaptive
DE techniques will be likely unable to find and exploit both low and high values of
CR will avoid the value which adversely affect algorithm performances. Moreover,
for different problems, they need different value of parameters; some problems need
to enhance the diversity and the convergence speed. In other aspects, some problems
need to smaller value to avoid the exceeding level of diversity that may result in
premature convergence and slow the convergence rate. Therefore, based on the above
analysis and discussions, and in order to balance the exploration and exploitation of
the algorithm, in this paper, we propose a statistical learning strategy which selects
the evolution method for each individual according to the relative success ratio of
selecting one of two new parameters in the previous periods. Two new parameters
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settings can be described as follows:

(1)CR1 ∈ [0.05, 0.15]; (2)CR2 ∈ [0.85, 1] (10)

Based on two new parameter settings, the first one can increase the possibility
stagnation and slow down the search process. The second one can advance diversity
and increase the convergence speed. In the beginning of the algorithm, we generate
the value of parameter CR using the first one for each individual. Then we design
a new label l to store the success ratio of two new parameters. In each generation,
we generate the CR according to the two new parameters. If the CR is generated by
using the first one, we will set the label l2i = 1, otherwise if the CR is generated by
using the second one, we will set the label l2i = 2. Then after generating the offspring
individuals, we calculate the individual and compare it with the previous individuals.
If the CR is generated by using the first one with the better solution, we will set the
label l1i = 1, otherwise, we will set the label l1i = 2. And then, we calculate the
number of the success ratio. According to the success ratio, we can generate the new
CR value. The method can be described as follows:
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From the procedure, we can find that the parameter success1 and success2 are
important for the algorithm. The sucess1 denotes the success number of using
the first parameter setting in a learning period. The success2 denotes the success
number of using the second parameter setting in a learning period. For the evo-
lutionary process, if the individual using the first parameter setting is superior
to the previous generation, the l1i will be set one, otherwise it will be set zero.
In the final of every generation, the summation of label l1i for different parame-
ter settings will be calculated. Then, we compare success1 and success2. If the
sucess1 is larger than the success2, it denotes the first parameter setting can per-
form better than second parameter setting. We will add the probability of select-
ing the first parameter setting. Otherwise, it represents that the second parameter
setting is very efficient. We also reduce the probability of selecting the first para-
meter setting, and then add the probability of selecting the second parameter set-
ting.

3.4 Boundary constraints

The modified differential evolution algorithm assumes that the whole popula-
tion should be in an isolated and finite space. During the searching process,
if there are some individuals that may move out of bounds of the space, the
original algorithm will stop them on the boundary. In other words, the individ-
ual will be assigned a boundary value. The disadvantage is that if there are
too many individuals on the boundary, and especially when there exists some
local minima on the boundary, the algorithm will lose its population diversity to
some extent. In order to tackle this problem, we proposed the following repair
rule:

xi =
⎧⎨
⎩

2∗xmin − xi if xi < xmin
2∗xmax − xi if xi > xmax
xi otherwise

(11)

where xmax and xmin are the upper bound and lower bound of each dimension for every
individual, respectively.

3.5 Modified differential evolution with self adaptive parameter setting

In this section, we will propose a modified differential evolution with self adaptive
parameter settings. Firstly, we use a new mutation rule based on the DE/rand/2/bin
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and DE/rand-to-pbest/1/bin to generate the trail vector. The new mutation rule is used
through the probability model. The proposed mutation rule maintains the diversity of
the population and enhances the diversity of the population. Secondly, both operations
diversify the population and improve the convergence speed, and the parameter adap-
tation automatically updates the control parameter according to the success ration of
the two parameter settings in the learning period. In addition, the MDE has a very
simple structure and thus it is easy to implement and not enhance any complexity.
This method can overcome the lack of the exploitation of the original DE algorithm.
The Algorithm 3 can be described as follows:
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4 Performance evaluation

To evaluate the performance of our algorithm, we apply it to 16 standards benchmark
functions (Li et al. 2013; Mallipeddi et al. 2010). These functions have been widely
used in the literature. The first four functions are unimodal functions. The following 12
functions are multimodal test functions. Among them, for the function f03, the gener-
alized Rosenbrock’s function is a multimodal function when D>3. For these functions,
the number of the local minima increases exotically with the problem dimension. So
far, these problems have been widely used as benchmarks for researches with different
methods by many researchers. Definitions of the benchmark problems are described
as follows:

(1) Shifted sphere function f1(x) = ∑D
i=1 z

2
i , z = X − O, o = [o1, o2, . . . , oD] :

the shift global optimum.

(2) Shifted Schwefel’s problem 1.2 f2(x) = ∑D
i=1

(∑i
j=1 zi

)2
, z = X − O, o =

[o1, o2, . . . , oD] : the shift global optimum.
(3) Rosebrock’s function f3(x) = ∑D−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2],
(4) Shifted Schwefel’s problem 1.2 with noise in fitness f4(x) = ∑D

i=1

(∑i
j=1 zi

)2

(1 + 0.4 |N (0, 1)|), z = X − O, o = [o1, o2, . . . , oD] : the shift global opti-
mum.

(5) Shifted Ackley’s function f5(x) = −20 exp(−0.2
√

1
D

∑D
i=1 z

2
i )− exp( 1

D

∑D
i=1

cos 2π zi ), z = X−O, o = [o1, o2, . . . , oD] : the shift global optimum. +20+e

(6) Shifted rotated Ackley’s function f5(x) = −20 exp(−0.2
√

1
D

∑D
i=1 z

2
i ) −

exp( 1
D

∑D
i=1 cos 2π zi ), z = M(X−O), cond(M) = 1, o = [o1, o2, . . . , oD] :

the shift global optimum. +20+e
(7) Shifted Griewank’s function f7(x) = 1

400

∑D
i=1 z

2
i − ∏D

i=1 cos( zi√
i
) + 1, z =

X − O, o = [o1, o2, . . . , oD] : the shift global optimum.
(8) Shifted rotated Griewank’s function f8(x) = 1

400

∑D
i=1 z

2
i − ∏D

i=1 cos( zi√
i
) +

1, z = M(X − O), cond(M) = 3, o = [o1, o2, . . . , oD] : the shift global
optimum.

(9) Shifted Rastrigin’s function f9(x) = ∑D
i=1 [z2

i − 10 cos(2π zi ) + 10],
z = X − O, o = [o1, o2, . . . , oD] : the shift global optimum.

(10) Shifted rotated Rastrigin’s function f10(x) = ∑D
i=1 [z2

i − 10 cos(2π zi ) + 10],
z = M(X−O), cond(M) = 2, o = [o1, o2, . . . , oD] : the shift global optimum.
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(11) Shifted rotated Rastrigin’s function

f10(x) =
D∑
i=1

[z2
i − 10 cos(2π zi ) + 10],

yi =
{
zi |zi | < 1/2
round(zi )/2 |zi | < 1/2

for i = 1, 2, . . . , D

z = X − O, o = [o1, o2, . . . , oD] : the shift global optimum.
(12) Schwefel’s function

f12(x) = 418.9828 × D −
D∑
i=1

xi sin(|xi |1/2).

(13) Penalty 1’s function

f13(x) = π

D
{10 sin2(πyi ) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi + 1)] + (yD − 1)2

+
D∑
i=1

u(xi , 10, 100, 4)}

yi = 1 + xi + 1

4
u(xi , a, k,m) =

⎧⎨
⎩
k(xi − a)m

0
k(−xi − a)m

xi > a
−a < xi < a
xi < −a

(14) Penalty 2’s function

f14(x) = 0.1{10 sin2(πyi ) +
D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi + 1)] + (yD − 1)2}

+
D∑
i=1

u(xi , 10, 100, 4)

(15) Composition function 1 (CF1) The function f15(x) (CF1) is composed by using
10 sphere functions; the global optimum is easy to find the global solution.

(16) Composition function 6 (CF6)

The function f16(x)(CF6) is composed by using 10 different benchmark func-
tions, i.e. 2 rotated Rastrigin’s functions, 2 rotated Weierstress functions, 2 rotated
Griewank’s functions, 2 rotated Ackley’s functions and 2 rotated Sphere functions.

Based on these functions, the shift and rotated functions make the optimum is
very difficult to be found. Where �o denotes the position of the shifted optima. M is
a rotation matrix and cond(M) is the condition number of the matrix. The global
optimum, search ranges and initialization ranges of the test functions are presented in
Table 1.
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Table 1 Global optimum, search ranges and initialization ranges of the test functions

Test function Dimenison Global optimum x* Range Initialize range

f01 10 and 30 o (−100, 100)D (−100, 100)D

f02 o (−100, 100)D (−100, 100)D

f03 (1,1,…,1) (−100, 100)D (−100, 100)D

f04 o (−100, 100)D (−100, 100)D

f05 o (−32, 32)D (−32, 32)D

f06 o (−32, 32)D (−32, 32)D

f07 o R (0, 600)D

f08 o R (0, 600)D

f09 o (−5, 5)D (−5, 5)D

f10 o (−5, 5)D (−5, 5)D

f11 (420.96,…, 420.96) (−500, 500)D (−500, 500)D

f12 (420.96,…, 420.96) (−500, 500)D (−500, 500)D

f13 o (−50, 50)D (−50, 50)D

f14 o (−50, 50)D (−50, 50)D

f15 o (−5, 5)D (−5, 5)D

f16 o (−5, 5)D (−5, 5)D

4.1 Experimental setup

In order to evaluate the effectiveness and efficiency of MDE, we have chosen a suit-
able set of value and don’t have made any effort in finding the best parameter settings
because of this algorithm is a self adaptive method. In this experiment, we set the
number of individuals in all algorithms to be 50. The algorithm is coded in MAT-
LAB 7.9, and experiments are made on a Pentium 3.2 GHz Processor with 4.0 GB
of memory. The above benchmark functions f1 to f16 are tested in 10-dimension
and 30-dimension. The maximum number of function evaluations is set to 100,000
for 10D problems and 300,000 for 30D problems. For all test functions, the algo-
rithms carry out 50 independent runs. The real numbers +, ≈, - denote that the
modified differential evolution algorithm is superior to, equal to or inferior to other
algorithms.

4.2 Effect of different ω value

In this section, we compared with three different probability rules including the random
probability rule, linear increment rule and exponential increment rule. The experiment
results are listed in Table 2. From Table 2, it is interesting to see that there is always one
or more version of MDE that outperforms the standard DE with the DE/rand/1/bin
scheme. This reflects the effectiveness of the incorporation of the hybrid mutation
rule in DE. From the results, we also can find that the time-varying ω is better than

123



562 J Comb Optim (2016) 31:546–576

Table 2 Comparison between different ω on 30D problems

F Standard DE MDE with random
probability rule

MDE with linear
increment rule

MDE with Exponential
increment rule

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 2.60e–028 ± 1.52e–
028

0 ± 0 0 ± 0 0 ± 0

f 02 6.59e–013 ± 8.40e–
013

2.84e–026 ± 2.84e–
026

4.17e–022 ± 6.52e–
022

9.42e–020 ± 2.28e–
019

f 03 29.5149 ± 42.2659 0.2657 ± 1.0293 1.98e–005 ± 7.66e–
005

8.71e–008 ± 1.67e–
007

f 04 1.04e–004 ± 3.01e–
004

5.21e–004 ± 9.96e–
004

2.27e–03 ± 4.40e–03 0.0054 ± 0.0110

f 05 7.11e–015 ± 0 3.55e–015 ± 0 3.55e–015 ± 0 3.55e–015 ± 0

f 06 3.55e–015 ± 0 3.55e–015 ± 0 3.55e–015 ± 0 3.55e–015 ± 0

f 07 8.21e–004 ± 0.0032 0 ± 0 0 ± 0 0 ± 0

f 08 0.0034 ± 0.0062 0.0015 ± 0.0031 0 ± 0 0 ± 0

f 09 17.1133 ± 4.1401 0.0663 ± 0.2568 0 ± 0 0 ± 0

f 10 98.2747 ± 72.3087 45.5690 ± 8.8609 40.45 ± 10.79 46.9619 ± 14.0214

f 11 18.7315 ± 2.6894 0 ± 0 0 ± 0 0 ± 0

f 12 272.4089 ± 199.9484 0 ± 0 0 ± 0 0 ± 0

f 13 1.57e–032 ± 2.83e–
048

1.57e–032 ± 2.83e–
048

1.57e–032 ± 0 1.57e–032 ± 2.83e–
048

f 14 1.35e–032 ± 2.83e–
048

1.35e–032 ± 2.83e–
048

1.350e–032 ± 0 1.35e–032 ± 2.83e–
048

f 15 5.47e–031 ± 7.50e–
031

0 ± 0 0 ± 0 0 ± 0

f 16 15.7213 ± 35.9622 3.7006 ± 1.0469 3.978 ± 0.932 3.7334 ± 1.2484

Better results are highlighted in bold

the random probability rule. It notes that the random probability rule is also better
than the original algorithm. Compared with two increment rules, the results show
that the linear increment rule is better than the exponential increment rule. Therefore,
in this paper, we use the linear increment rule as the final model to form a judicious
tradeoff between the exploration and exploitation which is the key for the success of the
MDE.

4.3 Comparison of the original DE algorithm with different parameters

In this section, we compare our method with six different DE/rand/1/bin including
DE/rand/1/bin with (F = 0.8, CR = 0.9), DE/rand/1/bin with (F = 0.9, CR = 0.1),
DE/rand/1/bin with (F = 0.9, CR = 0.9), DE/rand/1/bin with (F = 0.5, CR = 0.3),
DE/rand/1/bin with (F = 0.5, CR = 0.9), and DE/rand/1/bin with (F = 0.7, CR = 0.3).
The results (mean, standard deviation values) of this experiment are presented in
Tables 3 and 4 for 10D and 30D, respectively. The “−” denotes our algorithm is better
than other algorithms. And the “+” and “≈” denote our algorithm is inferior to, equal
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to other algorithms. This comparison is between these DE algorithms with different
parameter settings with our algorithm MDE. In Tables 3 and 4, we can find that no
single parameter setting is adopted for all problems. For 10D problem presented in
Table 3, it can be observed that MDE is inferior to, equal to and superior to the
differential evolution with different parameter settings in 11, 29, and 56 problems,
respectively out of the total 96 cases. Therefore, the MDE is always either better or
equal. Moreover, as can be seen in this table, we can find the DE/rand/1/bin with
(F = 0.9, CR = 0.1) and DE/rand/1/bin with (F = 0.5, CR = 0.3) are better than other
classical DE algorithms. For the 30D problems presented in Table 4, it can observed
that MDE is inferior to, equal to and superior to the different methods in 1, 21, and 74
problems, respectively out of the total 96 cases. From this table, the results of MDE
are statistically significantly better as compared to all other algorithms considered
here. Obviously, it can be concluded that MDE is superior to its entire algorithm in
all these 16 test functions in terms of average and standard deviation values. In this
table, for the function f04, the DE/rand/1/bin with (F = 0.5, CR = 0.9) can give the
best solution than the MDE algorithm. For the 10D and 30D problem, we can find that
the performance of all these algorithms is very similar. The significant difference is
that the performance of MDE is not affected in a worse way along with the growth of
the search space dimensionality. Therefore, it can conclude that MDE is better than
the DE algorithm with different parameter settings. This result indicates that MDE
has the greater robustness than DE with different parameter settings on the majority
of functions.

4.4 Comparison of MDE with state-of-art DE variants

In this section, we compare MDE with six other DE variants including ODE (Rahna-
mayan et al. 2008), OXDE (Wang et al. 2011b), SaDE (Qin et al. 2009), JADE (Zhang
and Sanderson 2009), jDE (Brest et al. 2006), and CoDE (Wang et al. 2011a). The
mean and standard deviation values are presented in Tables 5 and 6 for 10D and 30D
problems, respectively. To compare the performance of different algorithms, the results
are labeled by the “−”, “+” and “≈”. Out of the five algorithms used for comparison,
the MDE is statistically better than other algorithms that use the label “−”. From the
results, it can be seen that MDE can perform better than other algorithms in most of the
cases. For the 10D problems in Table 5, among these algorithms used for comparison,
OXDE is weaker in performance. But, it can provide the best solution for the function
f16 compared with other algorithms. For the unimodal function f01–f04, MDE can
obtain the two better solutions than other algorithms except the f03. For f04, ODE
and JADE can give the better solution than other algorithms. For multimodal func-
tions f08–f16 with many local minima, the final results are more important because of
this function can reflect the algorithm’s ability to escape from the poor local optima
and obtain the near-global optimum. The MDE provides better solutions for some
functions except f06, f08, f10, and f16. For these four functions, the optimal solution
can be obtained by the ODE, SaDE, JADE, jDE and CoDE. For f06, SaDE can give
the better results. For f08 and f10, JADE gives the best solution. All in all, it can be
observed that MDE is inferior to, equal to, superior to compared algorithm in 10, 41,
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Table 7 Comparison between MDE with CLPSO, CMA-ES, and GL-25 algorithms on 10D problems

F CLPSO CMA-ES GL-25 This work

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 0 ± 0 ≈ 8.8984e–
28 ± 3.1124e–28—

0 ± 0 ≈ 0 ± 0

f 02 0.089715 ±
0.067926—

5.7606e–27 ±
1.5281e–27—

9.9131e–27 ±
3.0613e–26—

0 ± 0

f 03 0.70985 ± 0.60485— 0.39866 ± 1.2607— 2.8128 ± 0.75363— 0 ± 0

f 04 3.0674 ± 2.2645— 23310 ± 25957— 8.4632e–
08 ± 1.3773e–07—

1.51e–029 ± 3.24e–
029

f 05 5.3291e–
15 ± 1.8724e–15—

17.847 ± 6.2714— 7.1054e–
16 ± 2.2469e–15—

0 ± 0

f 06 3.4493e–
07 ± 5.7139e–07—

19.415 ± 0.29694— 3.5527e–15 ± 0≈ 2.37e–015 ± 1.73e–
015

f 07 1.9938e–
07 ± 2.5081e–07—

0.013542 ±
0.009995—

0.019196 ±
0.020952—

0 ± 0

f 08 0.10353±0.045341— 0.013302 ±
0.007802+

0.014768 ±
0.013268+

0.03988 ± 0.02896

f 09 0 ± 0 ≈ 78.103 ± 55.786— 4.6685 ± 2.0002— 0 ± 0

f 10 9.8605 ± 1.9166— 48.055 ± 99.516— 17.747 ± 8.2943— 6.3014 ± 3.7543

f 11 0 ± 0 ≈ 142.3 ± 58.275— 6.276 ± 1.1247— 0 ± 0

f 12 0 ± 0 ≈ 1862.9 ± 449.79— 144.1 ± 154.61— 0 ± 0

f 13 4.7116e–
32 ± 1.5472e–46—

2.7752e–
31 ± 7.6565e–32—

4.8665e–
32 ± 4.8981e–33≈

4.71e–032 ± 0

f 14 1.8675e–
32 ± 9.8744e–33—

0.0021975 ±
0.0046327—

3.2493e–
32 ± 6.0068e–32≈

1.35e–032 ± 0

f 15 0.022459 ±
0.068249—

190 ± 218.33— 0 ± 0 ≈ 0 ± 0

f 16 5.8892 ± 3.9436— 210.51 ± 184.82— 100 ± 4.737e–15— 1.4334 ± 0.3422

— 12 15 11

+ 0 1 0

≈ 4 0 5

and 45 cases, respectively out of the 96 cases. For the dimensional 30, the experimental
results of 50 independent runs are summarized in Table 6. From the Table 6, we can
find that MDE is able to find the optimal or near-optimal solution with small devia-
tions for these 12 functions including f02, f04, f10 and f16. For the f02 and f10, JADE
can give the best solutions. For f04, ODE can perform better than other algorithms.
jDE can perform better than MDE in the f16 function. In general, the performance of
MDE is highly competitive with other algorithms, especially for the high-dimensional
problems.

4.5 Comparison of MDE with other state-of-art algorithm variants

In order to evaluate the effectiveness and efficiency of MDE, we compare its perfor-
mance with CLPSO (Liang et al. 2006), CMA-ES (Hansen and Ostermeier 2001),
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Table 8 Comparison between MDE with CLPSO, CMA-ES, and GL-25 algorithms on 30D problems

F CLPSO CMA-ES GL-25 This work

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 0 ± 0≈ 1.6722e–
25 ± 3.5518e–26—

7.4614e–
24 ± 2.3588e–23—

0 ± 0

f 02 837.52 ± 172.78— 5.6794e–
25 ± 1.1122e–25+

32.234 ± 29.284— 4.17e–022 ± 6.52e–
022

f 03 4.1396 ± 3.6828— 1.196 ± 1.9257— 20.683 ± 1.0665— 1.98e–005 ± 7.66e–
005

f 04 7831.9 ± 1242.6— 32523 ± 23762— 504.85 ± 266.3— 2.27e–03 ± 4.40e–03

f 05 1.8829e–
14 ± 3.3704e–15—

19.762 ± 0.084447— 2.3448e–
14 ± 1.233e–14—

3.55e–015 ± 0

f 06 0.0030707 ±
0.0036104—

19.488 ± 0.1449— 9.2939e–
13 ± 2.6891e–12—

3.55e–015 ± 0

f 07 2.2204e–
17 ± 7.0217e–17—

2.2204e–
17 ± 7.0217e–17—

5.218e–
16 ± 5.3129e–16—

0 ± 0

f 08 0.033509 ±
0.018325—

0.0027111 ±
0.0044163—

1.2812e–
07 ± 2.5833e–07—

0 ± 0

f 09 0 ± 0 ≈ 495.48 ± 90.483— 26.119 ± 10.932— 0 ± 0

f 10 100.54 ± 15.333— 42.783 ± 10.103— 126.91 ± 68.241— 40.45 ± 10.79

f 11 0 ± 0 ≈ 421.6 ± 105.18— 35.386 ± 10.769— 0 ± 0

f 12 1.819e–
13 ± 5.7521e–13—

5223.7 ± 857.16— 3585.3 ± 1224.8— 0 ± 0

f 13 2.1565e–
31 ± 2.363e–31—

2.8538e–
29 ± 5.3004e–30—

2.771e–
32 ± 1.5949e–32—

1.57e–032 ± 0

f 14 1.6892e–
30 ± 1.1956e–30—

0.0042998 ±
0.0074428—

5.3084e–
31 ± 6.0552e–31—

1.350e–032 ± 0

f 15 1.0428e–
06 ± 2.9459e–06—

40 ± 69.921— 0 ± 0 ≈ 0 ± 0

f 16 7.6027 ± 1.4511— 65.973 ± 155.58— 3.1989 ± 0.68806+ 3.978 ± 0.932

— 13 15 14

+ 0 1 1

≈ 3 0 1

and GL-25 (Garcia-Martinez et al. 2008). Liang et al. proposed a new particle swarm
optimization-CLPSO. A particle used the personal historical best information of all the
particles to update its velocity. Hansen and Ostermeier proposed a very efficient and
famous evolution strategy. Garcia-Martinez et al. proposed a hybrid real-coded genetic
algorithm which combines the global and local search. Each method was run 50 times
on each test function. Table 7 summarizes the experimental results for 10 dimensional.
As can be seen in Table 7, MDE significantly outperforms CLPSO, CMA-ES, and GL-
25. MDE performs better than CLPSO, CMA-ES, and GL-25 on 12, 15, and 11 out
of 16 test function, respectively. CLPSO is superior to, equal to MDE on 5 test func-
tions. CMA-ES performs superior to MDE on one test functions. GL-25 is superior
to, equal to MDE on 4 test functions. For the 30D, the results are shown in Table 8 in
terms of the mean, standard deviation of the solutions obtained in the 50 independent
runs by each algorithm. From the Table 8, we can find that the MDE provides better
solutions than other algorithms. From the results, it can observed that MDE is inferior
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Table 9 Comparison between MDE and different EP on 10D problems

F AFEP MSAEP ENAEP This work

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 4.9835e–
14 ± 4.6744e–14—

4.1988e–
18 ± 3.2888e–18—

6.6745e–
18 ± 6.4698e–18—

0 ± 0

f 02 3.8504e–
11 ± 3.1914e–11—

4.08e–14 ± 3.6915e–
14—

5.1726e–
14 ± 3.9589e–14—

0 ± 0

f 03 19.318 ± 30.205— 11.189 ± 21.353— 2.7468 ± 0.94971— 0 ± 0

f 04 5.6113e–
11 ± 4.6843e–11—

4.8504e–
13 ± 6.4947e–13—

6.3632e–
13 ± 1.3852e–12—

1.51e–029 ± 3.24e–
029

f 05 9.8406e–
08 ± 5.0821e–08—

20.015 ± 0.016352— 1.1098e–
09 ± 2.1645e–10—

0 ± 0

f 06 8.9152e–
08 ± 5.3185e–08—

8.8765e–
10 ± 4.8945e–10—

1.1168e–
09 ± 3.8896e–10—

2.37e–015 ± 1.73e–
015

f 07 0.050678 ±
0.029513—

0.043309 ±
0.023988—

0.040379 ±
0.019135—

0 ± 0

f 08 0.04775 ±
0.030614—

0.030037 ±
0.016838+

0.040835 ±
0.017835—

0.03988 ± 0.02896

f 09 1.194 ± 0.62927— 986.22 ± 3.2797e–
10—

2.7859 ± 1.2231— 0 ± 0

f 10 12.24 ± 3.8678— 983.78 ± 1.195— 6.6805 ± 2.917— 6.3014 ± 3.7543

f 11 0.1 ± 0.31623— 971 ± 0.003965— 1.4211e–
15 ± 3.4322e–15—

0 ± 0

f 12 142.13 ± 145.59— 274.47 ± 133.45— 248.72 ± 87.391— 0 ± 0

f 13 7.1647e–
16 ± 7.191e–16—

4.8126e–
20 ± 6.086e–20—

6.2273e–
20 ± 4.6085e–20—

4.71e–032 ± 0

f 14 3.6349e–
15 ± 4.7699e–15—

1.6907e–
19 ± 1.5616e–19—

2.3595e–
19 ± 1.9697e–19—

1.35e–032 ± 0

f 15 1.8264e–
15 ± 1.6628e–15—

20 ± 42.164— 10 ± 31.623— 0 ± 0

f 16 0.67731 ± 0.71864+ 2.7547e–
19 ± 4.9295e–19+

0.60196 ± 0.78696+ 1.4334 ± 0.3422

— 15 14 15

+ 1 2 1

≈ 0 0 0

to, equal to, superior to compared algorithms in 1, 4, and 43 cases, respectively out
of the 48 cases. The results demonstrate good performance of MDE in solving these
problems.

4.6 Comparison of MDE, AFEP, MSAEP and ENAEP

In the experiment, we compare the performance of MDE and AFEP, MSAEP and
ENAEP (Mallipeddi et al. 2010). AFEP is an adaptive evolutionary programming
which presents empirical studies carried out to evaluate the performance of differ-
ent constraint handling methods on constrained real-parameter optimization. MSAEP
presents a mixed strategy evolutionary programming algorithm that employs the
Gaussian, Cauchy, Lévy, and single-point mutation operators. The results of the
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Table 10 Comparison between MDE and different EP on 30D problems

F AFEP MSAEP ENAEP This work

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 9.8721e–
16 ± 6.5416e–16—

8.9186e–
15 ± 2.6125e–14—

1.8348e–
20 ± 9.5662e–21—

0 ± 0

f 02 0.13609 ± 0.3052— 0.060647±0.11101— 0.066752±0.16543— 4.17e–022 ± 6.52e–
022

f 03 100.69 ± 137.63— 213.06 ± 297.38— 79.735 ± 106.63— 1.98e–005 ± 7.66e–
005

f 04 468.42 ± 627.1— 816.09 ± 381.36— 880.5 ± 757.85— 2.27e–03 ± 4.40e–03

f 05 5.9476e–
09 ± 2.6802e–09—

20.004±0.0081259— 2.6294e–
11 ± 1.1745e–11—

3.55e–015 ± 0

f 06 8.5292e–
09 ± 2.4153e–09—

7.7875e–
07 ± 2.4531e–06—

4.5934e–
11 ± 2.6546e–11—

3.55e–015 ± 0

f 07 0.012074 ±
0.014616—

0.010837 ±
0.014735—

0.01545 ±
0.023332—

0 ± 0

f 08 0.0063988 ±
0.0086851—

0.0034512 ±
0.0064906—

0.010097 ±
0.0072799—

0 ± 0

f 09 5.5718 ± 2.0009— 2230.8 ± 1.08— 8.0592 ± 4.4853— 0 ± 0

f 10 78.674 ± 62.834— 2212.7 ± 17.328— 45.745 ± 11.565— 40.45 ± 10.79

f 11 1.3 ± 1.1595— 2197.5 ± 1.9579— 1.5 ± 1.4337— 0 ± 0

f 12 823.97 ± 304.77— 1223.7 ± 235.96— 1282 ± 305.3— 0 ± 0

f 13 1.0679e–
18 ± 7.5803e–19—

1.3953e–
21 ± 1.0908e–21—

2.1418e–
22 ± 2.1796e–22—

1.57e–032 ± 0

f 14 5.1166e–
17 ± 6.0938e–17—

3.109e–
21 ± 1.8625e–21—

0.0010987 ±
0.0034745—

1.350e–032 ± 0

f 15 1.1568e–
17 ± 8.8581e–18—

20 ± 44.721— 20 ± 42.164— 0 ± 0

f 16 7.1059 ± 1.9406— 40 ± 89.443— 7.4433 ± 2.9433— 3.978 ± 0.932

— 16 16 16

+ 0 0 0

≈ 0 0 0

MSAEP show that the mixed strategy performs equally well or better than the best of
the four pure strategies, for all of the benchmark problems. ENAEP enables us to ben-
efit from different mutation operators with different parameter values whenever they
are effective during different stages of the search process. Experimental results show
that the algorithm is very effective. The experimental results are given in Tables 9 and
10 for different algorithms at dimension 10D and 30D. For 10D, the performance of
MDE is significantly superior to all evolutionary algorithms for all functions except
f08 and f16 according to the experimental results is shown in Table 9. For f08 and
f16, MSAEP slightly performs better than MDE. All in all, from the results, it can
be observed that MDE is inferior to, equal to, superior to the compared algorithms
on 4, 0, and 44 cases. For the 30D, as can be seen in Table 10, we can conclude that
the performance of all other algorithms is very similar to that on the 10-deminsional
benchmark functions. The significant difference is that the performance of MDE is
not affected in a worse way with the increase of the dimensional. Hence, we can also
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Table 11 Comparison between MDE and MDE with different version on 30D problem

F Standard DE MDE1 MDE2 MDE

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

f 01 2.60e–028 ± 1.52e–
028—

0 ± 0 ≈ 2.06e–021 ± 3.57e–
021—

0 ± 0

f 02 6.59e–013 ± 8.40e–
013—

6.84e–012 ± 7.57e–
012—

0.0463 ± 0.0793— 4.17e–022 ± 6.52e–
022

f 03 29.5149 ± 42.2659— 21.0188 ± 24.9765— 87.4198 ± 64.8129— 1.98e–005 ± 7.66e–
005

f 04 1.04e–004 ± 3.01e–
004+

5.2688 ± 9.7792— 5.0942 ± 8.2905— 2.27e–03 ± 4.40e–03

f 05 7.11e–015 ± 0— 3.55e–015 ± 0≈ 2.79e–007 ± 4.81e–
007—

3.55e–015 ± 0

f 06 3.55e–015 ± 0≈ 3.55e–015 ± 0≈ 3.55e–015 ± 0≈ 3.55e–015 ± 0

f 07 8.21e–
004 ± 0.0032—

0 ± 0 ≈ 1.07e–015 ± 1.86e–
015—

0 ± 0

f 08 0.0034 ± 0.0062— 0.0046 ± 0.0078— 0.0090 ± 0.0086— 0 ± 0

f 09 17.1133 ± 4.1401— 0 ± 0 ≈ 12.9444 ± 6.9497— 0 ± 0

f 10 98.2747 ± 72.3087— 54.4619 ± 14.8664— 48.4795 ± 18.1950— 40.45 ± 10.79

f 11 18.7315 ± 2.6894— 0.0666 ± 0.2581— 23.4451 ± 1.5538— 0 ± 0

f 12 272.4089 ±
199.9484—

0 ± 0 ≈ 1.97e+002 ±
1.37e+002—

0 ± 0

f 13 1.57e–032 ± 2.83e–
048≈

1.57e–032 ± 2.83e–
048≈

0.0607 ± 0.0590— 1.57e–032 ± 0

f 14 1.35e–032 ± 2.83e–
048≈

1.35e–032 ± 2.83e–
048≈

0.0036 ± 0.00634— 1.350e–032 ± 0

f 15 5.47e–031 ± 7.50e–
031—

0 ± 0 ≈ 1.80e–015 ± 2.55e–
015

0 ± 0

f 16 15.7213 ± 35.9622— 4.5797 ± 1.022— 3.5267 ± 0.8883 3.978 ± 0.932

— 12 7 15

+ 1 0 1

≈ 3 9 0

conclude that the self adaptive method and the new search method can enhance the
ability to accelerate DE, and especially for the higher dimensionality.

4.7 A parametric study on MDE

In this section, in order to investigate the impact of the problem modifications, some
experiments are conducted. Three different versions of MDE algorithm have been
tested and compared against the proposed ones.

Version 1: to study the effect of the proposed modifications for the self adaptive
parameter with the basic mutation DE/rand/1/bin strategy. This version denotes
the MDE1.
Version 2: to study the effect of the proposed modifications for the new mutation
rule with the basic parameter setting (F = 0.5; CR = 0.9). This version denotes the
MDE2.
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Fig. 1 The success rate of one of the two parameter settings for f01-f08
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Fig. 2 The success rate of one of the two parameter settings for f09-f16
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Version 3: modified differential evolution algorithm with self adaptive parameters
method

In order to evaluate the final solution quality produced by all algorithms, the per-
formance of these three different versions of MDE algorithms are investigated based
on the 30D functions. The results of the MDE algorithm against its versions and
the standard DE algorithm are summarized in Table 11. As can be seen in Table 11,
we can find that the self adaptive parameter settings can enhance the standard DE
effectively. Then the new mutation rule can enhance the results based on the mul-
timodal functions. Accordingly, the main benefits of the proposed modification can
balance between the exploration and exploitation ability through the evolutionary
process. Figures 1 and 2 show the success rate of one of the two parameter settings
for all functions. As can be seen in figures, the value of CR1 performs better than
the functions f01, f05–f09, f11 and f13–f16. For f02, f03, and f12, CR2 is the winner
compared with the CR1. For f04 and f10, they have the similar effect for the final
results. All in all, the self adaptive method is very suitable for solving these global
problems.

5 Conclusions

The performance of DE depends on the selected mutation strategy and its associated
parameter values. In this paper, we propose a modified differential evolution with
the self adaptive parameter settings for solving unconstrained global real-parameter
optimization problems in the continuous domain. In our paper, the proposed algorithm
proposes two mutation rules based on the rand and best individuals among the entire
population. In order to balance the exploitation and exploration of the algorithm,
the new rules are combined with the two mutation strategies through a probability
rule. Then, a self adaptive parameter is introduced as uniform random numbers to
enhance the diversity of the population based on the relative success ratio of the new
proposed parameter setting in a previous period. In other aspect, our algorithm has
a very simple structure and thus it is easy to implement. To verify the performance
of MDE, 16 benchmark functions chosen from literature are employed. The results
show that the proposed MDE algorithm clearly outperforms the standard DE with
six different parameter settings. Compared with some evolution algorithms from the
literature, we find our algorithm is superior to or at least highly competitive with these
algorithms.

In this paper, we only consider the global optimization. The algorithm can be
extended to solve other problems such as constrained optimization problems.
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