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Abstract We investigate theClustered Steiner tree problemonmetric graphs,which is
a variant of theSteinerminimum tree problem. In this problem, the required vertices are
partitioned into clusters, and the subtrees spanning different clusters must be disjoint
in a feasible clustered Steiner tree. In this paper, it is shown that the problem is NP-
hard even if the inter-cluster tree and all the local topologies are given, where a local
topology specifies the tree structure of required vertices in the same cluster. We show
that the Steiner ratio of this problem is lower and upper bounded by three and four,
respectively. We also propose a (ρ + 2)-approximation algorithm, where ρ is the
approximation ratio for the Steiner minimum tree problem, and the approximation
ratio can be improved to ρ + 1 if the local topologies are given. Two variants of
this problem are also studied. When the goal is to minimize the inter-cluster cost and
ignore the cost of local trees, the problem can be solved in polynomial time. But it
is NP-hard if we ask for the minimum cost of local trees among all solutions with
minimum inter-cluster cost.

Keywords Approximation algorithm · Steiner tree · NP-hard · Graph theory

1 Introduction

For a simple undirected graph G = (V, E, c) and a required vertex set R ⊆ V , a
Steiner tree is a connected and acyclic subgraph of G that spans all the vertices in
R. Due to the large number of applications, Steiner tree problems are extensively
studied. The Steiner Minimum Tree (SMT) problem is a classical and well-known
NP-hard problem which involves finding a Steiner tree with minimum total edge cost
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(Garey and Johnson 1979; Karp 1972). The best approximation ratio ρ on general met-
rics achieved in polynomial time is an important properties for many graph problems.
From the first non-trivial result 11/6 (Zelikovsky 1993), it has been improved several
times (Robins and Zelikovsky 2005; Byrka et al. 2010). The current best approxima-
tion ratio is 1.39 (Byrka et al. 2010). Numerous variants of the SMT problem have
been studied, for example, the versions on the Euclideanmetric (Garey et al. 1977) and
the rectilinear metric (Garey and Johnson 1977), the Steiner forest problem (Agrawal
et al. 1995), the group Steiner tree problemGarg et al. (1998), the terminal Steiner tree
problem (Chen et al. 2003; Drake 2004; Lin and Xue 2002; Lu et al. 2003; Martinez
et al. 2007), the internal-selected Steiner tree problem (Hsieh and Yang 2007; Huang
et al. 2013; Li et al. 2010), and many others (Ding and Xue 2014; Hsu et al. 2005; Zou
et al. 2009).

An undirected complete graph G = (V, E, c) is a metric graph if all edge costs
are nonnegative and satisfy the triangle inequality, i.e., c(u, v) + c(v, x) ≥ c(u, x)
for all u, v, x ∈ V . In this paper, we consider another variant of SMT, the Clustered
Steiner tree (CluSteiner) problem. In addition to a metric graph G = (V, E, c) and
required vertex set R, we are also given a partition R = {R1, R2, . . . , Rk} of R. A
Steiner tree T is a clustered Steiner tree for R if all the vertices in the same cluster
(Ri ) are clustered together in T . More formally, a Steiner tree T is a clustered Steiner
tree if all the local trees are mutually disjoint, where the local tree of a cluster Ri in
T is the minimal subtree of T spanning Ri . That is, T can be cut into k subtrees by
removing k − 1 edges such that each subtree is a Steiner tree for one cluster Ri . The
CluSteiner problem is formally defined as follows.

Clustered Steiner Tree problem (CluSteiner)
Instance: A metric graph G = (V, E, c), required vertices R ⊆ V , and a
partitionR = {R1, R2, . . . , Rk} of R.
Goal: Find a minimum-cost clustered Steiner tree for R.

An equivalent definition is that for si , ti ∈ Ri and s j , t j ∈ R j the unique si ti -
path and s j t j -path in T are disjoint whenever i �= j . If there is only one cluster or
each required vertex is itself a cluster, the problem degenerates to the original Steiner
minimum tree problem. The local cost of a clustered Steiner tree is the total cost of all
edges in its local trees, and the cost of the remaining edges is called inter-cluster cost.
In addition to CluSteiner, we also study two variants. The first one is the minimum
inter-cluster Steiner tree problem (InterCluster), in which we want to find a cluster
Steiner tree with minimum inter-cluster cost and ignore the local cost. The second
variant is the minimum local-cost Steiner tree problem (LocalCluster) which asks
for the minimum local cost among all clustered Steiner trees with minimum inter-
cluster cost. Figure 1 illustrates the definitions.

The contribution of this paper is as follows.

– When R = V , or equivalently no Steiner vertices can be used, the problem can be
simply solved in polynomial time.

– The Steiner ratio for CluSteiner is lower and upper bounded by three and four,
respectively, where the Steiner ratio is defined as the largest possible ratio of the
minimal cost without using any Steiner vertex to the optimal cost.
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Fig. 1 Both T1 and T2 are clustered Steiner trees of the same input, in which white and black vertices
are Steiner and required vertices, respectively. The subtrees circled by dashed lines are local trees of
three clusters. The inter-cluster costs of T1 and T2 are 35 and 25, respectively, while their local costs are
29 and 49, respectively. For CluSteiner, T1 has smaller total cost than T2. But for InterCluster and
LocalCluster, T2 is better than T1 since the inter-cluster cost of T2 is smaller

– CluSteiner remains NP-hard even if the inter-cluster tree and the local topologies
of all clusters are given, where a local topology specifies the tree structure of a
local tree and will be formally defined in the next section.

– CluSteiner can be (ρ + 2)-approximated in polynomial time, where ρ is the
best approximation ratio for the Steiner minimum tree problem. The ratio can be
improved to ρ + 1 if all the local topologies are given.

– InterCluster can be solved in polynomial timewhen at least one cluster contains
more than one required vertex.

– LocalCluster is NP-hard even if at least one cluster contains more than one
required vertex.

A possible application ofCluSteiner is as follows.When designing transportation
or computer networks, the links are usually divided into two levels: inter-cluster or
intra-cluster, possibly with different costs, qualities, and capacities. Also, after the net-
work is built, the communications between nodes in the same cluster should be routed
locally rather than globally for the sake of capacity consideration or the simpleness
of routing protocols. Another application is for the case that all the local topologies
are given. In this case the task is to design the inter-cluster topology, as well as the
possible insertion of local Steiner vertices without violating their topologies. A similar
consideration was also studied for the traveling salesperson problem (TSP), named
clustered TSP problem (Bao and Liu 2012; Guttmann-beck et al. 2000). For this prob-
lem, the goal is to find a minimum cost Hamiltonian path such that the vertices of each
cluster are visited consecutively.

The rest of the paper is organized as follows. In Sect. 2, we give some notation and
definitions. In Sect. 3, we discuss some properties of the Steiner ratio. In Sect. 4, we
show the NP-hardness of CluSteiner. The approximation algorithms are shown in
Sect. 5. In Sects. 6 and 7, we discuss the two variants InterCluster and Local-
Cluster, respectively. Finally some future work and open questions are given in
Sect. 8.

123



J Comb Optim (2015) 30:370–386 373

2 Notation and definitions

For a graph G = (V, E, c), V and E are the vertex and the edge sets, respectively, and
c is the edge cost. In this paper we consider only undirected graph, and an (undirected)
edge incident to vertices u and v is denoted by (u, v). The cost of (u, v) is denoted
by c(u, v). For a subgraph T of G, c(T ) denotes the total cost of all edges of T . For
a graph G, V (G) and E(G) denote the vertex and the edge sets, respectively. For a
vertex subsetU , the subgraph of G induced byU is denoted by G[U ]. By smt(G, R),
we denote a Steiner minimum tree with instance (G, R) and also its cost. We use
mst(G, R) to denote a minimum spanning tree (MST), and also its cost, of G[R]. A
path with end vertices s and t is called an st-path. For a set S, a collection S of subsets
of S is a partition of S if the subsets are mutually disjoint and their union is exactly S.

Definition 1 For a tree T spanning S, i.e., S ⊆ V (T ), the local tree of S on T is the
minimal subtree of T spanning all vertices in S. In other words, if Y is the local tree
of S, then S ⊆ V (Y ) and all leaves of Y are in S.

Definition 2 Let R = {Ri | 1 ≤ i ≤ k} be a partition of R. A Steiner tree T for R
is a clustered Steiner tree for R if the local trees of all Ri ∈ R are mutually disjoint,
i.e., there exists a cut set C ⊆ E(T ) with |C | = k − 1 such that each component of
T − C is a Steiner tree Ti for Ri for all 1 ≤ i ≤ k.

The CluSteiner problem is formally defined as follows.

Clustered Steiner Tree problem (CluSteiner)
Instance: A metric graph G = (V, E, c), required vertices R ⊆ V , and a
partitionR = {R1, R2, . . . , Rk} of R.
Goal: Find a minimum-cost clustered Steiner tree for R.

A vertex not in R is a Steiner vertex. In the remainder of this paper, we assume
that (G,R) is the instance of the problem, where G = (V, E, c) and R =
{R1, R2, . . . , Rk} is a partition of R. We also use n = |V | and note that |E | ∈ Θ(n2)
since G is a complete graph.

An Eulerian tour is a cycle traveling all the edges exactly once. A graph is Eulerian
if there exists an Eulerian tour. A connected undirected graph is Eulerian if and only
if all the vertex degrees are even. A Hamiltonian path is a path visiting each vertex
exactly once.

For a graph H , contraction of an edge (u, v) replaces u, v with a new vertex w.
For any other vertex s, the edge cost is set to c(s, w) = min{c(s, u), c(s, v)}. For a
subgraph S, contracting S in H means contracting all the edges E(S) in an arbitrary
order, and the resulting graph is denoted by H/S. For convenience, we also use H/S
to denote H/H [S]when S is a vertex subset. Let G/R denote the graph resulted from
contracting every Ri inR, i.e., each cluster of required vertices is shrunk into a vertex.

For a graph T and (u, r), (r, v) ∈ E(T ), “taking a shortcut between u, v” means we
replace edges (u, r) and (r, v) with (u, v). Similarly, for a uv-path, taking a shortcut
between u, v replaces the path with edge (u, v).
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Fig. 2 Topology of a local tree. White vertices are Steiner vertices and black ones are required vertices. a
The original local tree. b The topology (solid lines). Note that the degree-2 Steiner vertices are not vertices
of the topology

Definition 3 For a local tree Ti of Ri , the topology of Ti is the tree obtained by
repeatedly taking shortcuts between the two neighbors of Steiner vertices with degree
two and removing such Steiner vertices in Ti until there are no such vertices.

For simplicity, the topology of a local tree will also be called “local topology”.
Figure 2 depicts an example of the topology of a local tree. For a clustered Steiner
tree T , contracting all the local trees results in a tree, denoted by T/R, called the
inter-cluster tree of T . The topology of the inter-cluster tree is also called “inter-
cluster topology”. Since there is always an optimal solution tree without degree-two
vertices in the inter-cluster tree, the topology of an inter-cluster tree is itself. For
a clustered Steiner tree T , let α(T ) denote the total cost of all its local trees and
β(T ) = c(T ) − α(T ) the cost of its inter-cluster topology, i.e., β(T ) = c(T/R).
The two variants of ClusterSteiner we study in this paper are formally defines as
follows. The first variant looks for a clustered Steiner tree minimizing the inter-cluster
cost.

Minimum Inter-cluster Steiner Tree (InterCluster)
Instance: A metric graph G = (V, E, c), required vertices R ⊆ V , and a
partitionR = {R1, R2, . . . , Rk} of R.
Goal: Find a clustered Steiner tree minimizing β(T ).

In the second variant, we want to first minimize the inter-cluster cost β(T ), and
among those with minimum inter-cluster cost β(T ) we ask for the one with minimum
local cost.

Minimum Local-Cost Clustered Steiner Tree (LocalCluster)
Instance: A metric graph G = (V, E, c), required vertices R ⊆ V , and a
partitionR = {R1, R2, . . . , Rk} of R.
Goal: Find a clustered Steiner tree T with minimum α(T ) subject to β(T ) is
minimum.

123



J Comb Optim (2015) 30:370–386 375

Fig. 3 An example of constructing a Hamiltonian path/cycle from a tree. a By doubling the tree edges,
we obtain an Eulerian cycle Y = (a, d, b, c, b, d, e, g, e, f, e, d, a), in which d, e are Steiner vertices and
the others are required vertices. b Starting from a, since the next vertex d in Y is not required, we make
a shortcut to the next unvisited required vertex b. Next we visit c. After c, since vertex b has been visited
and vertices d and e are not required, the next unvisited required vertex is g. Therefore we make a shortcut
from c to g. Continue this process and we can obtain a Hamiltonian cycle (a, b, c, g, f, a) of the required
vertices

3 Steiner ratio of CluSteiner

Possibly the simplest way to approximate the SMT is by MST. The Steiner ratio (for
the classic SMT problem) is the largest possible ratio between the cost of an MST and
the cost of an SMT. The inequality (1) is well-known, see for example Wu and Chao
(2004), which shows the Steiner ratio is two for general metric spaces.

mst(G, R) ≤ 2 · smt(G, R). (1)

The inequality can be simply shown as follows. Let T = smt(G, R). By doubling
E(T ), we can obtain an Eulerian multigraph and therefore an Eulerian tour Y with
c(Y ) = 2c(T ) = 2smt(G, R). Travelling along the Eulerian tour and taking shortcuts
between consecutive unvisited required vertices, we can obtain a Hamiltonian path of
G[R] with cost at most c(Y ) because of the triangle inequality. An example is shown
in Fig. 3. SinceMST is the cheapest way to connect R, we have that mst(G, R) ≤ c(Y )

and the inequality follows.
When R = V , i.e., the minimum clustered spanning tree problem, the problem is

equivalent to the case that no Steiner vertices are allowed. We now show a simple
algorithm for this variant. Since no Steiner vertices are allowed, the local tree of Ri

in the optimal tree is an mst(G, Ri ) for each i . Similarly the inter-cluster topology
is an MST of G/R. The next result is simple, in which an MST can be found in
O(n log n + |E |) = O(n2) time for a metric graph (Cormen et al. 2001).

Proposition 1 The minimum clustered spanning tree problem can be solved with the
same asymptotic time complexity as the MST problem.

However, we found that the Steiner ratio 2 does not hold for CluSteiner. Figure 4
gives a simple example. The left tree (a) is a minimum clustered Steiner tree with cost
p(3 + ε), where p = |R1|. If no Steiner vertices can be used, the right tree (b) is the
best and the cost is 6(p − 1) + p(2 + ε) ≈ 8p. The ratio is about 8/3 > 2. Note that
an MST consists of a path connecting required vertices not in R1 and linking vertices
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Fig. 4 An example for Steiner ratio larger than 2 for CluSteiner. Black vertices are required vertices and
white ones are Steiner vertices. The required vertices circled by dotted line are in one cluster R1, and all
the other clusters are singletons. ε is an arbitrarily small positive number. For any vertices u, v, c(u, v) is
the same of the cost of the uv-path in the tree on the left. a A clustered Steiner tree. b The best clustered
Steiner tree without any Steiner vertex

Fig. 5 An example with Steiner ratio three. The setting is similar to Fig. 4. R1 consists of the q required
vertices circled by dotted line. As indicated, each path has p internal Steiner vertices. a The optimal solution.
b The best one without any Steiner vertex

in R1 to the path individually. However, it is not feasible for CluSteiner since R1 is
not clustered together, i.e., the local tree contains other required vertices.

The above example shows that the Steiner ratio of CluSteiner is at least 8/3.
Figure 5 shows an evenworse example. The optimal tree (a) has cost q(p(2+ε)+1) ≈
2pq + 2q. The right tree (b) is the best possible without any Steiner vertex, and its
cost is (q − 1)(4p + 2) + qp(2 + ε). The ratio is asymptotically three when pq is
large. By this example, we have the lower bound in Lemma 1.

Lemma 1 The Steiner ratio of CluSteiner is at least three.
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4 NP-hardness for fixed topologies

At the first glance, the hardness ofCluSteiner seems from determining the best local
and inter-cluster topologies. In this section we shall show that NP-hardness remains
even when the topologies are given. A caterpillar is a tree of which all the internal
vertices form a path. An st-caterpillar is a caterpillar with leaves s and t adjacent to
the two endpoints of the path, respectively. Consider the following problem.

Steiner Caterpillar
Instance: A metric graph G = (V, E), required vertices R ⊂ V , and two
vertices x, y ∈ R.
Goal: Find a minimum-cost xy-caterpillar spanning R such that all internal
vertices of the xy-path are not in R.

The (1, 2)-Steiner Caterpillar is the special version in which all the edge costs
are either one or two. Note that a complete graph with all edge costs of one or two
is a metric graph. We show the NP-hardness of (1, 2)-Steiner Caterpillar by
transforming from the following well-known NP-complete problem.

Dominating Set
Instance: A simple undirected graph H and an integer h.
Question: Is there a dominating set of size at most h, i.e., a set S ⊆ V (H) with
|S| ≤ h such that for all u /∈ S there exists v ∈ S for which (u, v) ∈ E?

Lemma 2 (1, 2)-Steiner Caterpillar is NP-hard.

Proof We reduce Dominating Set to (1, 2)-Steiner Caterpillar, and then the
result follows from the NP-completeness of Dominating Set (Garey and Johnson
1979). Let (H, h) be an instance of Dominating Set. We construct an instance
(G,R) of Steiner Caterpillar as follows. Let V (H) = {vi | 1 ≤ i ≤ p}. For
each vi ∈ V (H), we create a Steiner vertex si . Let S = {si | 1 ≤ i ≤ p} and
R = V (H) ∪ {x, y}, where x, y /∈ V (H) are two added vertices. Let V (G) = R ∪ S
and the edge costs are as follows.

⎧
⎨

⎩

c(si , s j ) = 1 for 1 ≤ i < j ≤ p
c(si , x) = c(si , y) = 1 for 1 ≤ i ≤ p
c(si , v j ) = 1 for (vi , v j ) ∈ E(H) or i = j

The cost of any other edge is two. We now claim that H has a dominating set of size
h if and only if there is an xy-caterpillar of cost p + h + 1.

First, suppose that D is a dominating set of H and |D| = h. W.l.o.g. let D = {vi |
1 ≤ i ≤ h}. Construct an xy-caterpillar with internal vertices S′ = {si | 1 ≤ i ≤ h}
which are exactly those Steiner vertices corresponding to D. The order of the internal
vertices is irrelevant. Since D is a dominating set, for each vi there is an internal vertex
s j ∈ S′ such that c(vi , s j ) = 1. Since the xy-path has h internal vertices and all its
edges are of cost one, the total cost is p + h + 1.

Conversely, suppose that there is an xy-caterpillar T of cost p + h + 1. For any vi ,
if there does not exist an internal vertex s in T such that c(s, vi ) = 1, we can add si
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to the xy-path and then connect vi to si . Since the cost of any pair of Steiner vertices
is one, the total cost is not increased. Therefore we can obtain an xy-caterpillar of the
same cost such that all leaves except for x, y are connected to the xy-path by an edge
of cost one. Since the total cost is p + h + 1, the number of internal vertices is h, and
its corresponding vertex subset in V (H) is a dominating set of H . ��
Theorem 1 CluSteiner is NP-hard even when all the local topologies and the inter-
cluster topology are given.

Proof ByLemma 2, it is sufficient to show that (1, 2)-Steiner Caterpillar is a spe-
cial case. For an instance (G = (V, E, c), R, x, y) of (1, 2)-Steiner Caterpillar,
we transform it into an instance (G ′ = (V, E, c′),R) of CluSteiner. LetR = {Ri |
1 ≤ i ≤ k}, where k = |R|− 1, R1 = {x, y} and |Ri | = 1 for i ≥ 2. Since every clus-
ter contains at most two vertices, the local topologies are fixed. The given inter-cluster
topology is the star centered at R1. Let c′(x, y) = 2L . Let c′(x, v) = c(x, v) + L and
c′(y, v) = c(y, v) + L for all v �= x, y, where L = 5. All the other edge costs remain
the same. We assume that k ≥ 3 since (1, 2)-Steiner Caterpillar can be trivially
solved in polynomial time if the number of required vertices is a constant.

First we show that G ′ is also a metric graph. It is sufficient to show the triangle
inequality for any three vertices involving x or y. For any vertex v /∈ {x, y}, c′(x, y)+
c′(x, v) > c′(y, v) since c′(x, y) is the largest edge cost, and c′(x, v) + c′(v, y) =
c(x, v) + c(v, y) + 2L > c′(x, y) = 2L . For u, v /∈ {x, y}, c′(x, u) + c′(u, v) =
L + c(x, u) + c(u, v) ≥ L + c(x, v) = c′(x, v).

Let T be a minimum clustered Steiner tree. Since the inter-cluster topology is a star
centered at R1, if there are no Steiner vertices on T , the cost is larger than (k + 1)L
since an edge connecting any vertex to x or y has cost more than L . But adding any
Steiner vertex to subdivide (x, y) and connecting all the required vertices to it reduces
the cost to at most 2L + (k + 1)2 < (k + 1)L since L > 4 and k ≥ 3. Recall that
c′(u, v) ≤ 2 for vertices u, v /∈ {x, y}. Since there exists at least one Steiner vertex in
T , we claim that no required vertices are connected to x or y. Otherwise, re-connecting
this vertex to any Steiner vertex reduces the total cost. We conclude that x and y are
leaves in T .

Therefore the optimal solution of the CluSteiner problem is the same as the one
of the Steiner Caterpillar except for the additional cost 2L . ��

5 Approximation algorithms

By Algorithm 1, we shall show that any clustered Steiner tree T can be transformed
into a clustered Steiner tree T ′ of which the local trees have no Steiner vertices. Fig. 6
illustrates an example.

In fact, we replace each local tree with a Hamiltonian path and cut some edges to
break cycles. Since the Hamiltonian path consists of shortcuts of the cycle Y , the next
result follows from the triangle inequality.

Claim 1 Each local tree Ti is replaced with a Hamiltonian path of Ri with cost at most
2c(Ti ).

123



J Comb Optim (2015) 30:370–386 379

Algorithm 1
Input: a clustered Steiner tree T .
Output: a clustered Steiner tree T ′.
1: T ′ ← T ;
2: for all local tree Ti of T ′ do
3: construct a multigraph Hi by doubling the edges of Ti ;
4: construct an Eulerian tour Y on Hi ;
5: pick any required vertex r in Ti ;
6: while there is a non-visited required vertex in Y do � travelling along Y
7: let r ′ be the next non-visited required vertex in Y ;
8: let s be the previous vertex of r ′ in Y ;
9: replace (s, r ′) with (r, r ′) in Ti ; � no change if s = r
10: r ← r ′;
11: end while
12: end for
13: output T ′.

Fig. 6 An example illustrates Algorithm 1. Here only one local tree is shown, in which white and black
vertices are Steiner and required vertices, respectively. For each step, r and r ′ are the tail and head of the
arrow, respectively. The dashed edge is the one to be removed

After the transformation, each local tree is the added Hamiltonian path, and cutting
the edges makes its topology a part of the inter-cluster topology. Since no other edges
are added, the cost increment is at most the original cost of the local trees. Recall that
α(T ) is the local cost and β(T ) = c(T ) − α(T ) is inter-cluster cost.

Claim 2 β(T ′) ≤ β(T ) + α(T ) = c(T ).

The next lemma comes from the above two claims.

Lemma 3 There exists a clustered Steiner tree T ′ with no Steiner vertices in its local
trees and β(T ′) ≤ β(T ∗)+α(T ∗) = c(T ∗), where T ∗ is a minimum clustered Steiner
tree.
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Algorithm 2 Approximating the minimum clustered Steiner tree
Input: an instance (G,R) of the problem.
Output: a clustered Steiner tree T a .
1: construct T a

i ← mst(G,Ri) for each i ;
2: construct G/R and let R′ = {r ′

i | 1 ≤ i ≤ k}, where r ′
i is the vertex resulted from the contraction of Ri ;

3: construct a ρ-approximation T a
0 of smt(G/R,R′);

4: replace r ′
i with T a

i to obtain a clustered Steiner tree T a ;
5: output T a .

Theorem 2 Algorithm 2 reports a (2 + ρ)-approximation for CluSteiner in
O(n log n + f (n)) time, where ρ and f (n) are the approximation ratio and the time
complexity of any approximation algorithm for Steiner minimum tree on a metric
graph with n vertices.

Proof Let T ∗ be a minimum cluster Steiner tree. Let T a be the tree constructed by
Algorithm 2 and T ′ be a tree satisfying Lemma 3. We have that α(T a) ≤ 2α(T ∗).
Since T ′ has no Steiner vertices in its local tree, we have β(T ′) ≥ smt(G/R,R′), and
therefore β(T a) ≤ ρβ(T ′). Since β(T ′) ≤ α(T ∗) + β(T ∗) by Lemma 3, then

c(T a) = α(T a) + β(T a)

≤ 2α(T ∗) + ρ(α(T ∗) + β(T ∗))
≤ (2 + ρ)α(T ∗) + ρβ(T ∗) ≤ (2 + ρ)c(T ∗).

��
In Algorithm 2, if we use mst(G, R′) instead of the Steiner tree T a

0 , we obtain
the best clustered Steiner tree without any Steiner vertex. Let Y be the tree. Since
mst(G, R′) ≤ 2β(T ′) by (1), we have that β(Y ) ≤ 2β(T ′) ≤ 2(α(T ∗)+β(T ∗)), and
therefore c(Y ) ≤ 4α(T ∗) + 2β(T ∗).

Corollary 1 The Steiner ratio for CluSteiner is at most four.

Next we consider the case when the local topologies are given. Let Yi be the local
topology for Ri . Clearly Ri ⊆ V (Yi ). Let Si = V (Yi ) − Ri . The vertices in Si are
the Steiner vertices with degree at least three in the local tree. We may assume that
Si ∩ S j = ∅ for i �= j . Otherwise there are no solutions. We can modify Algorithm 3
such that the shortcuts are taken between vertices in V (Yi ) but not only Ri . The local
tree Ti of the optimal tree T ∗ is now transformed to Yi . Figure 7 illustrates an example.
Similar to Lemma 3, we have the next result.

Corollary 2 Suppose that T ∗ is a minimum cluster Steiner tree and the local topology
Yi is given for each i . There exists a clustered Steiner tree T ′ with β(T ′) ≤ β(T ∗) +
α(T ∗) = c(T ∗) such that the vertex set of each local tree is exactly V (Yi ).

Theorem 3 When the local topologies are given, the problem CluSteiner can be
(1 + ρ)-approximated in O(n log n + f (n)) time.
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Fig. 7 Transformation from Ti to its topology Yi . a A local tree in which the white vertices are Steiner
vertices. The paths circled by dotted line will be cut into the inter-cluster tree. b After the transformation.
The dotted lines are now a part of the inter-cluster tree

Proof Let S′ = V − R − ⋃
i Si be the possible Steiner vertices in the inter-cluster

tree. The approximation algorithm is similar to Algorithm 2 except that we use Yi
as the local tree T a

i and construct the ρ-approximation of smt(G[R′ ∪ S′],R′) as the
inter-cluster tree. Therefore β(T ′) ≥ smt(G[R′ ∪ S′],R′), and then β(T a) ≤ ρβ(T ′).
By the triangle inequality, the cost of a tree is at least the cost of its topology, and we
have that α(T a) ≤ α(T ∗). By Corollary 2, β(T ′) ≤ α(T ∗) + β(T ∗). In summary,

c(T a) = α(T a) + β(T a)

≤ α(T ∗) + ρ(α(T ∗) + β(T ∗))
≤ (1 + ρ)α(T ∗) + ρβ(T ∗) ≤ (1 + ρ)c(T ∗).

��

6 The InterCluster problem

A cluster Ri is called “singleton cluster” if it contains only one vertex. In this section
we shall first show a greedy algorithm for InterCluster without singleton clusters,
and then show how to deal with the case with singleton clusters. Algorithm 3 is a
procedure called by Algrotihm 4 to find k − 1 cheapest edges such that there exists an
clustered Steiner tree with these edges as its inter-cluster edges. The remaining steps
of Algorithm 4 constructs an optimal solution tree. Figure 8 illustrates an example.

AsAlgorithm4 is running, a pending Steiner vertex is a Steiner vertex not belonging
to any local tree. Let Ti be a local tree with at least one edge and s be a pending Steiner
vertex. By “inserting s into Ti”, we denote the following operation:

Ti ← Ti ∪ {(s, u), (s, v)} − {(u, v)},

where (u, v) is an arbitrary edge in Ti . We note that Ti remains a local tree after the
operation and that s becomes a Steiner vertex in the local tree.
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Algorithm 3
Input: a metric graph G and a partition R = {R1, R2, . . . , Rk } of R.
1: G′ ← G/R; � each vertex is either a shrunk cluster or a Steiner vertex
2: let H be the graph with V (H) = V (G′) and E(H) = ∅;
3: let Q be a priority queue containing E(G′);
4: while |E(H)| < k − 1 do
5: e ← extract-min(Q);
6: if H + e has no cycles then
7: add e into H ;
8: end if
9: end while

Algorithm 4
1: construct any spanning tree Ti of Ri as the local tree for each i ;
2: Y ← ⋃

i Ti ;
3: run Algorithm 3 to obtain E(H);
4: for each edge in E(H), add the corresponding edge into Y ;
5: while there is a pending Steiner vertex s in Y do
6: pick a local tree Ti such that s and Ti are on different components of Y ;
7: insert s into Ti ;
8: end while
9: output Y .

Fig. 8 An example of Algorithms 3 and 4. White vertices are Steiner vertices and black ones are required
vertices. Each circle is for one cluster. The selected edges in solution are drawn by solid lines, and the edges
with large costs are not shown

Theorem 4 When there are no singleton clusters, Algorithm 4 finds an optimal solu-
tion of InterCluster in O(n2 log n) time.

Proof Let β∗ denote total cost of the edges found by Algorithm 3. We shall show that
β∗ is the necessary and sufficient inter-cluster cost to construct a clustered Steiner
tree. First, the necessity is similar to the optimality of Kruskal’s algorithm for finding
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a minimum spanning tree. Since we pick the edges with costs from small to large and
edges are discarded only because it make a cycle, any clustered Steiner tree has inter-
cluster cost at least β∗. It remains to show that β∗ is sufficient. That is, Algorithm 4
reports a feasible solution with inter-cluster cost β∗.

Suppose that there are t pending Steiner vertices after step 4. Since there are k − 1
“non-local” edges in Y , the number of components is k + t − (k − 1) = t + 1. Each
execution of step 7 simultaneously reduces the number of components and the number
of pending Steiner vertices by one. We conclude that the while-loop at steps 5–8 can
be successfully executed. Consequently there is exactly one component when the
algorithm terminates. By step 6, no cycles will be formed and therefore the algorithm
returns a tree. Since a Steiner vertex is inserted into exactly one local tree, it results in
a valid clustered Steiner tree. To see the inter-cluster cost, we observe that the inter-
cluster edges are exactly those found by Algorithm 3 since all the Steiner vertices are
inserted into local trees with more than one required vertex.

In worst case, the time complexity of Algorithm 3 is the same as sorting all edges.
Since a metric graph is a complete graph, the time complexity is O(n2 log n). All the
other steps of Algorithm 4 can be done in linear time. ��

Next we consider the case with singleton clusters. First we note that if all clusters
are singletons, the problem degenerates to the original Steiner minimum tree and thus
NP-hard. Therefore we focus on the case that at least one cluster is not a singleton
cluster.

The difficulty here is that, at steps 6–7 of Algorithm 4, we cannot insert a Steiner
vertex into a local tree with only one required vertex. Simply connecting the Steiner
vertex to the required vertex will result in an additional inter-cluster edge. To deal
with this case, we modify Algorithm 3–5 by inserting a while-loop at steps 3–5. This
while-loop is similar to Prim’s algorithm for minimum spanning tree. It ensures that
every singleton cluster is connected, directly or indirectly, to some Steiner vertex or
non-singleton cluster.

Algorithm 5
1: G′ ← G/R; � each vertex is either a shrunk cluster or a Steiner vertex
2: let H be the graph with V (H) = V (G′) and E(H) = ∅;
3: while there is a component C consisting of only singleton clusters do
4: add into E(H) a minimum edge connecting C to another component;
5: end while
6: let Q be a priority queue containing E(G′);
7: while |E(H)| < k − 1 do
8: e ← extract-min(Q);
9: if H + e has no cycles then
10: add e into H ;
11: end if
12: end while

Theorem 5 When at least one cluster is not a singleton cluster, InterCluster can
be solved in O(n2 log n) time.
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Proof The entire algorithm for this case is similar except that we use Algorithm 5
instead of Algorithm 3 to find the k − 1 edges. Let β∗ denote total cost of the edges
found by Algorithm 5. Similar to Theorem 4, we need to show the necessity of β∗.
The k − 1 edges are picked at steps 4 and 10. We shall show step 4 since step 10 is the
same as in Algorithm 3. Suppose that e is the edge added at step 4 and at that moment
C is the component consisting only singleton clusters but no Steiner vertices. Since e
is an edge crossing the cut (V (C), V (G ′) − V (C)), there must be an optimal solution
containing e. Note that initially every Steiner vertex is a component, and therefore
in step 4 “Another component” includes the possibility of any Steiner vertex and any
shrunk cluster not in C .

To complete the proof, we shall show that since no components contain only single-
ton clusters, at step 6 of Algorithm 4, we can always choose a non-singleton cluster.
Suppose by contradiction that at some iteration we pick a pending Steiner vertex s
but any other component contains no edges of a local tree. Let t + 1 be the number
of components at this moment. As shown in the proof of the previous theorem, the
number of pending Steiner vertices must be t . Observe that after step 4 each compo-
nent without edges of a local tree contains exactly one pending Steiner vertex. So the
number of pending Steiner vertices is at least t + 1, a contradiction. ��

7 The LocalCluster problem

In this section we show the NP-hardness of the LocalCluster problem. If each
required vertex is itself a cluster, i.e., all clusters are singleton clusters, then Local-
Cluster degenerates to the original Steiner minimum tree problem and is therefore
NP-hard by definition. In the following, we shall show that the NP-hardness remains
even if there exists a non-singleton cluster, which is the same condition that Inter-
Cluster can be solved in polynomial time.

Theorem 6 LocalCluster is NP-hard even if there exists a non-singleton cluster
and the local and inter-cluster topologies are given.

Proof We transform from the Hamiltonian path problem which asks if there exists
a Hamiltonian path in an undirected graph and is NP-complete (Garey and Johnson
1979). Suppose that H is an instance of the Hamiltonian path problem. Let V (H) =
{vi | 1 ≤ i ≤ n}. We construct a metric graph G = (V, E, c) as follows.

– R = {ri | 1 ≤ i ≤ n} ∪ {x, y} is the required vertex set.
– V (G) = R ∪ S, where S = {si | 1 ≤ i ≤ n} is the Steiner vertex set.
– R0 = {x, y} and Ri = {ri } for 1 ≤ i ≤ n.
– The edge costs are set to

– c(ri , si ) = 1 for all i ;
– c(si , s j ) = 1 if (vi , v j ) ∈ E(H);
– c(x, si ) = c(y, si ) = 1 for all i ; and
– all the other edge costs are 2.

First we note that all the edge costs are either one or two, and therefore G is a metric
graph. Since there are n+1 clusters, the inter-cluster cost is at least n for any clustered
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Steiner tree. Meanwhile, inserting all si into the local tree of R0 and connect vi to si
for all i gives us a clustered Steiner tree with inter-cluster cost n. To complete the
proof, we claim that

there is a Hamiltonian path in H if and only if there is a solution T with α(T ) =
n + 1 and β(T ) = n.

Suppose, w.l.o.g., that (v1, v2, . . . vn) is a Hamiltonian path in H . We construct a
solution T as follows. The local tree of R0 is (x, s1, s2, . . . sn, y), and (ri , si ) ∈ E(T )

for all i . It can be easily verified that α(T ) = n + 1 and β(T ) = n.
Conversely suppose that T is a clustered Steiner tree with α(T ) = n + 1 and

β(T ) = n. First we note that there cannot be any Steiner vertex in the inter-cluster
tree of T . Otherwise, the inter-cluster tree has more than n + 1 vertices and therefore
has cost more than n. Let T0 be the local tree of R0 in T . Since all clusters other than
R0 are singleton clusters, all the Steiner vertices of T are in T0. For each ri , there is
only one edge (ri , si ) of cost one incident to ri . Since α(T ) = n + 1, all si must be in
T0. Since the topology of T0 is limited to be an xy-path and c(T0) = n + 1, we have
that all the edges in T0 are of cost one, and therefore the order of the internal vertices
of T0 corresponds to a Hamiltonian path in H . Finally, we note that the local and the
inter-cluster topologies are fixed in the transformed instance. ��

8 Concluding remarks

In this paper,we show that theSteiner ratio forCluSteiner is lower andupper bounded
by three and four, respectively. It is interesting to improve the gap between the two
bounds. Open questions and possible future work also include the approximabilities of
CluSteiner andLocalCluster. Finallywe propose another variant ofCluSteiner.
In applications to network design, there may be two cost functions. An edge (u, v) in
a local tree has cost c(u, v) and costs c′(u, v) if it is in the inter-cluster tree. Usually
c′(u, v) > c(u, v). Now the problem is to design a clustered Steiner treewithminimum
total cost.
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