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Abstract In this paper, we reconsider the hazardous materials transportation network
design problem with uncertain edge risk (HTNDPUR) which is proved as strong NP-
hard. The natural ways to handle NP-hard problems are approximation solutions or
FPT algorithms. We prove that the HTNDPUR does not admit any approximation,
neither any FPT algorithm, unless P = NP. Furthermore, we utilize the minimax regret
criterion to model the HTNDPUR as a bi-level integer programming formulation
under edge risk uncertainty, where an interval of possible risk values is associated
with each arc. We present a robust heuristic approach that always finds a robust and
stable hazmat transportation network. At the end, we test our method on a network
of Guangdong province in China to illustrate the efficiency of the algorithm. Our
experimental results illustrate that the robust interval risk scenario network performs
better than the deterministic scenario network.
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1 Introduction

The production and transportation of hazardous materials (hazmat) plays an impor-
tant role in industrial development. Although the probability of hazmat transportation
accidents is low, the vast majority of transporting hazmat and inadequate supervision
by the government causes frequent hazmat transportation accidents, which arouses
close national attention in China. At present, the total annual hazmat transport volume
reaches about 400 million tons in China. Among them, about 95 % hazmat need to be
transported from one place to another and road transportation accounts for approxi-
mately 82 % [1].

The hazmat transportation accidents are recognized as low probability-high con-
sequence events and the risk is a significant ingredient which separates hazmat trans-
portation problems from other transportation problems. It is not easy to estimate the
risk on each arc exactly, since it depends on many unpredictable factors. There are
several elements to influence the risk on each arc, such as human error, weather condi-
tions, transport mode, vehicle type and road conditions involving people living around
the road, road intersections, highway ramps and bridges where accidents happen fre-
quently. The risk assessment is a basic research branch in the hazmat transportation
research fields, involving qualitative or quantitative risk assessment. The qualitative
risk assessment deals with the identification of possible accidents in the absence of
data and the quantitative risk assessment uses historical accident frequencies and con-
sequences to calculate the numerical assessment of risks. However, the past empirical
data is not very reliable. There is no agreement on accident probabilities and conflicting
numbers of edge risk reported by different researchers could induce different results.
Furthermore, weather conditions, public perceived risk and hot spots, such as road
intersection, highway ramps and bridges, may cause severe unpredictable accidents,
and make the risk of road segments uncertain. When the risk changes on the road
segments, the prior optimal network might not be an optimal network anymore, then
the network lacks of robustness. To design a robust hazmat transportation network is
reasonable and necessary.

1.1 The hazardous materials transportation network design problem

At present, most of the literatures on the hazmat transportation focuse on risk assess-
ment, routing and scheduling, and facility location. The Hazardous Materials Trans-
portation Network Design Problem(HTNDP) was first proposed by Kara and Verter
(2004)[2] and received more attention recently. This problem assumes that the govern-
ment can decidewhich road segments have to be closed to hazmat so as tominimize the
overall risk of the shipments, and then the carriers choose the routes on the designated
network to minimize their route costs. Government intends to find a sub-graph of the
existing road network so that the total route risk selected by the carriers is minimized.
A bi-level programming formulation is provided for this network design problem, but
it may fail to find a stable solution when there exist multiple minimum cost routes
with different risk value selected by the carriers in the follower model, which may
result in much higher risk than the government expected. Erkut and Alp (2007) [3]
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modeled the HTNDP as a Steiner tree problem and formulated the problem as a single
level integer programming with the objective of minimizing the total risk. Erkut and
Gzara (2008) [4] considered a similar problem to generalize their model to the undi-
rected case. In order to protect the government from the worst case when the problem
becomes unstable, they proposed a heuristic algorithm to handle the bi-level model
stability. Verter and Kara (2008) [5] provided a single level path-based formulation for
the HTNDP, where a set of alternative paths for each hazmat commodity incorporate
the carriers’ cost concerns in the government’s risk-reduction decisions. Amaldi and
Bruglieri (2011)[6] proved that the HTNDP where a set of arcs can be forbidden is
NP-hard even when a single commodity has to be shipped.

1.2 Robust shortest path problems

Soyster [11] first proposed a linear optimizationmodel with uncertain data to construct
a feasible solution. A significant step forward for developing a robust optimization
theory was taken by Ben-Tal et al. [12] and Bertsimas and Sim [13,14]. Specifically
for discrete optimization problems, Kouvelis and Yu [16] proposed a framework for
robust discrete optimization and showed that the robust counterparts of a number
of polynomial solvable combinatorial problems are NP-hard. Zielinski [18] showed
that the problem of minimizing the maximum regret criterion robust shortest path is
NP-hard for directed graphs. Averbakh and Lebedev [19] proved that the problem
of minimizing the maximum regret criterion robust shortest path is strongly NP-hard
for non-directed graphs. Bertsimas and Sim [13] considered the interval model for
cost uncertainty and showed that the problem can be solved by solving at most n + 1
nominal problems.

In particular, amodelwhere an interval of possible values is associatedwith each arc
has been studied [22–24]. The maximum regret criterion robust shortest path problem
is defined on a directed graph G = (V, A) , where V is a set of vertices, and A is a
set of arcs. A starting vertex s ∈ V , and a destination vertex t ∈ V are given and an
interval [li j , ui j ] , with 0 ≤ li j ≤ ui j , is associated with each arc (i, j) ∈ A.

Montemanni andGambardella [22] gave the following definitions for themaximum
regret criterion robust shortest path problem with interval data.

Definition 1 A scenario r is a realization of arc costs, i.e. a cost cri j ∈ [li j , ui j ] is fixed
∀(i, j) ∈ A.

Definition 2 The robust deviation for a path p from s to t in a scenario r is the
difference between the cost of p in r and the cost of the shortest path from s to t in
scenario r.

Definition 3 A path p from s to t is said to be a robust shortest path if it has the
smallest (among all paths from s to t) maximum (among all possible scenarios) robust
deviation.

In this paper, we use the maximum regret criterion called the robust deviation in
HTNDPUR, and the result is based on the following property, proposed by Karasan
et al. [15].
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Fig. 1 Example of an interval
graph

Fig. 2 Scenario induced on the
graph of Fig. 1

Property 1 Given a path p from s to t, the scenario r which maximizes the robust
deviation for p is the one where each arc (i, j) on p has cost ui j and each arc (k, h)

not on p has cost lkh, i.e. cri j = ui j∀(i, j) ∈ p and crkh = lkh∀(k, h) /∈ p.

In Fig. 1, an example of an interval graph is given.
Figure 2 depicts an example of the scenario induced by path p = {1, 3, 4} as the

robustness cost of p. The robustness cost of p is in this case (10+ 4) − (3+ 1) = 10.
In the robust shortest path problems where uncertain factors on arc values exist, two

uncertainty models have been studied, which are the interval model and the discrete
model. Many different approaches come from decision theory, multi-criteria analysis
and mathematical programming. In decision theory, there are different criterions to
model the concept of robustness, in which a solution that optimizes the worst case
criterion is called an absolute robust solution and a solution that optimizes the max-
imum regret criterion is called a robust deviation solution. And another criterion of
robustness which consists of normalizing the regret measure called a relative deviation
solution [17]. In this work, we apply the minimax regret criterion methodology to deal
with the edge risk uncertainty in HTNDP proposed by Kara and Verter (2004).

The paper is organized as follows. In Sect. 2, we present a bi-level network design
formulation of the HTNDPUR, and the computational complexity is discussed in
Sect. 3. In Sect. 4,we describe the robust heuristic solution procedurewhich guarantees
a feasible and stable solution. In Sect. 5, we test our heuristic algorithm on the highway
transportation network for the province ofGuangdong,China,which involves 21 nodes
and 30 edges. Four different classified hazmat data on this network are considered,
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including explosive solid product, flammable gas, toxic gas and corrosive substances.
In Sect. 6, we provide some conclusions.

2 A bi-level network design formulation

Suppose that a hazmat transportation network is defined on a directed graph G =
(V, A). There are n nodes where V is the node set corresponding to road intersec-
tions, and A is the set of arcs corresponding to road segments. There are K hazmat
commodities which need to be transported from their origins s(k) to destinations t (k),
and each hazmat commodity has its own risk on each arc in the transportation net-
work. Let cki j and rki j be the cost and risk associated with a unit flow of commodity
k transporting on arc (i, j) ∈ A respectively, and dk be the corresponding transport-
ing amount. Government intends to find a sub-graph of the existing road network so
that the total risk resulting from the carriers route choices is minimized. Each hazmat
commodity has its own risk on each arc in the transportation network.

Let rki j and r
k
i j refer to the interval risk associated with a unit flow of commodity on

arc (i, j) ∈ A, denoted as rki j ∈ [rki j , rki j ] , this interval risk represents the set of possible
values for each commodity k(k = 1, 2, 3, . . . , K ) on arc (i, j) ∈ A. Different from
the relative deviation criterion, we apply the absolute deviation criterion (minimax
regret criterion) to deal with the HTNDPUR. We define the decision variables on the
network below.

xki j =
{
1 if arc (i, j) is chosen by the commodity k,
0 otherwise.

yi j =
{
1 if arc (i, j) is available for hazmat transportation,
0 otherwise.

The bilevel multi-commodity hazmat network design integer formulation is

min
yi j∈{0,1}

∑
k∈{1,...,K }

∑
(i, j)∈A

dkr
k
i j x

k
i j (1)

s.t. yi j = y ji (i, j), ( j, i) ∈ A (2)

rki j ∈ [rki j , rki j ] (3)

xki j ∈ argmin
K∑

k=1

∑
(i, j)∈A

dkc
k
i j x

k
i j (4)

s.t.
∑
i∈V

xki j −
∑
i∈V

xkji =
⎧⎨
⎩

−1 if j = s(k)
1 if j = t (k)
0 otherwise

j ∈ V, k ∈ 1, . . . , K (5)

xki j ≤ yi j (i, j) ∈ A, k ∈ 1, . . . , K (6)

xki j ∈ {0, 1} (i, j) ∈ A, k ∈ 1, . . . , K (7)
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It is worth pointing out that, this formulation differs from the formulation presented
in [4] by the constrains (3), which represents the interval risk value. Similar to [4],
the objective (1) represents the government minimizing the total risk chosen by the
carriers, each commodity of risk can vary in the interval on the arc of the network,
while that of the carriers (4) is to minimize the cost. Constraints (2) state that both
arcs (i, j) and ( j, i) can be traversed in both directions used by any of the shipments.
Constraints (5) ensure the flow of commodity k from its origin to the destination.
Constraints (6) ensure that only edges selected by the government can be used by the
carriers. Constraints (7) are binary requirements on the variables.

3 Computational complexity

In [6], it was shown that HTNDP is strongly NP-hard. Obviously, the next conclusion
is natural.

Lemma 1 The HTNDPUR is strongly NP-hard even for a single commodity.

The natural way to handle NP-hard problems are approximation solutions or FPT
algorithms.

Fixed-Parameter Tractable Algorithm (FTP) Let (I, k) be an instance of parame-
terized problem. An FPT algorithm decides (I, k) in time O( f (k) · nc, where f is an
arbitrary computable function that only depends on k and c is a constant. We often
use the notation O∗( f (k)) to suppress the polynomial term.

However, the following result can be proved.

Theorem 1 The HTNDP does not admit any polynomial time approximation (regard-
less of its approximation factor), unless P = NP.

Proof The HTNDP is a minimization problem, then the result in [6] implies that
deciding whether OPT = 0 is NP-hard. Let A be any approximation algorithm for
HTNDPwith factor α. By definition A returns an approximation solution value APP ,
with APP ≤ α × OPT .

When OPT = 0, clearly APP must also satisfy APP = 0. In other words, A
would be able to solve the instance in[6] in polynomial time. This, however, contradicts
with the corresponding NP-hard result, unless P = N P . ��
Theorem 2 The HTNDP does not admit any FPT algorithm, unless P = NP.

Proof The HTNDP is a minimization problem, then the result in [6] implies that
deciding whether OPT = 0 is NP-hard. Let B be any algorithm for FPT which runs
in O( f (k)·nc) time.When OPT = k = 0, B solvesHTNDP in O( f (0)·nc) = O(nc)
time. In other words, B would be able to solve the instance in [6] in polynomial time.
Again, it contradicts with the corresponding NP-hard result, unless P = N P . ��

From Lemma1, we know that the HTNDPUR is also NP-hard problem. Similar to
the HTNDP, the following conclusion can be proved.

Corollary 1 The HTNDPUR does not admit any approximation, neither any FPT
algorithm, unless P = NP,
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4 A robust heuristic approach

In this section, we will adopt a robust heuristic algorithm that always finds a solution
of the HTNDPURwith stability and robustness. Themain idea of the heristc algorithm
is as follows.

Firstly, we employ the minimax regret criterion to find the robust risk shortest path
for each commodity k, and then we construct the subnetwork formed by k robust risk
shortest routes. Let the resulting network be G with an associated risk value of R,
which is the sum of minimax regret risk value of each commodity k.

Secondly, the carriers choose their own path with an objective of minimum cost
on G, where each path corresponds to a minimax regret risk value, and then the
carriers reconstruct a new subnetwork G ′ formed by minimum cost routes. When
there are multiple minimum cost routes with different minimax regret risk value for
each commodity, we always use the maximum value of total minimax regret risk value
of each commodity, with an associated total risk value of Rmax . If R = Rmax , then
a solution is obtained. Otherwise, there is at least one commodity k using a different
path designated by the government under the robust minimum risk objective.

Finally, in order to eliminate the difference of the total risk value betweenG andG ′,
we remove the maximum upper bound of interval risk arc not used by the government
solution but used in the solution of the carriers for some commodity k. The algorithm
does this iteratively on the residual network until it stops, and then we can obtain a
robust stable subnetwork.

One of the challenges of designing a hazmat transportation network is the use of
common road links for different shipments. Apparently, the number of links used
for multiple shipments will have to increase as the number of shipments increases.
According to the above character, we present the following selection rule: The com-
mon links for different shipments will be removed from the original network, and it
guarantees that after a number of iterations, the algorithm stops with a feasible stable
solution for the residual network. Figure 3 describes above rule as follows.

In Fig. 3, we assume that the commodity 1 adopts the route s1-v1-u1-t1 which is
designated by government. But the commodity 2 chooses the route s2-v2-v1-u1-u2-t2
instead of the designated route s2-v2-u2-t2. If the upper bound of the interval risk value
of the commodity 2 on arc (v1,u1) is too high, we should eliminate arc (v1,u1) from the
selection rule. The commodity 1 has to use the route s1-v1-v2-u2-u1-t1 alternatively,
and that means, node v1 and u1 cannot be unconnected directly for lack of arc (v1,u1).
The above principle is alternately applied to the transportation network, finally there
must exist at least one route which connects the origin node to the destination node.

Fig. 3 An example
demonstrating how to eliminate
the arc(v1, u1)

1u

2t
2v2s

1v

1t
1s

2u
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The detailed steps of designing a robust network algorithm are given as follows.
Initialization t = 0, Gt = G.
Iteration t :
Step 1: Solve K robust-risk shortest path problem on Gt

min
∑

(i, j)∈A(Gt )

dkr
k
i j x

k
i j (8)

s.t.
∑
i∈V

xki j −
∑
i∈V

xkji =
⎧⎨
⎩

−1 if j = s(k)
1 if j = t (k)
0 otherwise

(9)

rki j ∈ [rki j , rki j ] (10)

xki j ∈ {0, 1} (i, j) ∈ A (11)

To handle the constrains (10), which is the interval risk value, we use the minimax
regret criterion to find the robust risk shortest path for each commodity k, and then
we obtain the subnetwork of the original Gt formed by k risk robust shortest routes.
According to the property 1, we establish the mixed integer programming formulation
to solve K robust-risk shortest path problems on Gt as follows.

min
∑

(i, j)∈A(Gt )

dkr
k
i j x

k
i j − dkx

k
n (12)

s.t.
∑
i∈V

xki j −
∑
i∈V

xkji =
⎧⎨
⎩

−1 if j = s(k)
1 if j = t (k) j ∈ V
0 otherwise

(13)

xkj ≤ xki + rki j + (rki j − rki j )x
k
i j (i, j) ∈ A (14)

xs(k) = 0 (15)

xki j ∈ {0, 1} (i, j) ∈ A (16)

xkj ≥ 0 j ∈ V (17)

Let Rt
k represent the corresponding minimal risk value for commodity k, and Rt =∑

k∈{1,...,K } Rt
k represents the total optimal risk for network Gt .

Step 2: The carriers select the minimum cost routes on Gt , and the total risk of Gt

depends on the routes chosen by the carriers. If there exist multiple routes with the
same cost but different minimax regret risk value, we sort the total minimax regret
risk value as < Rt

min, . . . , R
t
i , . . . , R

t
max >.

Solve K minimum-cost path problems on Gt .

min
∑

(i, j)∈Gt

dkc
k
i j x

k
i j (18)
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s.t.
∑
i∈V

xki j −
∑
i∈V

xkji =
⎧⎨
⎩

−1 if j=s(k)
1 if j=t(k) j ∈ V
0 otherwise

(19)

xki j ∈ {0, 1} (i, j) ∈ A (20)

Step 3: If Rt
max−Rt

Rt ≤ Δ, then a heuristic solution of a robust network is determined
by Gt , otherwise Gt is not a stable network. Go to Step 4.

Step 4: We remove the maximum upper bound of interval risk arc from the routes
in Rt

max that is not used in the solution of the government but used in the solution
of the carriers for some commodity k. Let (i, j) be an arc found according to the
selection rule, which remove arcs (i, j) and ( j, i) from the network, update t = t + 1,
Gt+1 = Gt − {(i, j), ( j, i)}.

Step 5: Go to step 1.

Algorithm 1 The deterministic risk scenario network design heuristic algorithm
Repeat:
1, Solve K minimax regret risk shortest path problems on Gt .
2, Solve K minimum cost shortest path problems on Gt .

3, If
Rtmax−Rt

Rt
≤ Δ, then a potential heuristic network is determined by Gt , else Gt is not a stable

network. Go to Step 4.
4, We remove the maximum risk arc from the routes in Rt

max that is not used in the government solution
but used in the solution of the carriers for some commodity k. Let (i, j) be an arc found according to
the selection rule, which remove arcs (i, j) and ( j, i) from the network, update t = t + 1,Gt+1 =
Gt − {(i, j), ( j, i)}.
5, Go to step 1.

Remark: In step 3, Δ = 0 implies that the subnetwork is the same with original
network. If Δ is a very small positive value, it indicates that the carriers choose the
routes which are different from the arcs designated by the government. Obviously, Δ
depends on the routes chosen by the government and the carriers respectively. If there
are multiple minimum cost solutions with different associated minimax regret risk
values, we use the maximum sum of the total risk Rmax to check the stable condition.
The inequality in step 3 always helps us find a stable solution.

5 Application on guangdong province

In this section, we test the above algorithm on the network of Guangdong province,
China, which has 21 nodes and 30 edges. We adopt four different classified hazmat
data on this network, including explosive solid product, flammable gas, toxic gas and
corrosive substances. We first describe the problem data in detail, and then give the
numerical analysis, and finally some interesting findings are discussed.

5.1 The problem data

The primary source of our data is from Statistics China, State Administration of Work
Safety and Ministry of Transportation of the Peoples Republic of China, respectively.
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Fig. 4 The highway system of Guangdong province in China

Table 1 The frequency of four
hazmat in the Guangdong
highway system

The probability of four (unit: number of
kinds of commodities accidents/kilometer)

Explosive solid product 0.043 × 10−6

Flammable gas 0.049 × 10−6

Toxic gas 0.028 × 10−6

Corrosive substances 0.025 × 10−6

The data contains actual distance between two connecting nodes, the population expo-
sure around the edges, the locations where potential high risk exist such as buildings,
bridges and road intersections and population concentration points, such as schools,
factories and commercial centers, etc. Our research focuses on shipments of explosive
solid product, flammable gas, toxic gas and corrosive substances, these four materials
account for about 67 % of all the hazmat transported through Guangdong highways.
The Guangdong highway system is composed of China-highway (Gao Su Gong Lu)
and national highways (Guo Dao), contains 21 vertices and 31 edges, as depicted in
Fig. 4. In order to see the original network directly, we simply draw the routes between
each two nodes with straight line in right side of Fig. 4.

According to the 2010 population census, our model represents the spatial distribu-
tion of 93.87 million people, which covers 90 % of the total population of Guangdong
province. The data set includes the frequency of four hazmat in the Guangdong high-
way system, as depicted in Table 1.

Weassume that each truck is fully loadedwith up to 8 tons and can transport the same
kind of hazardousmaterial. Because of the scale of the network ofGuangdong highway
system, we set the number of origin-destination pairs K = 4, 8, 12, 16. For each value
of K , we generate 4 random instances and fix the number of distinct origins and distinct
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Table 2 Random instances from origin to destination

K Origin vertices Destination vertices

4 <6,3,16,4> <4,16,17,9>

<11,1,0,3> <2,10,16,8>

<7,2,18,11> <16,6,2,5>

<7,2,18,11> <16,6,2,5>

8 <6,3,16,4,1,0,5,2> <4,16,17,9,2,1,10,9>

<6,0,16,8,1,10,5,12> <1,20,17,3,2,19,11,9>

<10,1,19,15,5,16,2,11> <1,2,6,10,17,19,12,3>

<17,8,2,7,14,12,0,20> <3,7,11,13,17,20,19,0>

12 <1,7,0,1,6,5,2,1,3,6,2,1> <6,3,10,3,5,2,6,11,5,2,8,2>

<1,2,7,8,2,13,2,11,8,7,8,2> <4,3,2,9,1,14,13,10,12,2,9,3>

<2,4,3,4,2,1,3,4,6,2,9,1> <6,2,10,0,11,12,7,5,3,1,8,6>

<2,3,6,0,2,3,6,8,9,10,5,3> <7,2,4,2,5,2,1,2,3,11,2,5>

16 <0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15> <3,2,5,8,7,9,0,2,3,5,1,9,3,8,2,4>

<0,1,1,2,3,3,4,5,6,6,11,12,13,13,14,14> <2,8,2,7,2,1,5,9,2,7,1,3,10,2,11,9>

<0,0,1,2,2,3,4,5,7,8,10,11,12,12,13,13> <1,2,5,3,9,5,7,1,6,2,3,4,11,1,7,6>

<4,5,6,7,7,8,10,11,12,13,13,17,18,2,2,3> <11,2,9,5,3,12,12,2,11,2,15,18,15,10,6,5>

destinations, as depicted in Table 2. The K different kinds of hazmat transporting from
their distinct origins to their distinct destinations are generated randomly. Each edge
transportation risk is computed by multiplying the probability of an undesirable event
by the population figure within 1,600 meters of the edges and the actual road distance
between two nodes. The transportation cost is given by the actual distance for each
kind of commodity, i.e., each kind of commodity has the same cost value on the same
arc of network. Based on the deterministic risk on each arc for each kind of commodity,
we make a full consideration of detailed factors which may cause high consequence
in accidents to give an interval risk for each commodity on each arc.

5.2 Numerical analysis

In Table 2, the cities’ names are substituted by the number from 1 to 20 respectively.
For example, the number 1 represents Shaoguan.

We perform our test on randomly generated pairs. We investigate the significance
of robust network and compare to the deterministic risk network. Table 2 shows the
detailed results on the random instances. For example, for 4 commodities originating
points<6,3,16,4> to destination points<4,16,17,9>.All tests are performedusing the
aggregate risk measure and the maximum interval risk upper bound as arc selection
rules. The results obtained by the deterministic risk scenario network and interval
risk scenario network for the different commodities with instances are described in
Table 3. Firstly, we calculate the total risk of the heuristic solution network on the
deterministic bi-level model, and then calculate the total risk when the risk changes on
arcs. Secondly, we obtain a robust network, use the same deterministic risk on each arc
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Table 3 Deterministic and interval risk scenario network for the different commodities with instances

K Run R1 R2 R
′
1 R

′
2 (i, j) ri j ri j [r i j , r i j ](k)

4 1 368 832 467 467 (6,4) 80 554 [22, 878](4)
2 390 590 465 465 (16,8) 18 218 [17, 311](3)
3 414 833 646 646 (2,4) 20 100 [16, 520](1)
4 414 833 646 646 (2,4) 21 130 [10, 419](2)
5 414 833 646 646 (2,4) 10 150 [8, 316](3)
6 414 833 435 515 (2,4) 20 100 [16, 220](1)

8 1 674 974 837 837 (0,2) 14 314 [12, 222](1)
2 674 974 837 837 (0,3) 19 115 [19, 146](null)
3 1138 1438 1158 1158 (7,8) 31 331 [31, 527](2)
4 1138 1138 1158 1188 (4,6) 30 60 [27, 68](0)
5 819 833 825 839 (1,3) 30 44 [18, 54](3)
6 931 1031 938 938 (13,15) 33 235 [33, 328](7)

12 1 913 1112 964 964 (12,15) 24 84 [24, 117](0)
2 913 1112 964 964 (12,15) 33 100 [31, 210](6)
3 913 1112 964 964 (12,15) 45 117 [43, 310](11)
4 1003 1003 1040 1040 (9,16) 33 97 [33, 97](null)
5 925 1032 925 1032 (0,3) 57 80 [57, 104](5)
6 925 1032 925 1032 (0,6) 64 84 [64, 96](7)
7 925 1032 925 1032 (4,7) 55 95 [55, 108](11)
8 925 1032 925 1032 (3,10) 45 69 [45, 95](12)
9 796 796 836 836 (4,8) 19 84 [19, 97](null)

10 796 796 836 836 (10,16) 37 103 [21, 142](null)
16 1 1396 1546 1457 1457 (9,16) 50 200 [44, 274](13)

2 1560 1610 1608 1658 (5,9) 33 83 [33, 87](15)
3 1636 1636 1711 1741 (14,15) 30 60 [22, 85](14)
4 1679 1739 1679 1739 (3,13) 37 97 [27, 104](8)

to calculate the total risk on the robust network, and then use the same changing risk
value on the robust network. The deterministic risk of each arc for each commodity
belongs to the interval risk of each commodity on each arc.

In Table 3, the first column indicates the number of commodities K , the second
column identifies the instance generated for each value of K , the third column is
devoted to analyze the behavior of the total risk of network under deterministic risk,
and the fourth column presents the total risk under changed arc risk. The fifth column
reports the total risk of the robust network using the same arc risk in the first column.
The sixth column indicates the total risk of robust network using the same changing
arc risks in the second column. The seventh column indicates the arcs whose risk value
is changed. The eighth column shows the arc risk value before changing, while the
ninth column shows the arc risk value after changing. The tenth column of [r i j , r i j ](k)
shows the commodity k interval risk on arc (i, j), k = Null indicates no transport on
that corresponding arc (i, j).
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Table 4 The arc risk change on the network

I II III IV

Deterministic risk scenario network
√ × √ ×

Interval risk scenario network × √ √ ×
Where

√
and × represent the arc risk changed and unchanged on the network respectively

This section shows the computational results achieved by the deterministic risk
hazmat transportation network and the robust hazmat transportation network. We can
see from the Table 3, the robust heuristic finds good quality solutions, especially when
the risk changes on the network comparing to the deterministic solution method. The
robust network always gives a robustness and stable solution and always avoids the
arcs to have a higher upper bound of the interval risk. Because of the total risk of
the resulting transport network is decided by the carriers’ route choices, the routes
selected by carriers in deterministic network and robust network have four different
cases, as depicted in Table 4.

Case I : If some arcs’ risk change in the deterministic network but not in the robust
network, the change increases on the deterministic network and has no influence to the
robust network. For example, in 4{1,2,3}, 8{1,2,4}, 12{1},16{1}. Because the robust
network does avoid selecting the routes with a high potential changing risk, as shown
in 4{1,2,3}, when some commodity’s interval risk upper bound is not that high, the
robust network may select this link, as shown in 4{4}. So when commodity 1’s risk
changes on arc (2,4), the same increase occurs to the robust network. But the changing
level is not high.

Case II : If some arcs’ risk change in the robust network but not in the determin-
istic network, the change increase on the robust network and has no influence on the
deterministic network. But the margin of the changing risk is not high. For example,
in 8{4}, 16{3}.

Case III: If some common arcs’ risk change, which are both selected by carriers
in the deterministic and robust network, and then the same additon occurs in both
deterministic and robust network. For example, in 4{6},8{3},12{3},16{2,4}.

Case IV : Δ > 0 in step 3 indicates the government allows carriers to choose some
linkswhich are not exactly the links the government designated for some commodities.
So some arcs’ risk change from the external factors in the network, but they are not
selected by carriers, so have no influence to both the deterministic network and the
robust network. For example, in 8{2},12{2,4}. When Δ = 0, the Case IV does not
happen.

We find that if the margin of the interval risk of each commodity on each arc is not
that high, the deterministic network and the robust network are almost the same.

Generally speaking, the robust interval scenario network performs not too bad
compared with the deterministic scenario network under deterministic risk on each
arc for each commodity. But it performs really better when the risk changes
since the robust interval scenario network avoids selecting the potentially high risk
arcs.
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6 Concluding remarks

In this paper, we prove that the HTNDP under edge risk uncertainty does not admit
any approximation, neither any FPT algorithm, unless P = NP. We present a bi-level
formulation for the HTNDPUR and design a simple heuristic algorithm. It shows that
the heuristic algorithm can give a robustness and stable solution, and always avoid
the arcs with higher interval risk upper bound. When some of the common links for
different shipments are removed from original network, we guarantee that after a
number of iterations the algorithm stops with a feasible stable solution for the residual
network.

In order to evaluate the effectiveness of the proposed model and algorithm, we
concentrate our analysis on a real-world case study. We consider the road network of
the Guangdong province in China which contains 21 vertices and 31 edges. Compared
to the solutions of the bi-levelmodelwith the results coming from two scenarios, called
deterministic risk scenario network and interval risk scenario network respectively, we
find that the robust network performs not bad compared to the deterministic network
under deterministic risk on each arc for each commodity. But it performs really better
when the risk changes since the robust network avoid selecting the potential high
risk arcs. The robust optimization for hazmat transportation network design is more
reasonable and performed good quality in robustness.

The solutions depend on the input data, in particular, which include the origin-
destination flows, the topology of the original road network, the spatial distribution of
population centers, the location of the origin-destination pairs, and the type of hazmat
being shipped. In general but not absolutely, we find that when the number of hazmat
grows, the iteration times and CPU requirement are increasing. Due to the scale of our
original road network, the heuristic algorithm performs only several times to obtain a
stable network, which fully depends on the input data of the original network.
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