
J Comb Optim (2015) 29:228–236
DOI 10.1007/s10878-014-9706-4

Online unbounded batch scheduling on parallel
machines with delivery times

Peihai Liu · Xiwen Lu

Published online: 30 January 2014
© Springer Science+Business Media New York 2014

Abstract We consider the online unbounded batch scheduling problems on m iden-
tical machines subject to release dates and delivery times. Jobs arrive over time and
the characteristics of jobs are unknown until their arrival times. Jobs can be processed
in a common batch and the batch capacity is unbounded. Once the processing of a job
is completed it is independently delivered to the destination. The objective is to min-
imize the time by which all jobs have been delivered. For each job J j , its processing
time and delivery time are denoted by p j and q j , respectively. We first consider a
restricted model: the jobs have agreeable processing and delivery times, i.e., for any
two jobs Ji and J j pi > p j implies qi ≥ q j . For the restrict case, we provide a best
possible online algorithm with competitive ratio 1 +αm , where αm > 0 is determined
by α2

m + mαm = 1. Then we present an online algorithm with a competitive ratio of
1 + 2/�√m� for the general case.

Keywords Scheduling · Online algorithm · Batch machines · Delivery times ·
Competitive ratio

1 Introduction

We consider an online scheduling model: online unbounded batch scheduling on par-
allel machines with delivery times. Here, we have m batch machines and sufficiently
many vehicles. There are n jobs J1, J2, . . . , Jn . Each job has a release date r j , a
processing time p j , and a delivery time q j . These characteristics about a job are
unknown until it arrives. In this model, one batch machine can handle up to B jobs

P. Liu (B)· X. Lu
Department of Mathematics, East China University of Science and Technology,
Shanghai 200237, China
e-mail: pliu@ecust.edu.cn

123

J Comb Optim (2015) 29:228–236 229

simultaneously as a batch, where B is sufficiently large. The processing time for a
batch is equal to the longest processing time in the batch. All jobs in a common batch
have the same starting time and completion time. Each job needs to be processed on
one of the m batch machines, and once the job is completed we deliver it imme-
diately to the destination by a vehicle. The objective is to minimize the time by
which all jobs have been delivered. We denote by S j , C j and L j , respectively, the
starting time, the completion time and the time by which J j is delivered in a sched-
ule. By using the general notation for a schedule problem, introduced by Graham
et al. (1979), this problem is denoted by Pm|online, r j , q j , B = ∞|Lmax , where
Lmax = max{L j : L j = C j + q j , 1 ≤ j ≤ n}.

Batch scheduling was first introduced by Lee et al. (1992), which was motivated by
burn-in operations in semiconductor manufacturing. Deng et al. (2003) and Zhang et al.
(2001) studied the online scheduling problem on single batch machine. They proved
that there is no online algorithm with competitive ratio smaller than (

√
5 + 1)/2,

and for the case B = ∞, they independently gave the same online algorithm with
competitive ratio matching the lower bound. For the case B < n, the first online
algorithm is a greedy heuristic, GRLPT, of Lee and Uzsoy (1999) which was shown
to be 2-competitive by Liu and Yu (2000). Zhang et al. (2001) presented two online
algorithms with competitive ratio not greater than 2. The above three online algorithms
are all based on the ideas of the FBLPT rule. Later, Poon and Yu (2005) presented
a class of algorithms called the FBLPT-based algorithms that contains all the above
three algorithms as special cases, and showed that any FBLPT-based algorithm has
competitive ratio at most 2. In particular, for the case B = 2, they also gave an online
algorithm with competitive ratio 7/4.

For the online model of scheduling on m unbounded parallel batch machines, Zhang
et al. (2001) gave a lower bound m

√
2, and presented an online algorithm with com-

petitive ratio 1 + αm , where αm = (1 − αm)m−1. For the special case where m = 2,
Nong et al. (2008) gave a

√
2-competitive online algorithm. For the general case, Liu

et al. (2012) and Tian et al. (2009) showed the lower bound is 1 + (
√

m2 + 4 − m)/2,
and gave different optimal algorithms independently.

There have also been some results about online scheduling problems with delivery
times. Hoogeveen and Vestjean (2000) first studied the single-machine online schedul-
ing problem with delivery times. They showed the lower bound is (

√
5 + 1)/2, and

gave a best possible deterministic online algorithm. On identical parallel machines,
Vestjens (1997) showed that no online algorithms can have competitive ratio smaller
than 1.5 and showed the competitive ratio of the LS algorithm is 2. Tian et al. (2007)
considered the single batch machine online scheduling problem with delivery times.
They gave a 2-competitive algorithm for the unbounded case and a 3-competitive algo-
rithm for the bounded case. In the same paper, they also studied a special model with
identical processing times. They provided the best online algorithms with competitive
ratio (

√
5 + 1)/2 for both bounded and unbounded cases. In another paper, Tian et al.

(2012) gave an improved online algorithm for the same problem with competitive ratio
2
√

2−1. Yuan et al. (2009) also studied the single machine parallel-batch scheduling.
They provided a best possible online algorithm for two restricted models. Fang et al.
(2011) addressed online scheduling on m unbounded batch machines with delivery
times. They gave an online algorithm with competitive ratio 1.5 + o(1).

123

230 J Comb Optim (2015) 29:228–236

In this paper, we investigate online algorithms for parallel machine batch scheduling
with delivery times. We first consider a restricted model: the jobs have agreeable
processing and delivery times, i.e., for any two jobs Ji and J j , pi > p j implies
qi ≥ q j . We provide a best possible online algorithm with competitive ratio 1 + αm

for the problem, where α2
m + mαm = 1. We also study the general case. We provide

an online algorithm with a competitive ratio of r = 1 + 1/u + 1/v, where u, v are
integers and uv ≤ m. Especially if we take u = v = �√m� and let m → +∞, then
r → 1. This improves the current algorithm with competitive ratio a 1.5+o(1) for this
problem in the literature.

Throughout this paper, we use r(S), p(S), q(S) to denote the smallest release date,
the largest processing time and the largest delivery time of jobs in S, respectively.

2 A lower bound

We first consider the scheduling model Pm|online, r j , B = ∞|Cmax , which is a
special case of the scheduling problems studied in this paper. Hence, its lower bound
is also a lower bound of the problems we study. For the former, Liu et al. (2012) and
Tian et al. (2009) presented the following lower bound of competitive ratio for all
online algorithms independently.

Lemma 1 [Liu et al. (2012), Tian et al. (2009)] There is no online algorithm with
competitive ratio less than 1 + αm for Pm|online, r j , B = ∞|Cmax , where α2

m +
mαm = 1.

Corollary 1 There is no on-line algorithm with competitive ratio less than 1 + αm

for the following two problems where α2
m + mαm = 1,

(1) Pm|online, r j , agreeable(p j , q j), B = ∞|Lmax

(2) Pm|online, r j , B = ∞|Lmax

3 A restrict case

In this section, we deal with a restrict model: jobs have agreeable processing and
delivery times, i.e., for any two jobs Ji and J j pi > p j implies qi ≥ q j . We provide
a best possible online algorithm with competitive ratio 1 +αm for the problem, where
αm = (

√
m2 + 4 − m)/2, i.e. α2

m + mαm = 1.
Let A(t) be the set of the jobs which are available but not yet scheduled at time t .

Denote by p(t) the largest processing time of jobs in A(t). Denote by r(t) the smallest
release date of the jobs in A(t).

Algorithm H1 Whenever a machine is idle and A(t) 	= ∅, make decision as following:
If t ≥ (1 + αm)r(t) + αm p(t), then start all the available jobs as a single batch on the
idle machine. Otherwise, do nothing but wait.

Now, we will prove that H1 has a competitive ratio of 1 + αm . Let σ and π denote
the schedule generated by algorithm H1 and an optimal off-line schedule, respectively.
Their objective values are denoted by Lmax (σ) and Lmax (π), respectively. We assume

123

J Comb Optim (2015) 29:228–236 231

that there are b batches totally in σ which are written as B1, B2, . . . , Bb. For each i ,
the longest job in batch Bi is denoted by Ji (if two or more jobs have the longest
processing time in batch Bi , let Ji be the job with a larger delivery time) with a release
date ri , a processing time pi and a delivery time qi . Since the jobs have agreeable
processing and delivery times, pi = p(Bi), qi = q(Bi). Thus we can use Si (σ) and
Ci (σ) to denote the starting time and the completion time of both job Ji and batch
Bi in σ , respectively. It can be observed that Si (σ) < S j (σ) implies r(B j) > Si (σ)

and S j (σ) ≥ (1 + αm)r(B j) + αm p j > (1 + αm)Si (σ) + αm p j . For any batch Bi , if
Si (σ) = (1 + αm)r(Bi) + αm p(Bi), we say that Bi is regular. For convenience, we
assume that S1(σ) < S2(σ) < · · · < Sb(σ).

Property 1 For any two batches in σ , say Bi and B j , if Si (σ) < S j (σ), then r j >

Si (σ) and S j (σ) ≥ (1 + αm)r j > (1 + αm)Si (σ).

Lemma 2 In σ , if Bk is not regular, then Sk−1(σ) > (1 − αm)Sk(σ).

Proof Bk is not regular means that Sk(σ) > (1 + αm)r(Bk) + αm pk . Then by the
algorithm, each machine is busy processing a batch during [rk, Sk(σ)). Otherwise,
Bk will start earlier in σ . Denote the m batches processed during [rk, Sk(σ)) by
Bk1 , Bk2 , . . . , Bkm with Sk1(σ) < Sk2(σ) < · · · < Skm (σ). It is clear that km = k − 1
and Ck j (σ) = Sk j (σ) + pk j ≥ Sk(σ)(j = 1, 2, . . . , m), i.e.,

pk j ≥ Sk(σ) − Sk j (σ), j = 1, 2, . . . , m (1)

By the algorithm, Sk1(σ) ≥ αm pk1 ≥ αm(Sk(σ) − Sk1(σ)). Thus

Sk1(σ) ≥ αm

1 + αm
Sk(σ) (2)

In addition, for each j (2 ≤ j ≤ m), Sk j (σ) ≥ (1 + αm)r(Bk j) + αm p(Bk j) >

(1 + αm)Sk j−1(σ) + αm pk j . Using the inequality (1), we deduce that Sk j (σ) ≥ (1 +
αm)Sk j−1(σ) + αm(Sk(σ) − Sk j (σ)), i.e.,

Sk j (σ) > Sk j−1(σ) + αm

1 + αm
Sk(σ), 2 ≤ j ≤ m (3)

Combining (2) and (3) we have that

Skm (σ) >
mαm

1 + αm
Sk(σ) = (1 − αm)Sk(σ) (4)

i.e. Sk−1(σ) > (1 − αm)Sk(σ). ��
Lemma 3 If B j is not regular, then p j < αm Sj (σ).

Proof If B j is not a regular batch, then from Lemma 2 we have that S j−1(σ) >

(1 − αm)S j (σ). By the algorithm, we know that S j (σ) > (1 + αm)S j−1(σ) + αm p j .
Thus, S j (σ) > (1 − α2

m)S j (σ) + αm p j which implies that p j < αm Sj (σ).
This competes the proof. ��

123

232 J Comb Optim (2015) 29:228–236

Lemma 4 If Bk is not regular, then each machine is busy processing a regular batch
during [rk, Sk(σ)).

Proof Bk is not regular means that Sk(σ) > (1 + αm)r(Bk) + αm pk . Then by the
algorithm, each machine is busy processing a batch during [rk, Sk(σ)). Denote the m
batches processed in [rk, Sk(σ)) by Bk1 , Bk2 , . . . , Bkm . Then

Sk j (σ) + pk j ≥ Sk(σ), j = 1, 2, . . . , m (5)

Suppose for the sake of contradiction that Bk j is not regular for some j . Then
by Lemma 3, pk j < αm Sk j . Thus Sk(σ) ≥ (1 + αm)r(Bk) > (1 + αm)Sk j (σ) >

Sk j (σ) + pk j which contradicts the inequality (5). Therefore, Bk j is regular for each
j (1 ≤ j ≤ m).

This competes the proof. ��

Theorem 1 Lmax (σ) ≤ (1 + αm)Lmax (π).

Proof Let Bl denote the first batch in σ that assumes the objective value Lmax (σ),
i.e.,

Lmax (σ) = Sl(σ) + pl + ql (6)

If Bl is regular, then Sl(σ) = (1 + αm)r(Bl) + αm pl . Thus Lmax (σ) = (1 +
αm)(r(Bl)+ pl)+ql . It is clear that Lmax (π) ≥ r(Bl)+ pl +ql . Therefore, Lmax (σ) ≤
(1 + αm)Lmax (π).

If Bl is not regular, then Sl(σ) > (1 + αm)r(Bl) + αm pl . Thus by the algorithm,
each machine is busy processing a batch during [rl , Sl(σ)). Denote the m batches
processed in [rl , Sl(σ)) by Bl1, Bl2 , . . . , Blm with Sl1(σ) < Sl2(σ) < · · · < Slm (σ).
It is clear that lm = l − 1 and

Sl(σ) ≤ Sl j (σ) + pl j , j = 1, 2, . . . , m (7)

According to Lemma 4, Bl j is regular, i.e.

Sl j (σ) = (1 + αm)r(Bl j) + αm pl j ≤ (1 + αm)rl j + αm pl j (8)

Now, we will consider two cases according to the assignment of the m jobs Jl j (1 ≤
j ≤ m) in the optimal schedule π .

Case 1 Sl j (π) < Sl j (σ) for each j (1 ≤ j ≤ m). Then rl j > Sl j−1(σ) > Sl j−1(π)

for each j (2 ≤ j ≤ m). Hence, the m jobs Jl j (1 ≤ j ≤ m) are processed in m
different batches in π .

From the inequality (7), (8), we deduce that Sl(σ) ≤ Sl j (σ)+ pl j ≤ (1+αm)(rl j +
pl j) for each j = 1, 2, . . . , m. Therefore, Cl j (π) ≥ rl j + pl j ≥ Sl(σ)/(1 + αm) >

Slm (σ). Recall that Sl j (π) < Slm (σ) for each j (1 ≤ j ≤ m). Hence the m jobs
Jl j (1 ≤ j ≤ m) are grouped into m batches which are processed on m different

123

J Comb Optim (2015) 29:228–236 233

machines in the optimal schedule π . Recall that rl > Slm (σ) ≥ Sl j (π). Thus, in the
optimal schedule π , Jl starts after some job Jl j . So

Lmax (π) ≥ min
1≤ j≤m

{
rl j + pl j

} + pl + ql (9)

While Lmax (σ) ≤ min j {Sl j (σ)+ pl j }+ pl +ql ≤ (1+αm) min j {rl j + pl j }+ pl +ql .
Therefore, Lmax (σ) ≤ (1 + αm)Lmax (π).
Case 2 Sl j (π) ≥ Sl j (σ) for some j (1 ≤ j ≤ m). Then

Lmax (π) ≥ Sl j (σ) + pl j ≥ Sl(σ) (10)

By Lemma 3, we have Slm (σ) > (1 − αm)Sl(σ). Thus

Lmax (π) ≥ rl + pl + ql > Slm (σ) + pl + ql ≥ (1 − αm)Sl(σ) + pl + ql (11)

Then comuting the inequality αm ·(10)+ (11) and using (6) we deduce that
Lmax (σ) ≤ (1 + αm)Lmax (π).

This completes the proof. ��

4 The general case

In this section, we present an online algorithm for the general case which has a com-
petitive ratio of 1 + 1/u + 1/v, where u, v are positive integers and uv ≤ m.

Select uv machines and partition the uv machines into u sets: Mi (1 ≤ i ≤ u).
Each of Mi contains v machines. For convenience, we denote by Mi

j (1 ≤ j ≤ v)

the machines in Mi (i = 1, 2, . . . , u). If all machines in Mi are available, we call Mi

available.
Denote by A(t) the set containing all jobs that have arrived at or before time t

and that have not been started by time t . We partition A(t) into v sets: Ai (t) =
{J j | i−1

v
p(A(t)) ≤ p j < i

v
p(A(t)), J j ∈ A(t)}, i = 1, 2, . . . , v − 1 and Av(t) =

{J j |p j ≥ (1 − 1
v
)p(A(t)), J j ∈ A(t)}.

Algorithm H(u, v) Whenever there exists an available machine group Mi (i =
1, 2, . . . , u) and A(t) 	= ∅, make decision as following. If t ≥ (1 + 1

u)r(A(t)) +
1
u p(A(t)), start A j (t) as a batch on Mi

j for each j (1 ≤ j ≤ v). Otherwise, do nothing
but wait.

For convenience, denote by Bx the set of the v batches with the same starting time.
Each of the v batches is denoted by Bx

y and Bx
y consists of all jobs in Ay(t). We call

Bx a batch group.
Denote by σ the schedule produced by H(u, v). For convenience, denote by

S(Bi), C(Bi) the starting time and the maximum completion time of the batches
in Bi . If S(Bi) = (1 + 1

u)r(Bi) + 1
u p(Bi), we say that Bi is regular.

Property 2 For any two batch groups in σ , say Bi and B j , if S(Bi) < S(B j), then
r(B j) > S(Bi) and S(B j) ≥ (1 + 1

u)r(B j).

123

234 J Comb Optim (2015) 29:228–236

Lemma 5 In σ , any batch group Bi is regular, i.e. S(Bi) = (1 + 1
u)r(Bi) + 1

u p(Bi).

Proof Suppose to the contrary that Bi is not regular, i.e. S(Bi) > (1 + 1
u)r(Bi) +

1
u p(Bi). Thus between (1+ 1

u)r(Bi)+ 1
u p(Bi) and S(Bi), there is a batch group which

is processed on each machine set M j (1 ≤ j ≤ u). Suppose the u batch groups are
Bi j (1 ≤ j ≤ u) with S(Bi1) < S(Bi2) < · · · < S(Biu). Thus, for each j (1 ≤ j ≤ u),
S(Bi j) + p(Bi j) ≥ S(Bi). Hence,

S
(
Bi) ≤ 1

u

u∑

j=1

(
S
(
Bi j

) + p
(
Bi j

)) = 1

u

u∑

j=1

C
(
Bi j

)
(12)

By the algorithm and Property 2, we have

S
(
Bi1

) ≥ 1

u
p
(
Bi1

)
(13)

S
(
Bi j

) ≥
(

1 + 1

u

)
r
(
Bi j

) + 1

u
p
(
Bi j

)

>

(
1 + 1

u

)
S
(
Bi j−1

) + 1

u
p
(
Bi j

)
(14)

Thus

u∑

j=1

S
(
Bi j

) ≥
(

1 + 1

u

) u−1∑

j=1

S
(
Bi j

) + 1

u

u∑

j=1

p
(
Bi j

)

i.e.

S
(
Biu

) ≥ 1

u

u−1∑

j=1

S
(
Bi j

) + 1

u

u∑

j=1

p
(
Bi j

)
(15)

Recall that S(Bi) >
(
1 + 1

u

)
S(Biu). We have that

S
(
Bi) > S

(
Biu

) + 1

u
S
(
Biu

)

≥ 1

u

u−1∑

j=1

S
(
Bi j

) + 1

u

u∑

j=1

p
(
Bi j

) + 1

u
S
(
Biu

)

= 1

u

u∑

j=1

(
S
(
Bi j

) + p
(
Bi j

))
(16)

which contradicts the inequality (12).

123

J Comb Optim (2015) 29:228–236 235

Therefore, in σ , each batch group Bi is regular, i.e. S(Bi) = (1 + 1
u)r(Bi) +

1
u p(Bi). ��
Theorem 2 The competitive ratio of Algorithm H(u, v) is 1 + 1

u + 1
v

.

Proof Let π be an optimal schedule.
In σ , let Jk be the first job that assumes the objective value Lmax(σ) = Lk(σ).

Suppose that Jk belongs to batch Bl
i . Since Bl is regular and p(Bl

i) ≤ i
v

p(Bl),

Lmax (σ) = S
(
Bl) + p

(
Bl

i

) + qk

≤
(

1 + 1

u

)
r
(
Bl) + 1

u
p
(
Bl) + i

v
p
(
Bl) + qk (17)

While in the optimal schedule π ,

Lmax (π) ≥ r
(
Bl) + pk + qk ≥ r

(
Bl) + i − 1

v
p
(
Bl) + qk (18)

Lmax (π) ≥ r
(
Bl) + p

(
Bl) (19)

Thus it is from the inequality (18)+(1
u + 1

v
)·(19) and (17) that Lmax (σ) ≤ (1+ 1

u +
1
v
)Lmax (π).
Hence, Algorithm H(u, v) is (1 + 1

u + 1
v
)-competitive.

Now, we can present an instance to show that the bound is tight. Let m = uv ≥
2, where u, v are integers. Suppose there are two jobs: J1(r1 = 0, p1 = 1, q1 =
0), J2(r2 = 0, p2 = 1 − 1/v, q2 = 1/v). The algorithm will schedule J1 and J2 as a
single batch which starts at 1/u. Thus the object value will be 1 + 1/u + 1/v. While
the optimal schedule will assign J1 and J2 in different batches with starting time 0.
Then the optimal value is 1. Hence the bound is tight.

This completes the proof. ��
Acknowledgments This work was supported by the National Nature Science Foundation of China
(11101147, 11371137) and the Fundamental Research Funds for the Central Universities.

References

Deng XT, Poon CK, Zhang YZ (2003) Approximation algorithms in batch processing. J Comb Optim
7:247–257

Fang Y, Lu X, Liu P (2011) Online batch scheduling on parallel machines with delivery times. Theor
Comput Sci 412:5333–5339

Graham RL, Lawer EL, Lenstra JK (1979) Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann Discr Math 5:287–326

Hall LA, Shmoys DB (1989) Approximation schemes for constrained scheduling problems. In: Proceedings
of the 30th Annual Symposium on Foundations of Computer Science 134–139

Hoogeveen JA, Vestjean APA (2000) A best possible deterministic online algorithm for minimizing maxi-
mum delivery times on a single machine. SIAM J Discr Math 13:56–63

Lee CY, Uzsoy R, Martin-Vega LA (1992) Efficient algorithms for scheduling semi-conductor burn-in
operations. Oper Res 40:764–775

123

236 J Comb Optim (2015) 29:228–236

Lee CY, Uzsoy R (1999) Minimizing makespan on a single batch processing machine with dynamic job
arrivals. Int J Prod Res 37:219–236

Liu P, Lu X, Fang Y (2012) A best possible deterministic online algorithm for minimizing makespan on
parallel batch machines. J Sched 15:77–81

Liu ZH, Yu WC (2000) Scheduling one batch processor subject to job release dates. Discr Appl Math
105:129–136

Nong QQ, Cheng TCE, Ng CT (2008) An improved on-line algorithm for scheduling on two unresrtictive
paralle batch processing machines. Oper Res Lett 36:584–588

Poon CK, Yu WC (2005) On-line scheduling algorithms for a batch machine with finite capacity. J Comb
Optim 9:167–186

Tian J, Fu R, Yuan J (2007) Online scheduling with delivery time on a single batch machine. Theor Comput
Sci 374:49–57

Tian J, Cheng TCE, Ng CT, Yuan J (2009) Online scheduling on unbounded parallel-batch machines to
minimize the makespan. Inf Process Lett 109:1211–1215

Tian J, Cheng TCE, Ng CT, Yuan J (2012) An improved on-line algorithm for single parallel-batch machine
scheduling with delivery times. Discr Appl Math 160:1191–1210

Vestjens APA (1997) Online machine scheduling. Ph.D. Dissertation, Department of mathematics and
Computing Science, Eindhoven University of Techology, Eindhoven, The Netherlands

Yuan J, Li S, Tian J, Fu R (2009) A best on-line algorithm for the single machine parallel-batch scheduling
with restricted delivery times. J Comb Optim 17:206–213

Zhang G, Cai X, Wong CK (2001) On-line algorithms for minimizing makespan on batch processing
machines. Nav Res Logist 48:241–258

123

	Online unbounded batch scheduling on parallel machines with delivery times
	Abstract
	1 Introduction
	2 A lower bound
	3 A restrict case
	4 The general case
	Acknowledgments
	References

