
J Comb Optim (2015) 29:36–52
DOI 10.1007/s10878-013-9670-4

A combination of flow shop scheduling and the shortest
path problem

Kameng Nip · Zhenbo Wang · Fabrice Talla Nobibon ·
Roel Leus

Published online: 29 October 2013
© Springer Science+Business Media New York 2013

Abstract This paper studies a combinatorial optimization problem which is obtained
by combining the flow shop scheduling problem and the shortest path problem. The
objective of the obtained problem is to select a subset of jobs that constitutes a feasible
solution to the shortest path problem, and to execute the selected jobs on the flow shop
machines to minimize the makespan. We argue that this problem is NP-hard even if
the number of machines is two, and is NP-hard in the strong sense for the general case.
We propose an intuitive approximation algorithm for the case where the number of
machines is an input, and an improved approximation algorithm for fixed number of
machines.

Keywords Approximation algorithm · Combination of optimization problems ·
Flow shop scheduling · Shortest path

A preliminary version of this paper has appeared in the Proceedings of 19th Annual International
Computing and Combinatorics Conference (COCOON’13), LNCS, vol. 7936, pp. 680–687.

K. Nip · Z. Wang (B)
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
e-mail: zwang@math.tsinghua.edu.cn

K. Nip
e-mail: njm13@mails.tsinghua.edu.cn

F. Talla Nobibon
Research Foundation–Flanders, ORSTAT, Faculty of Economics and Business, KU Leuven,
Leuven, Belgium
e-mail: tallanob@gmail.com

R. Leus
ORSTAT, Faculty of Economics and Business, KU Leuven, Leuven, Belgium
e-mail: roel.leus@kuleuven.be

123

J Comb Optim (2015) 29:36–52 37

1 Introduction

Combinatorial optimization is an active field in operations research and theoreti-
cal computer science. Historically, independent lines separately developed, such as
machine scheduling, bin packing, travelling salesman problem, network flows. With
the rapid development of science and technology, manufacturing, service and manage-
ment are often integrated, and decision-makers have to deal with systems involving
several characteristics from more than one well-known combinatorial optimization
problem. To the best of our knowledge, the combination of optimization problems has
received only little attention in literature.

Bodlaender et al. (1994) studied parallel machine scheduling with incompatible
jobs, in which two incompatible jobs cannot be processed by the same machine,
and the objective is to minimize the makespan. This problem can be considered as
a combination of parallel machine scheduling and the coloring problem. Wang and
Cui (2012) studied a combination of parallel machine scheduling and the vertex cover
problem. The goal is to select a subset of jobs that forms a vertex cover of a given graph
and to execute these jobs on m identical parallel machines to minimize the makespan.
They proposed an (3 − 2

m+1)-approximation algorithm for this problem. Wang et al.
(2013) have investigated a generalization of the above problem that combines the
uniformly related parallel machine scheduling problem and a generalized covering
problem. They proposed several approximation algorithms and mentioned as future
research other combinations of well-known combinatorial optimization problems. This
is the core motivation for this work.

Let us consider the following scenario. We aim at building a railway between two
specific cities. The railway needs to cross several adjacent cities, which is determined
by a map (a graph). The processing time of manufacturing the rail track for each pair
of cites varies between the pairs. Manufacturing a rail track between two cities in the
graph is associated with a job. The decision-maker needs to make two main decisions:
(1) choosing a path to connect the two cities, and (2) deciding the schedule of manu-
facturing the rail tracks on this path in the factory. In addition, the manufacturing of
rail tracks follows several working stages, each stage must start after the completion
of the preceding stages, and we assume that there is only one machine for each stage.
We wish to minimize the last completion time; this is a standard flow shop scheduling
problem. How should a decision-maker choose a feasible path such that the corre-
sponding jobs can be manufactured as early as possible? This problem combines the
structure of flow shop scheduling and the shortest path problem. Following the frame-
work introduced by Wang et al. (2013), we can regard our problem as a combination
of those two problems.

Finding a simple path between two vertices in a directed graph is a basic problem
that can be polynomially solved (Ahuja et al. 1993). Furthermore, if we want to find a
path under a certain objective, various optimization problems come within our range
of vision. The most famous one is the classic shortest path problem, which can be
solved in polynomial time if the graph contains no negative cycle, and otherwise it is
NP-hard (Ahuja et al. 1993). Moreover, many optimization problems have a similar
structure. For instance, the min–max shortest path problem (Kouvelis and Yu 1997)
studies a problem with multiple weights associated with each arc, and the objective

123

38 J Comb Optim (2015) 29:36–52

is to find a directed path between two specific vertices such that the value of the
maximum among all its total weights is minimized. The multi-objective shortest path
problem (Warburton 1987) also has multiple weights, but the objective is to find a
Pareto optimal path between two specific vertices to satisfy some specific objective
function.

Flow shop scheduling is one of the three basic models of multi-stage scheduling (the
others are open shop scheduling and job shop scheduling). Flow shop scheduling with
the objective of minimizing the makespan is usually denoted by Fm||Cmax , where
m is the number of machines. In one of the earliest papers on scheduling problems,
Johnson (1954) showed that F2||Cmax can be solved in O(n log n) time, where n is
the number of jobs. On the other hand, Garey et al. (1976) proved that Fm||Cmax is
strongly NP-hard for m ≥ 3.

The contributions of this paper include: (1) a formal description of the considered
problem, (2) the argument that the considered problem is NP-hard even if m = 2, and
NP-hard in the strong sense if m ≥ 3, and (3) several approximation algorithms.

The rest of the paper is organized as follows. In Sect. 2, we first give a formal
definition of the problem stated above, then we briefly review flow shop scheduling
and some shortest path problems, and introduce some related algorithms that will be
used in the subsequent sections. In Sect. 3, we study the computational complexity of
the combined problem. Section 4 provides several approximation algorithms for this
problem. Some concluding remarks are provided in Sect. 5.

2 Preliminaries

2.1 Problem description

We first give a formal definition of our problem, which is a combination of the flow
shop scheduling problem and the shortest path problem.

Definition 1 Given a directed graph G = (V, A) with two distinguished vertices
s, t ∈ V and m flow shop machines, each arc a j ∈ A corresponds with a job J j ∈ J
with processing times (p1 j , p2 j , . . . , pmj) respectively. The Fm|shortest path|Cmax

problem is to find a s − t directed path P , and to schedule the jobs of JP on the flow
shop machines to yield the minimum makespan over all P , where JP denotes the set
of jobs corresponding to the arcs in P .

The considered problem is a combination of flow shop scheduling and the classic
shortest path problem, mainly because the two optimization problems are special cases
of this problem. For example, consider the following instances with m = 2. If there
is a unique path from s to t in G, as shown in the left of Fig. 1, our problem is the
two-machine flow shop scheduling problem. If all the processing times on the second
machine are zero, as shown in the right of Fig. 1, then our problem is equivalent to the
classic shortest path with respect to the processing times on the first machine. These
examples illustrate that these two optimization problems are inherent in the considered
problem.

123

J Comb Optim (2015) 29:36–52 39

Fig. 1 Special cases of our problem

In this paper, we will use the results of some optimization problems that have a
similar structure with the classic shortest path problem. We introduce the following
generalized shortest path problem.

Definition 2 Given a weighted directed graph G = (V, A, w1, . . . , wK) and two dis-
tinguished vertices s, t ∈ V with |A| = n, each arc a j ∈ A, j = 1, . . . , n is associated
with K weights w1

j , . . . , w
K
j , and we define the vector wk = (wk

1, w
k
2, . . . , w

k
n) for

k = 1, 2, . . . , K . The goal of our shortest path problem S P(G, s, t, f) is to find a
s − t directed path P that minimizes f (w1, w2, . . . , wK , x), in which f is a given
objective function and x ∈ {0, 1}n contains the decision variables such that x j = 1 if
and only if a j ∈ P .

For ease of exposition, we use S P instead of S P(G, s, t, f) when there is no danger
of confusion. Notice that S P is a generalization of various shortest path problems. For
instance, if we consider K = 1 and f (w1, x) = w1 · x , where · is the dot product, this
problem is the classic shortest path problem. If K = 2 and f (w1, w2, x) = min{w1·x :
w2 · x ≤ W }, where W is a given number, this problem is the shortest weight-
constrained path problem (Garey and Johnson 1979). If f (w1, w2, . . . , wK , x) =
max{w1 · x, w2 · x, . . . , wK · x}, the problem is the min–max shortest path problem
(Kouvelis and Yu 1997). In the following sections, we will analyze our combined
problem by setting appropriate weights and objective function in S P .

2.2 Algorithms for flow shop scheduling problems

In this section, we will introduce some previous work of flow shop scheduling problems
related to our combination problem.

First, we introduce some trivial bounds for flow shop scheduling. Denote by Cmax

the makespan of an arbitrary flow shop schedule with job set J . A feasible shop
schedule is called dense when any machine is idle if and only if there is no job that
can be processed at that time on that machine. For arbitrary dense flow shop schedule,
we have

Cmax ≥ max
i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J

pi j

⎫
⎬

⎭
, (1)

and

Cmax ≤
∑

J j ∈J

m∑

i=1

pi j . (2)

123

40 J Comb Optim (2015) 29:36–52

For each job, we have

Cmax ≥
m∑

i=1

pi j , ∀J j ∈ J. (3)

In flow shop scheduling problems, a schedule is called a permutation schedule if all
jobs are processed in the same order on each machine. Conway et al. (1967) proved
that there always exists a permutation schedule which is optimal for F2||Cmax and
F3||Cmax . In a permutation schedule, the critical job and critical path are important
concepts for the analysis of related algorithms (Monma and Rinnooy Kan 1983). In
particular, for F3||Cmax , denote by Ju and Jv the critical jobs that satisfy

Cmax =
u∑

j=1

p1 j +
v∑

j=u

p2 j +
n∑

j=v

p3 j . (4)

For F2||Cmax , denote by Jν the critical job that satisfies

Cmax =
ν∑

j=1

p1 j +
n∑

j=ν

p2 j . (5)

Johnson (1954) proposed a sequencing rule for F2||Cmax , which is one of the oldest
results of the scheduling literature, and is commonly referred to as Johnson’s rule.

Algorithm 1 Johnson’s rule
1: Set S1 = {J j ∈ J |p1 j ≤ p2 j } and S2 = {J j ∈ J |p1 j > p2 j }.
2: Process the jobs in S1 first in a non-decreasing order of p1 j , and then schedule the jobs in S2 in a

non-increasing order of p2 j ; ties may be broken arbitrarily.

In Johnson’s rule, jobs are scheduled as early as possible. This rule produces a
permutation schedule, and Johnson showed that this schedule is optimal. Notice that
this schedule is obtained in O(n log n) time.

For the general problem Fm||Cmax , Gonzalez and Sahni (1978) first presented an
�m

2 � approximation algorithm that runs in O(mn log n) time by solving �m
2 � two-

machine flow shop scheduling problems. Röck and Schmidt (1982) proposed an alter-
native approach by reducing the original problem to an artificial two-machine flow
shop problem; this approach is called machine aggregation heuristic. They obtained
a permutation by solving the artificial problem in O(mn + n log n) time, and proved
that it has the same performance guarantee of �m

2 �. Based on the machine aggregation
heuristic, Chen et al. (1996) proposed an algorithm for F3||Cmax with an improved
performance guarantee of 5

3 . In the same paper, they also modified the Gonzalez and
Sahni’s algorithm if m is odd, by partitioning the machines into m−3

2 two-machine
flow shop scheduling problems, and one three-machine flow shop scheduling problem
which was solved by their 5

3 -approximation algorithm. The modified algorithm has

123

J Comb Optim (2015) 29:36–52 41

the same performance ratio m
2 if m is even, and an improved ratio m

2 + 1
6 if m is odd.

It is known that a PTAS exists for Fm||Cmax (Hall 1998). Their work inspired our
study in the combination problem.

We refer to the aggregation heuristic of Röck and Schmidt (1982) as the RS algo-
rithm, and we will use it later to derive an algorithm for our combined problem. The
RS algorithm can be described as follows for the three-machine case.

Algorithm 2 The RS algorithm for F3||Cmax
1: Construct an artificial two-machine flow shop scheduling problem with processing times a j = p1 j + p2 j

on the first machine and b j = p2 j + p3 j on the second machine for J j ∈ J . Implement Johnson’s rule
to obtain an optimal permutation σ for the two-machine problem.

2: Assign the jobs on the three machines according to σ as early as possible. Denote the makespan of this
permutation schedule as Cmax .

3: return σ, Cmax .

The running time of this algorithm is O(n log n), which is the same as Johnson’s
rule. Notice that the algorithm returns a permutation schedule, and hence the resulting
makespan Cmax satisfies the equality (4).

2.3 Algorithms for shortest path problems

In this paper, we will use the following two results of the shortest path problems. The
first one is the well-known Dijkstra’s algorithm, which solves the classic shortest path
problem with nonnegative edge weights in O(|V |2) time (Dijkstra 1959). The second
one is an FPTAS result for the min–max shortest path problem, which is presented
by Aissi et al. (2006). Kouvelis and Yu (1997) first proposed min–max criteria for
several problems, including the shortest path problem. Aissi et al. (2006) studied the
computational complexity and proposed several approximation schemes. The min–
max shortest path problem with K weights w1

j , . . . , w
K
j associated with each arc a j , is

to find a path P between two specific vertices that minimizes maxk∈{1,...,K }
∑

a j ∈P wk
j .

It was shown that this problem is NP-hard even for K = 2, and that an FPTAS
exists if K is a fixed number (Warburton 1987; Aissi et al. 2006). The algorithm
of Aissi et al. (2006), referred to as the ABV algorithm in this paper, is based on
dynamic programming and scaling techniques. The following result implies that the
ABV algorithm is an FPTAS if K is a constant.

Theorem 1 (Aissi et al. 2006) Given an arbitrary positive value ε > 0, in a given
directed graph with K nonnegative weights associated with each arc, a directed path
P between two specific vertices can be found by the ABV algorithm with the property

max
i∈{1,2,...,K }

⎧
⎨

⎩

∑

a j ∈P

wi
j

⎫
⎬

⎭
≤ (1 + ε) max

i∈{1,2,...,K }

⎧
⎨

⎩

∑

a j ∈P ′
wi

j

⎫
⎬

⎭

123

42 J Comb Optim (2015) 29:36–52

for any other path P ′ between the two specific vertices, and the running time is
O(|A||V |K+1/εK).

3 Computational complexity of Fm|shortest path|Cmax

In this section, we study the computational complexity of our problem. First, it is
straightforward that Fm|shortest path|Cmax is NP-hard in the strong sense if m ≥ 3,
as a consequence of the fact that Fm||Cmax is a special case of our problem.

On the other hand, although F2||Cmax and the classic shortest path are polynomially
solvable, we argue that F2|shortest path|Cmax is NP-hard. We prove this result by
using a reduction from the NP-complete problem partition (Garey and Johnson
1979). Our proof is similar to the well-known NP-hardness proof for the shortest
weight-constrained path problem (Batagelj et al. 2000).

Theorem 2 Fm|shortest path|Cmax is NP-hard even if m = 2, and is NP-hard in the
strong sense for m ≥ 3.

Proof We only need to prove the first part. It is easy to see that the decision version
of F2|shortest path|Cmax belongs to NP. Consider an arbitrary instance of partition
with S = {a1, . . . , an} and size s(ak) ∈ Z

+ for each k, and let C = ∑
a∈S s(a)/2.

We now construct the directed graph G = (V, A, W) and the corresponding jobs. The
graph has n +1 vertices v0, v1, . . . , vn , each pair of (vk, vk+1), k = 0, 1, . . . , n −1, is
joined by two parallel arcs (jobs) with processing times (s(ak+1), 0) (denoted as J 1

k+1)
and (0, s(ak+1)) (denoted as J 2

k+1) respectively, both leading from vertex vk towards
vk+1 (see the left of Fig. 2). We wish to find the jobs corresponding to a path from
v0 to vn+1. It is not difficult to check that there is a feasible schedule with makespan
not more than C if and only if there is a partition of set S (see the right of Fig. 2).
Therefore, the decision version of F2|shortest path|Cmax is NP-complete. 	

4 Approximation algorithms

4.1 An intuitive algorithm

To start off, we propose an intuitive algorithm for Fm|shortest path|Cmax . The main
idea of this algorithm is to set K = 1 and f = w1 ·x in S P , i.e. to find a classic shortest
path with one specific set of weights. An intuitive setting is w1

j = ∑m
i=1 pi j for each

arc. We find the shortest path with respect to w1 by Dijkstra’s algorithm, and then
schedule the corresponding jobs on the flow shop machines. We refer to this algorithm

Fig. 2 The reduction from partition to F2|shortest path|Cmax

123

J Comb Optim (2015) 29:36–52 43

as the FD algorithm. The subsequent analysis will show that the performance ratio of
the FD algorithm remains the same for an arbitrarily selected flow shop scheduling
algorithm that provides a dense schedule, regardless of the performance ratio of the
algorithm.

Algorithm 3 The FD algorithm

1: Find the shortest path in G with weights w1
j := ∑m

i=1 pi j by Dijkstra’s algorithm. For the returned path
P , construct the job set JP .

2: Obtain a dense schedule of the jobs of JP by an arbitrary flow shop scheduling algorithm. Let σ be the
returned job schedule and Cmax the returned makespan, and denote the job set JP by S.

3: return S, σ and Cmax

It is straightforward that the total running time of the FD algorithm is O(|V |2 +
T (m, n)), where T (m, n) is the running time of the flow shop scheduling algorithm.
Therefore, suppose the flow shop scheduling algorithm we used is polynomial time,
then the FD algorithm is polynomial time even if m is an input of the instance. Before
we analyze the performance of this algorithm, we first introduce some notations. Let
J ∗ be the set of jobs in an optimal solution, and C∗

max be the corresponding makespan,
and let S and Cmax be those returned by the FD algorithm respcetively.

Theorem 3 The FD algorithm is m-approximate, and this bound is tight.

Proof By the lower bound (1) introduced in Sect. 2.2, we have

mC∗
max ≥

∑

J j ∈J∗

m∑

i=1

pi j . (6)

Since the returned path is a shortest path with respect to w1, by (2) we have

Cmax ≤
∑

J j ∈S

m∑

i=1

pi j =
∑

J j ∈S

w1
j ≤

∑

J j ∈J∗
w1

j =
∑

J j ∈J∗

m∑

i=1

pi j . (7)

By combining (6) with (7), it follows that Cmax ≤ mC∗
max .

Consider the instance shown in Fig. 3 in which ε > 0 is small enough. We wish
to find a path from vertex v0 to vm . The makespan returned by the FD algorithm is
Cmax = m with the arc (v0, vm), whereas the makespan of an optimal schedule is
C∗

max = 1 + ε with the other arcs. Notice that there is only one job in the returned

Fig. 3 Tight example for the FD algorithm

123

44 J Comb Optim (2015) 29:36–52

solution, hence the returned makespan remains m regardless of the algorithm used for
the flow shop scheduling. The bound is tight because Cmax

C∗
max

→ m when ε → 0. 	

4.2 An improved algorithm for fixed m

In this subsection, we assume that m, the number of flow shop machines, is a constant.
Instead of finding an optimal shortest path from s to t with respect to specific weights,
we implement the ABV algorithm mentioned in Sect. 2.3, which will return a (1 + ε)

approximated solution for the min-max shortest path problem. In other words, we will
set K = m and use the objective function f = max{w1 · x, w2 · x, . . . , wK · x} in
S P , where the weights w1, w2, . . . , wK will be decided later.

Inspired by the work of Gonzalez and Sahni (1978) and Chen et al. (1996), we
proceed as follows: after obtaining a feasible path by the ABV algorithm, we schedule
the corresponding jobs by partitioning the m machines into several groups. Denote
the machine as Mi , i = 1, . . . , m (indexed following the routing of the flow shop).
More specifically, we partition the m machines into m3 groups of three consecutive
machines in the routing M3i−2, M3i−1, M3i (i = 1, . . . , m3), m2 groups of two
consecutive machines in the routing M3m3+2i−1, M3m3+2i (i = 1, . . . , m2), and m1
individual machines M3m3+2m2+i (i = 1, . . . , m1), in which the value of m1, m2, m3
will be derived later. For the three-machine subproblems on M3i−2, M3i−1 and M3i

(i = 1, . . . , m3), we implement the RS algorithm to obtain the permutations. For
the two-machine subproblems on M3m3+2i−1 and M3m3+2i (i = 1, . . . , m2), we
implement Johnson’s rule to obtain the permutations. The permutations for the single-
machine subproblems are arbitrary. Then we form a schedule for the original m-
machine problem, in which the sequences of jobs on machines Mi are the permuta-
tions obtained above, and are executed as early as possible. Notice the property that
an optimal schedule is always a permutation schedule only stands for F2||Cmax and
F3||Cmax , and the performance guarantee relies on the properties of critical jobs as
we will see in the subsequent analysis. The reason why we partition the m machines
in this particular fashion is related to those facts, as will be explained below.

The main idea of our algorithm is described as follows. We initially set the weights
(w1

j , w
2
j , . . . , w

m
j) = (p1 j , p2 j , . . . , pmj). The algorithm iteratively runs the ABV

algorithm and the above partition scheduling algorithm (the values of m1, m2, m3 will
be decided later) by adopting the following revision policy: in a current schedule, if
there exists a job whose weight is large enough with respect to the current makespan,
we will modify the weights of arcs corresponding to large jobs to (M, M, . . . , M),
where M is a sufficiently large number, and then mark these jobs. The algorithm
terminates if no such job exists. Another termination condition is that a marked job
appears in a current schedule. We return the schedule with minimum makespan among
all current schedules as the solution of the algorithm. We refer to this algorithm as the
PAR algorithm. Notice that the weights of arcs may vary in each iteration, whereas
the processing times of jobs remain the same throughout this algorithm.

Before we formally state the PAR algorithm, we first provide more details about the
parameter choices. For m = 2 and m = 3, by following the subsequent analysis of the
performance of this algorithm, one can verify that the best possible performance ratio

123

J Comb Optim (2015) 29:36–52 45

is 3
2 and 2 respectively. An intuitive argument is that the best possible performance

ratio for the general case of the PAR algorithm is ρ = m1 + 3
2 m2 + 2m3. For a given

m, as m1, m2, m3 are nonnegative integers, our task is to minimize m1 + 3
2 m2 + 2m3

such that m1 + 2m2 + 3m3 = m. A simple calculation yields the following result:

(m1, m2, m3) =

⎧
⎪⎨

⎪⎩

(0, 0, m
3) if m = 0 (mod 3),

(1, 0, m−1
3) if m = 1 (mod 3),

(0, 1, m−2
3) if m = 2 (mod 3),

(8)

and

ρ =

⎧
⎪⎨

⎪⎩

2m
3 if m = 0 (mod 3),

2m+1
3 if m = 1 (mod 3),

4m+1
6 if m = 2 (mod 3).

(9)

In other words, the best way is to partition the machines in such a way that we have
a maximum number of three-machine subsets. The pseudocode of the PAR algorithm
is described by Algorithm 4.

Algorithm 4 The PAR algorithm
1: Derive (m1, m2, m3) and ρ using (8) and (9).
2: Initially, (w1

j , w
2
j , . . . , w

m
j) := (p1 j , p2 j , . . . , pmj) for each arc a j ∈ A corresponding to J j ∈ J .

3: Given ε > 0, implement the ABV algorithm to obtain a path P for S P , and construct the corresponding
job set as JP .

4: Partition the m machines: m3 three-machines subsets (M3i−2, M3i−1, M3i , i = 1, . . . , m3); one two-
machine subsets (Mm−1 and Mm) if m2 = 1; one single-machine subset (Mm) if m1 = 1.

5: Run RS algorithm to obtain the permutations for these three-machine flow shops, and Johnson’s rule to
obtain the permutation for the two-machine flow shop. Let the sequence of the single-machine problem
be arbitrary.

6: For the original problem, schedule the jobs of JP according to those permutations on each machine as
early as possible. Denote the returned makespan as C ′

max , and the job schedule as σ ′.
7: S := JP , σ := σ ′, Cmax := C ′

max , D := ∅, M := (1 + ε)
∑

J j ∈J
∑m

i=1 pi j + 1.

8: while JP ∩ D = ∅ and there exists a job J j in JP such that
∑m

i=1 pi j >
C ′

max
ρ do

9: for all jobs with
∑m

i=1 pi j >
C ′

max
ρ in J\D do

10: (w1
j , w

2
j , . . . , w

m
j) := (M, M, . . . , M), D := D ∪ {J j }.

11: end for
12: Implement the ABV algorithm to obtain a path P to S P , and construct the corresponding job set as

JP .
13: Schedule the jobs of JP by the rule described in lines 4–6.
14: if C ′

max < Cmax then
15: S := JP , σ := σ ′, Cmax := C ′

max .
16: end if
17: end while
18: return S, σ and Cmax .

It is easy to see that the PAR algorithm will return a feasible solution to
Fm|shortest path|Cmax . We now discuss its computational complexity. Let the total

123

46 J Comb Optim (2015) 29:36–52

number of jobs be |A| = n. Notice that the weights of arcs can be revised at most
n times. It is straightforward that the total running time of the PAR algorithm is
O(n2|V |m+1/εm + mn2 log n), since there are at most n iterations, in which the run-
ning time of the ABV algorithm is O(n|V |m+1/εm) and scheduling takes O(mn log n)

time. If m and ε are fixed numbers, then the PAR algorithm is a polynomial time algo-
rithm.

Let J ∗ be the set of jobs in an optimal solution, and C∗
max be the corresponding

makespan, and let S and Cmax be those returned by the PAR algorithm respectively.
The following theorem shows the performance of the PAR algorithm.

Theorem 4 Given ε > 0, the worst-case ratio of the PAR algorithm for Fm|shortest
path|Cmax is

(1 + ε)ρ =
⎧
⎨

⎩

(1 + ε) 2m
3 if m = 0 (mod 3),

(1 + ε) 2m+1
3 if m = 1 (mod 3),

(1 + ε) 4m+1
6 if m = 2 (mod 3).

(10)

Proof We will distinguish two different cases: J ∗ ∩ D �= ∅ and J ∗ ∩ D = ∅.

Case 1 J ∗ ∩ D �= ∅
In this case, there is at least one job in the optimal solution, say J j , such that

C ′
max < ρ

∑m
i=1 pi j holds for a current schedule with makespan C ′

max during the
execution. Notice that the schedule returned by the PAR algorithm is the schedule
with minimum makespan among all current schedules, and we have Cmax ≤ C ′

max . It
follows from (3) that

Cmax ≤ C ′
max < ρ

∑m
i=1 pi j ≤ ρC∗

max . (11)

Case 2 J ∗ ∩ D = ∅
Consider the last current schedule during the execution of the algorithm. Denote

the corresponding job set and the makespan as J ′ and C ′
max respectively.

In this case, we first argue that J ′ ∩ D = ∅. Suppose that this is not the case, i.e.
J ′ ∩ D �= ∅. Since J ∗ ∩ D = ∅, we know the weights of arcs corresponding to the jobs

in J ∗ have not been revised. Hence we have (1+ε) maxi∈{1,...,m}
{∑

J j ∈J∗ wi
j

}
< M .

Moreover, by the assumption J ′ ∩ D �= ∅, we have maxi∈{1,...,m}
{∑

J j ∈J ′ wi
j

}
≥ M .

By Theorem 1, the solution returned by the ABV algorithm satisfies

M ≤ max
i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J ′
wi

j

⎫
⎬

⎭
≤ (1 + ε) max

i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J∗
wi

j

⎫
⎬

⎭
< M,

which leads to a contradiction.
Remember that in the PAR algorithm, the machines are divided into three parts,

namely three-machines subsets together with at most one two-machine subset or a
single machine. We solve these subproblems by the RS algorithm, Johnson’s rule and

123

J Comb Optim (2015) 29:36–52 47

an arbitrary algorithm respectively. It is clear that the sum of the makespans of those
schedules is an upper bound for C ′

max . Denote C2
max and J 2

ν as the makespan and the
critical job of the two-machine subproblem returned by Johnson’s rule, and let the
corresponding machines be Mi2 , Mi2+1. Denote C3

max and J 3
u , J 3

v as the makespan
and the critical jobs returned by the RS algorithm for the three-machine subproblems
with largest makespan, and let the machines be Mi3 , Mi3+1, Mi3+2. Denote the single
machine as Mi1 , on which the total processing time is

∑
J j ∈J ′ pi1 j .

For the two-machine case, suppose that pi2,ν ≥ pi2+1,ν . Noticing that pi2, j ≥
pi2+1, j for the job scheduled after Jν in the schedule returned by Johnson’s rule and
from (5), it follows that

C2
max ≤

∑

J j ∈J ′
pi2, j + pi2+1,ν ≤

∑

J j ∈J ′
pi2, j + 1

2
(pi2,ν + pi2+1,ν). (12)

For the three-machine case, we study two subcases corresponding with u = v and
u < v for the critical jobs.

Subcase 2.1 u = v.
Consider the schedule with respect to C3

max . We can rewrite (4) as

C3
max =

u−1∑

j=1

pi3, j + pi3,u + pi3+1,u + pi3+2,u +
n∑

j=u+1

pi3+2, j . (13)

Suppose that the processing times of the critical jobs of the three-machine sub-
problem satisfy pi3,u ≥ pi3+2,u , thus we have pi3u + pi3+1,u ≥ pi3+1,u + pi3+2,u ,
i.e. au ≥ bu for the artificial two-machine flow shop in the RS algorithm. Since the
RS algorithm schedules the jobs by Johnson’ rule, thus we have a j ≥ b j for the jobs
scheduled after Ju , i.e. pi3, j ≥ pi3+2, j . From (13), we have

C3
max ≤

∑

J j ∈J ′
pi3, j + pi3,u + pi3+1,u + pi3+2,u . (14)

Since J ′ ∩ D = ∅, we know the weights of arcs corresponding to the jobs in the last

current schedule have not been revised, and
∑m

i=1 pi j ≤ C ′
max
ρ

for each job J j ∈ J ′,
since otherwise the algorithm will continue. Since J ∗ ∩ D = ∅, the weights of arcs
corresponding to the jobs in this optimal schedule have not been revised. Thus, it
follows from (1), (3), Theorem 1, (12), (14) and the fact that the schedule returned
by the PAR algorithm is the schedule with minimum makespan among all current
schedules, that

Cmax ≤ C ′
max ≤ m3C3

max + m2C2
max + m1

∑

J j ∈J ′
pi1, j

≤ m3

⎛

⎝
∑

J j ∈J ′
pi3, j + pi3,u + pi3+1,u + pi3+2,u

⎞

⎠

123

48 J Comb Optim (2015) 29:36–52

+ m2

⎛

⎝
∑

J j ∈J ′
pi2, j + 1

2
(pi2,ν + pi2+1,ν)

⎞

⎠ + m1

∑

J j ∈J ′
pi1, j

≤ m3

⎛

⎝(1 + ε) max
i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J∗
pi j

⎫
⎬

⎭
+ C ′

max

ρ

⎞

⎠

+ m2

⎛

⎝(1 + ε) max
i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J∗
pi j

⎫
⎬

⎭
+ C ′

max

2ρ
C ′

max

⎞

⎠

+ m1(1 + ε) max
i∈{1,...,m}

⎧
⎨

⎩

∑

J j ∈J∗
pi j

⎫
⎬

⎭

≤ (m1 + m2 + m3)(1 + ε)C∗
max +

(
m2

2ρ
+ m3

ρ

)

C ′
max

Substituting (8) and (9) into the m1, m2, m3 and ρ, by a simple calculation, we
arrive at

Cmax ≤ C ′
max ≤ (1 + ε)ρC∗

max . (15)

Subcase 2.2 u < v.
We also assume that pi3,u ≥ pi3+2,u , and pi2,ν ≥ pi2+1,ν , an argument similar

to the previous case shows that the jobs scheduled after Jv satisfies pi3, j ≥ pi3+2, j .
Since u < v, it follows from (4) that

C3
max ≤

∑

J j ∈J ′
pi3, j +

v∑

j=u

pi3+1, j ≤
∑

J j ∈J ′
pi3, j +

∑

J j ∈J ′
pi3+1, j . (16)

Similarly, it is not difficult to show that

Cmax ≤ C ′
max ≤ m3C3

max + m2C2
max + m1

∑

J j ∈J ′
pi1, j

≤ m3

⎛

⎝
∑

J j ∈J ′
pi3, j +

∑

J j ∈J ′
pi3+1, j

⎞

⎠

+ m2

⎛

⎝
∑

J j ∈J ′
pi2, j + 1

2
(pi2,ν + pi2+1,ν)

⎞

⎠ + m1

∑

J j ∈J ′
pi1, j

≤ (m1 + m2 + 2m3)(1 + ε)C∗
max + m2

2ρ
C ′

max

123

J Comb Optim (2015) 29:36–52 49

Fig. 4 Example for m = 2

Substituting (8) and (9) into m1, m2, m3 and ρ, by a simple calculation, we obtain

Cmax ≤ C ′
max ≤ (1 + ε)ρC∗

max . (17)

For the cases where the last current schedule has critical jobs satisfying pi2,ν <

pi2+1,ν or pi3,u < pi3+2,u , analogous arguments would yield the same result.
Now we show that the performance ratio of the PAR algorithm cannot be less than

ρ. First, we propose two instances for m = 2 and m = 3.
If m = 2, the performance ratio of the PAR algorithm is 3

2 (1 + ε). Consider the
following instance shown in Fig. 4 in which ε > 0 is small enough. We wish to
find a path from v1 to v4. Notice that the ABV algorithm returns the path with arcs
(v1, v2) and (v2, v4), and the corresponding makespan C ′

max by Johnson’s rule is 3.
All the corresponding jobs satisfy p1 j + p2 j = 2 ≤ 2

3 C ′
max , and thus the algorithm

Fig. 5 Example for m = 3

123

50 J Comb Optim (2015) 29:36–52

terminates. Therefore, the makespan of the returned schedule by the PAR algorithm is
Cmax = 3 (see the right schedule of Fig. 4). On the other hand, the optimal makespan
is C∗

max = 2+4ε with arcs (v1, v3), (v3, v2) and (v2, v4) (see the left schedule of Fig.
4). The worst case ratio of the PAR algorithm cannot be less than 3

2 as Cmax
C∗

max
→ 3/2

when ε → 0 for this instance.
For the case of m = 3, the performance ratio of the PAR algorithm is 2(1 + ε).

Consider the instance shown in Fig. 5 in which ε > 0 is small enough. We wish to find
a path from vertex v1 to v6. Notice that the ABV algorithm returns the path with arcs
(v1, v4) → (v4, v5) → (v5, v6). The makespan of the schedule returned by the RS
algorithm is C ′

max = 4. All the corresponding jobs satisfy p1 j + p2 j = 2 ≤ 1
2 C ′

max ,
and thus the algorithm terminates. Therefore, the makespan of the schedule returned
by the PAR algorithm is Cmax = 4 (see the right schedule of Fig. 5). On the other
hand, the makespan of an optimal job schedule is C∗

max = 2(1 + ε)2, by selecting the
arcs (v1, v2), (v2, v3), and (v3, v6) (see the left schedule of Fig. 5). The worst case

Fig. 6 Example for fixed m

123

J Comb Optim (2015) 29:36–52 51

ratio of the PAR algorithm cannot be less than 2 as Cmax
C∗

max
→ 2 when ε → 0 for this

instance.
By extending and modifying the above examples to the general case, the instance

described in Fig. 6 can be used to show that the performance ratio of the PAR algorithm
cannot be less than ρ. 	

5 Conclusions

This paper has studied a combination problem of flow shop scheduling and the shortest
path problem. We show the hardness of this problem, and present some approxima-
tion algorithms. For future research, it would be interesting to find an approximation
algorithm with a better performance ratio for this problem. The question whether
F2|shortest path|Cmax is NP-hard in the strong sense is still open. One can also con-
sider the combination of other combinatorial optimization problems. All these ques-
tions deserve further investigation.

Acknowledgments This study has been supported by the Bilateral Scientific Cooperation Project
BIL10/10 between Tsinghua University and KU Leuven, and Wang’s research work has been supported by
NSFC No. 11371216.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice
Hall, Englewood Cliffs

Aissi H, Bazgan C, Vanderpooten D (2006) Approximating min–max (regret) versions of some polynomial
problems. In: Chen D, Pardolos PM (eds) COCOON 2006, LNCS, vol 4112. Springer, Heidelberg, pp
428–438

Batagelj V, Brandenburg FJ, Mendez P, Sen A (2000) The generalized shortest path problem. CiteSeer
Archives.

Bodlaender HL, Jansen K, Woeginger GJ (1994) Scheduling with incompatible jobs. Disc Appl Math
55:219–232

Chen B, Glass CA, Potts CN, Strusevich VA (1996) A new heuristic for three-machine flow shop scheduling.
Oper Res 44:891–898

Conway RW, Maxwell W, Miller L (1967) Theory of scheduling. Addison-Wesley, Reading
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271
Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper

Res 1:117–129
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.

Freeman, San Francisco
Gonzalez T, Sahni S (1978) Flowshop and jobshop schedules: complexity and approximation. Oper Res

26:36–52
Hall LA (1998) Approximability of flow shop scheduling. Math Program 82:175–190
Johnson SM (1954) Optimal two- and three-stage production schedules with setup times included. Nav Res

Logist Q 1:61–68
Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer, Boston
Monma CL, Rinnooy Kan AHG (1983) A concise survey of eciently solvable special cases of the permutation

flow-shop problem. RAIRO Rech Oper 17:105–119
Röck H, Schmidt G (1982) Machine aggregation heuristics in shop scheduling. Method Oper Res 45:303–

314
Wang Z, Cui Z (2012) Combination of parallel machine scheduling and vertex cover. Theor Comput Sci

460:10–15

123

52 J Comb Optim (2015) 29:36–52

Wang Z, Hong W, He D (2013) Combination of parallel machine scheduling and covering problem. Working
paper, Tsinghua University

Warburton A (1987) Approximation of pareto optima in multiple-objective, shortest-path problems. Oper
Res 35:70–79

123

	A combination of flow shop scheduling and the shortest path problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem description
	2.2 Algorithms for flow shop scheduling problems
	2.3 Algorithms for shortest path problems

	3 Computational complexity of Fm|shortest path|Cmax
	4 Approximation algorithms
	4.1 An intuitive algorithm
	4.2 An improved algorithm for fixed m

	5 Conclusions
	Acknowledgments
	References

