
J Comb Optim (2015) 29:781–795
DOI 10.1007/s10878-013-9627-7

Optimal online algorithms on two hierarchical
machines with tightly-grouped processing times

An Zhang · Yiwei Jiang · Lidan Fan ·
Jueliang Hu

Published online: 15 May 2013
© Springer Science+Business Media New York 2013

Abstract This paper considers an online hierarchical scheduling problem on two
parallel identical machines. The objective is to minimize the makspan. It is assumed
that all jobs have bounded processing times in between p and r p, where p > 0 and
r ≥ 1. We first improve a previous result by giving an optimal online algorithm for the
non-preemptive version. For the preemptive version, we present an optimal preemptive
algorithm without introducing idle time for all r ≥ 1. If the algorithm is allowed to
use idle time, we show that the semi-online information that jobs are tightly-grouped
cannot help improve the bound of the pure online problem.

Keywords Online scheduling · Hierarchy · Competitive ratio

A. Zhang
Institute of Operational Research and Cybernetics, Hangzhou Dianzi University,
Hangzhou 310018, People’s Republic of China
e-mail: anzhang@hdu.edu.cn

Y. Jiang (B)
Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, People’s Republic of China
e-mail: ywjiang@zstu.edu.cn

L. Fan
Department of Computer Science, The University of Texas at Dallas,
Dallas, TX 75080, USA
e-mail: ldfan28@gmail.com

J. Hu
School of Science, Zhejiang Sci-Tech University, Hangzhou 310018,
People’s Republic of China
e-mail: hujlhz@163.com

123



782 J Comb Optim (2015) 29:781–795

1 Introduction

In this paper, we study online hierarchical scheduling on two parallel identical
machines where all jobs have their processing times in between p and r p (p > 0, r ≥
1). Without loss of generality, we assume that p = 1 and it is allowed that the jobs
with processing times p or r p may not come. Jobs arrive one by one in a sequence
J1, J2, . . . , Jn and each job has to be processed on a machine before the next job
arrives. The job J j has a processing time (or size) p j > 0 and a hierarchy g j = 1
or 2, j = 1, . . . , n. For simplicity, we identify jobs with their processing times. The
machine Mi , i = 1, 2 has a hierarchy g(Mi ) = i associated with it. Mi can process J j

only when g(Mi ) ≤ g j . We define the load of a machine as the completion time of the
machine, i.e., the total processing times of the jobs processed on it. The objective is to
minimize the maximum load of the machines or the so-called makespan. We consider
both the non-preemptive and preemptive version version, where preemption indicates
that any job can be split between its permitted machines without overlap.

The performance of an algorithm A for online problem is often evaluated by its
competitive ratio, which is defined as the smallest number ρ such that for any job
sequenceJ , C A(J ) ≤ ρC∗(J ), where C A(J ) (or in short C A) denotes the makespan
produced by A and C∗(J ) (or in short C∗) denotes the optimal makespan in an offline
version. In online scheduling, it is often possible to prove that there is a lower bound
to the competitive ratio achievable by any (deterministic) online algorithm. In such
cases, an online algorithm is said to be optimal if its competitive ratio can be shown
to be equal to the lower bound.

For online hierarchical scheduling on m parallel identical machines with gen-
eral hierarchy settings, Bar-Noy et al. (2001) firstly designed an e + 1 ≈ 3.718-
competitive algorithm for the non-preemptive version (this problem was also consid-
ered in Crescenzi et al. 2004). A recent study on this problem can be seen in Tan and
Zhang (2011). For m = 2, Jiang et al. (2006) and Park et al. (2006) independently
presented an optimal online algorithm, both of which has a competitive ratio of 5/3.
Afterwards, Jiang (2008) studied another extended case with m identical machines and
exactly two hierarchies. He showed a lower bound of 2 and presented an online algo-

rithm with competitive ratio 12+4
√

2
7 ≈ 2.522. Recently, Zhang et al. (2009) improved

the result to 1 + m2−m
m2−km+k2 < 7/3, where k is the number of machines with high

hierarchy.
Jiang et al. (2006) studied the preemptive version in which idle time is not allowed

and they presented an optimal algorithm with a competitive ratio of 3/2 on two iden-
tical machines. In Park et al. (2006), a semi-online model with known total process-
ing time was considered and an optimal algorithm was presented with competitive
ratio of 3/2 on two identical machines. Wu et al. (2012) studied another two semi-
online models, where the optimal offline value or the largest processing time was
known in advance, optimal algorithms were presented for both models on two iden-
tical machines. In Chassid and Epstein (2008), Dósa and Epstein (2008), Tan and
Zhang (2010), the authors studied the problems of hierarchial scheduling on two uni-
form machines and presented optimal (non-)preemptive algorithms for online and
semi-online models.

123



J Comb Optim (2015) 29:781–795 783

In this paper, we consider a hierarchical scheduling problem, where a semi-online
information that job processing times are tightly-grouped is involved (p j ∈ [1, r ]
for all J j ). Such a semi-online model was first introduced by He and Zhang (1999)
in the problem with no hierarchy constraint. Liu et al. (2011) studied this model in
hierarchical scheduling on two identical machines. They proved a lower bound of

⎧
⎪⎪⎨

⎪⎪⎩

r+1
2 , 1 ≤ r < 2,

3
2 , 2 ≤ r < 5,
r+4

6 , 5 ≤ r < 6.
5
3 , r ≥ 6.

However, the algorithm presented in their paper is only shown to be optimal only in
the case where r ≥ 25

14 and C∗ ≥ 20r . This paper improves the lower bound to

α(r) =

⎧
⎪⎪⎨

⎪⎪⎩

2r+1
r+1 , 1 ≤ r < φ,

φ, φ ≤ r < 3φ − 2,
r+2

3 , 3φ − 2 ≤ r < 3,
5
3 , r ≥ 3,

where φ = 1+√
5

2 , and proposes a new algorithm which is optimal for any r ≥ 1.
In addition, we show that the semi-online information cannot help improve the

bound of the pure online problem if the preemptive algorithms is allowed to use idle
time. Then we only need to consider the preemptive algorithm without introducing
idle time. We present an optimal algorithm with a competitive ratio of

β(r) =
{ 2r+2

r+2 , 1 ≤ r < 2,
3
2 , r ≥ 2.

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries and lower bounds. Sections 3 and 4 consider the online algorithms for the
non-preemptive version and the preemptive version, respectively. Finally, some con-
clusions are made in Sect. 5.

2 Preliminaries and lower bounds

The following notations and definitions are used in the remainder of the paper. Let Tj

and Tji be the total processing times of the first j jobs and the total processing times
of the jobs with hierarchy i in the first j jobs, respectively. Let pmax

j be the largest
processing time of the first j jobs.

Let

L B j = max

{

pmax
j ,

Tj

2
, Tj1

}

, j = 1, . . . , n. (1)

123



784 J Comb Optim (2015) 29:781–795

Clearly, L B j is nondecreasing with respect to j . Denote by L∗
j the optimal makespan

of the first j jobs, thus C∗ = L∗
n . The following lemma shows that L B j is a lower

bound on L∗
j .

Lemma 2.1 (Zhang et al. 2009; Dósa and Epstein 2008) L∗
j ≥ L B j , for any j ≥ 1.

Further, L∗
j = L B j if preemption is allowed.

Note that the functions α(r) and β(r) are monotonically increasing. To simplify
the presentation, we will drop the dependence on r and always write α (or β) instead
of α(r) (or β(r)).

In the following, we give the lower bounds of the considered problems.

Theorem 2.2 For the non-preemptive version, no online algorithm exists with com-
petitive ratio strictly smaller than α.

Proof We use the adversary method to establish the result. Assume that there exists
an online non-preemptive algorithm A with competitive ratio C .

(a) 1 ≤ r < φ. The first job with p1 = 1 and g1 = 2 arrives. It is clear that the
algorithm A should schedule it on M2, since otherwise, the second and the last
job with p2 = 1 and g2 = 1 arrives and has to be assigned to M1, which implies
that C ≥ 2 ≥ 2r+1

r+1 . Therefore we assume that the algorithm schedules p1 on
M2. Then the second job with p2 = r and g2 = 2 arrives. If it is also scheduled
on M2 by the algorithm, then no more job arrives. Thus the makespan generated
by algorithm A is r + 1 while the optimal makespan equals r , which implies that
C ≥ 1+r

r . On the other hand, if the second job is scheduled on M1, then the last
two jobs with p3 = 1, p4 = r and g3 = g4 = 1 arrive. Clearly, the makespan
generated by the algorithm is 2r +1 and the optimal makespan is r +1, implying
that C ≥ 2r+1

r+1 . Thus we have C ≥ min{ 1+r
r , 2r+1

r+1 } ≥ 2r+1
r+1 due to r < φ.

(b) φ ≤ r < 3φ − 2. By replacing the jobs of size r with jobs of size φ in (a), we
can obtain C ≥ min{ 1+φ

φ
,

2φ+1
φ+1 } = φ.

(c) 3φ − 2 ≤ r < 3. Let the first two jobs be p1 = p2 = 1 with g1 = g2 = 2.
Clearly, they have to be scheduled on different machines to avoid that C ≥ 2.
Then the third job with p3 = 1 and g3 = 2 arrives. If it is scheduled on M1, then
there comes the last job with p4 = r and g4 = 1. Thus the makespan produced
by A and optimal makespan should be r + 2 and 3 respectively, which follows
that C ≥ r+2

3 . On the other hand, if the third job is scheduled on M2, then the
fourth job with p4 = r and g4 = 2 arrives. Similarly, it should be scheduled on
M1 to avoid that C ≥ r+2

3 . Then come the last two jobs, both of which are of
hierarchy 1 and have processing time r . It implies that the makespan produced
by A and the optimal schedule are 3r + 1 and r + 3, respectively. Hence we have
C ≥ 3r+1

r+3 ≥ r+2
3 due to r < 3.

(d) r ≥ 3. The desired result can be obtained by using the instances in (c) with r = 3.

�	
In (Jiang et al. 2006; Park et al. 2006), online algorithms with competitive ratio

5
3 were presented and shown to be optimal for the problem with arbitrary processing

123



J Comb Optim (2015) 29:781–795 785

times. Clearly the algorithm still works for our problem with the same competitive
ratio. By Theorem 2.2, it remains optimal when r ≥ 3. However, when 1 ≤ r <

3, we have to design a more competitive algorithm. If preemption is allowed, then
the following result (see also in Dósa and Epstein 2008) shows that the semi-online
information is of no value if the algorithm uses idle time.

Theorem 2.3 For the preemptive version where idle time is allowed, no online algo-
rithm exists with competitive ratio strictly smaller than 4

3 , even when all jobs have the
same size.

Proof Let the first two jobs be of size 1 and of hierarchy 2. If the algorithm assigns a
total size of at least 4

3 to M2, then the sequence of jobs terminates, resulting C A ≥ 4
3 .

Hence, C A

C∗ ≥ 4
3 . If this is not true, then at least 2

3 must be assigned to M1. Now the
last two jobs with the same size 1 and the same hierarchy 1 arrive. Clearly we have

C A ≥ 2 + 2
3 = 8

3 and C∗ = 2, thus C A

C∗ ≥ 4
3 . �	

When idle time is allowed, Dósa and Epstein have proposed a 4
3 -competitive algo-

rithm for the pure online problem where the processing times of jobs are arbitrary
(Dósa and Epstein 2008), hence the same algorithm can be applied to our problem,
which is also best possible. In other words, the semi-online information that jobs
are tightly-grouped is not useful. However, we find it is valuable if the preemptive
algorithm is not allowed to use idle time.

Theorem 2.4 For the preemptive version where idle time is not allowed, no online
algorithm exists with competitive ratio strictly smaller than β.

Proof Note when r ≥ 2, Jiang et al. (2006) have proved a lower bound of 3
2 for

preemptive algorithms without introducing idle times, thus we only need to consider
the case of 1 ≤ r ≤ 2. The first job with p1 = 1 and g1 = 2 should be assigned
completely to a machine since splitting it would introduce an idle time, which is not
allowed in our problem. If it is assigned to machine M1, then the second and last job
with p2 = 1 and g2 = 1 arrives. Since p2 has to be assigned to machine M1 due to
g2 = 1, it follows that the makespan produced by the algorithm is 2, while the optimal

makespan is 1. Hence we have C A

C∗ ≥ 2 > 2r+2
r+2 . On the other hand, if p1 is assigned

to machine M2, then the second job with p2 = 1 and g2 = 1 arrives, which has to be
assigned to machine M1. Now both loads of two machines are 1. Then the third and
last job with p3 = r and g3 = 2 arrives. Thus the makespan is at least 1 + r . As the

optimal makespan is r+2
2 by Lemma 2.1, we can conclude C A

C∗ ≥ 2r+2
r+2 . �	

3 An optimal non-preemptive algorithm

In this section, we consider the non-preemptive problem. Unlike in Park et al. (2006),
we have to know the accurate optimal objective values in the algorithm. This is perhaps
due to the tightly-grouped property of the jobs. Since only the values of the first several
jobs are calculated, this can be done in a constant time. Denote

L B j =
{

L∗
j , 1 ≤ j ≤ 5,

L B j , j > 5,

123



786 J Comb Optim (2015) 29:781–795

then L∗
j ≥ L B j ≥ L B j by Lemma 2.1. To describe the algorithm easily, let Li

j be the
completion time of machine Mi at the moment right after the j-th job J j is scheduled.

Algorithm A

1. Initially set Li
0 = 0 for i = 1, 2 and let j = 1.

2. If g j = 1, schedule p j on M1.
3. If g j = 2, and L2

j−1 + p j ≤ αL B j , schedule p j on M2. Otherwise, schedule p j

on M1.
4. If no new job arrives, stop. Otherwise, j = j + 1, return to step 2.

Now we begin to show the competitive ratio of algorithm A. Without loss of gen-
erality, suppose the last job pn determines the makespan of A.

Theorem 3.1 If gn = 2, then C A/C∗ ≤ α.

Proof If pn is processed on M2 by A, then it is clear that C A = L2
n−1 + pn ≤ αL Bn ≤

αC∗ by step 3. On the other hand, we consider the case that pn is processed on M1.
By step 3, we have L2

n−1 + pn > αL Bn , which, together with Lemma 2.1, implies
that

L Bn ≥ L Bn ≥ L2
n−1 + L1

n−1 + pn

2
>

αL Bn + L1
n−1

2
.

It follows that L1
n−1 ≤ (2 − α)L Bn . Hence

C A = L1
n−1 + pn ≤ (2 − α)L Bn + C∗ ≤ (2 − α)C∗ + C∗ = (3 − α)C∗ ≤ αC∗,

where the last inequality is due to α ≥ 3
2 . �	

In the following, it suffices to consider the case that gn = 1 and clearly pn is
scheduled on M1, i.e., C A = L1

n . If all jobs processed on M1 by the Algorithm A are
of hierarchy 1, then A has already generated an optimal schedule and thus the desired
result holds trivially. In view of this, we consider the instances in which there exist
jobs with hierarchy 2 scheduled on M1. We denote by p j the last one among these
jobs, that is, all the subsequent jobs scheduled on M1 are of hierarchy 1 after p j is
assigned. Therefore,

Tn1 ≥ L1
n − L1

j . (2)

From step 3 of the Algorithm A, we know that at least one job is scheduled on M2
before the arrival of p j . And since J j is assigned to M1, we have

L2
j−1 + p j > αL B j (3)

by the algorithm’s rule. Moreover, we have the following observation.

123



J Comb Optim (2015) 29:781–795 787

Lemma 3.2 Before the arrival of p j , L1
j−1 < L2

j−1.

Proof By (3), we obtain L2
j−1 + p j > αL B j ≥ 3

2 L B j . If L1
j−1 ≥ L2

j−1, we have

L2
j−1 + p j

L B j
≤ L2

j−1 + p j

max

{

p j ,
L2

j−1+L1
j−1+p j

2

} ≤ L2
j−1 + p j

max

{

p j ,
2L2

j−1+p j

2

}

=

⎧
⎪⎨

⎪⎩

L2
j−1+p j

p j
, p j ≥ 2L2

j−1
2(L2

j−1+p j )

2L2
j−1+p j

, p j < 2L2
j−1

≤ 3

2
,

which is a contradiction. Hence we must have L1
j−1 < L2

j−1. �	
Let

λ =
⎧
⎨

⎩

r, 1 ≤ r < φ,

φ, φ ≤ r < 3φ − 2,
r−1
4−r , 3φ − 2 ≤ r < 3.

Note that λ = α−1
2−α

≥ 1 and α = 2λ+1
λ+1 . We now give an important lemma below.

Lemma 3.3 If L1
j ≤ λL2

j−1, then C A/C∗ ≤ α.

Proof By (1), (2) and Lemma 2.1, we have

C∗ ≥ L Bn ≥ max

{
Tn

2
, Tn1

}

≥ max

{
L1

n + L2
j−1

2
, L1

n − L1
j

}

.

Hence, together with L1
j ≤ λL2

j−1, we get

C A

C∗ ≤ L1
n

max

{
L1

n+L2
j−1

2 , L1
n − L1

j

}

=

⎧
⎪⎨

⎪⎩

L1
n

L1
n−L1

j
, if L1

j + L2
j−1 ≤ L1

n − L1
j ,

2L1
n

L1
n+L2

j−1
, if L1

j + L2
j−1 > L1

n − L1
j ,

≤ (L1
j + L2

j−1) + L1
j

L1
j + L2

j−1

≤ 2λ + 1

λ + 1
= α.

�	
From Lemma 3.3, we only need to show in the remainder of this section that

L1
j ≤ λL2

j−1 must hold. Furthermore, we can assume that

L1
j = L1

j−1 + p j > L2
j−1, (4)

123



788 J Comb Optim (2015) 29:781–795

because the desired result holds if L1
j ≤ L2

j−1 by Lemma 3.3.

Lemma 3.4 If 1 ≤ r < φ, then L1
j ≤ λL2

j−1.

Proof Since 1 ≤ r < φ, we know α = 2r+1
r+1 and λ = r .

Case 1. At least two jobs are scheduled on M2 before the arrival of p j . Hence
L2

j−1 ≥ 2. By (3), we have

L2
j−1 + p j >

2r + 1

r + 1
· L B j ≥ 2r + 1

r + 1
· L2

j−1 + L1
j

2
,

i.e., (2r + 1)L1
j < L2

j−1 + 2(r + 1)p j . Combining it with p j ≤ r and L2
j−1 ≥ 2, we

can conclude

(2r + 1)(L1
j − r L2

j−1) < L2
j−1 + 2(r + 1)p j − r(2r + 1)L2

j−1

= 2(r + 1)p j − (2r2 + r − 1)L2
j−1

≤ 2r(r + 1) − 2(2r2 + r − 1) = 2(1 − r2) ≤ 0.

Thus L1
j ≤ r L2

j−1.
Case 2. Only one job is processed on M2 before the arrival of job p j . Moreover,

if L1
j−1 = 0, then L1

j = p j ≤ r ≤ r L2
j−1. Hence, suppose there is at least one job

scheduled on M1 before the arrival of p j . Then we claim L B j ≥ 2. In fact, if L1
j−1 ≥ 2,

then Tj = L1
j−1 +L2

j−1 + p j ≥ 4, which follows directly that L B j ≥ L B j ≥ Tj
2 ≥ 2.

Otherwise, we have 1 ≤ L1
j−1 < 2. This means that only one job is processed on M1

before the arrival of the job p j . Hence j = 3 and L B j = L∗
j ≥ 
 j

2 � = 2.

Since L B j ≥ 2, we can get L2
j−1 + p j ≤ 2r ≤ r L B j ≤ 2r+1

r+1 L B j = αL B j ,

where the last inequality holds because of r < φ. It indicates that p j must have been
scheduled on M2, which contradicts with the definition of p j . �	

From now on, we focus on the case φ ≤ r < 3. Note in this case, we have α ≥ φ

and λ ≥ φ. We will prove the following lemma by several observations with respect
to the load of L2

j−1 and L1
j−1.

Lemma 3.5 If φ ≤ r < 3, then L1
j ≤ λL2

j−1.

Claim 3.6 If L2
j−1 ≥ 3, then L1

j ≤ λL2
j−1.

Proof From (3), we get L2
j−1 + p j > αL B j ≥ αL B j ≥ α

2 (L2
j−1 + L1

j ), or equiva-

lently, αL1
j < (2 − α)L2

j−1 + 2p j . Together with λ = α−1
2−α

, p j ≤ r and L2
j−1 ≥ 3,

it follows that

α(L1
j − λL2

j−1) < (2 − α)L2
j−1 + 2p j − αλL2

j−1 = 2p j − 3α − 4

2 − α
L2

j−1

≤ 2r − 9α − 12

2 − α
. (5)

123



J Comb Optim (2015) 29:781–795 789

If φ ≤ r < 3φ − 2, then α = φ. Thus the above inequality can be written as

α(L1
j − λL2

j−1) < 2r − 9φ − 12

2 − φ
= 2r − (6φ − 3) ≤ 2(3φ − 2)

−(6φ − 3) = −1 < 0.

If 3φ − 2 ≤ r < 3, then α = r+2
3 and thus (5) can be continued with

α(L1
j − λL2

j−1) < 2r − 9 · r+2
3 − 12

2 − r+2
3

= 2r − 9(r − 2)

4 − r
= 18 − r − 2r2

4 − r
< 0,

where the last inequality is due to r ≥ 3φ − 2 >
√

145−1
4 . In a word, we always have

α(L1
j − λL2

j−1) < 0. Hence the desired result follows accordingly. �	

By the above claim, we will always assume in the following discussion that L2
j−1 <

3. Let li , i = 1, 2, be the number of the jobs on Mi before J j arrives. From Lemma
3.2 and L2

j−1 < 3, it is clear that l1 ∈ {0, 1, 2} and l2 ∈ {1, 2}. According to the values
of li , we distinguish them into five cases, which will be considered in the following
claims.

Claim 3.7 If l1 = 0, then L1
j ≤ λL2

j−1.

Proof Now we have L1
j−1 = 0, L1

j = p j . If L2
j−1 ≥ 2, then by φ < 2 and 3φ − 2 >

1 + √
3, we get

L1
j = p j ≤ r ≤

{
3φ − 2 ≤ 2φ ≤ φL2

j−1, φ ≤ r < 3φ − 2
2(r−1)

4−r ≤ r−1
4−r L2

j−1, 3φ − 2 ≤ r < 3
= λL2

j−1.

If L2
j−1 < 2, then only one job is scheduled on M2 before the arrival of p j , i.e.,

l2 = 1. Therefore, j = 2 and we get L B j = L∗
j = max{L2

j−1, p j } = p j by (4).

From (3), we have L2
j−1 + p j > αL B j = αp j , which, together with α ≥ φ, leads to

L1
j = p j < 1

α−1 L2
j−1 ≤ α−1

2−α
L2

j−1 = λL2
j−1. �	

Claim 3.8 If l1 = l2 = 1, then L1
j ≤ λL2

j−1.

Proof Since l1 = l2 = 1, we have j = 3 and jobs p1 and p2 are scheduled on different
machines. Suppose that the job on M1 is of hierarchy 1, it is obvious that the algorithm
produces the same assignment for the first two jobs no matter which one arrives first.
In this case, since p j (i.e., p3) is scheduled on M1, exchanging the arrivals of the job
on M1 and p3 will not change the schedule and thus we can reduce this case to the case
in Claim 3.7. Hence, we only need to consider that both p1 and p2 are of hierarchy 2
and clearly p1 is scheduled on M2 by the algorithm.

123



790 J Comb Optim (2015) 29:781–795

Noting that j = 3, we have L B3 = L∗
3. Since p2 is assigned to M1 by the algorithm,

it must be true that L2
2 + L1

2 = p1 + p2 > αL B2 = α max{L2
2, L1

2} = αL2
2, where

the last equality holds because of L1
2 < L2

2 by Lemma 3.2. Consequently, we have

L1
2 > (α − 1)L2

2. (6)

Case 1. If L2
2 ≤ p3, then L B3 = L∗

3 = max{p3, L2
2 + L1

2}. If L2
2 + L1

2 ≤ p3, then
L B3 = p3. By (3), we have L2

2 > (α−1)p3. Thus p3 ≥ L2
2+L1

2 > α(α−1)p3, which
contradicts with α(α − 1) ≥ 1 from α ≥ φ. If L2

2 + L1
2 > p3, then L B3 = L2

2 + L1
2.

Again by (3), we have L2
2+ p3 > α(L2

2+L1
2). Thus L2

2+L1
2 > p3 > α(L2

2+L1
2)−L2

2.

Combining it with (6), we can conclude L2
2 > α−1

2−α
L1

2 >
(α−1)2

2−α
L2

2, which is also a

contradiction since (α−1)2

2−α
≥ 1 by α ≥ φ.

Case 2. If L2
2 > p3, then L B3 = L∗

3 = max{L2
2, p3 + L1

2}. A similar argument as
Case 1 can be made. If L2

2 ≥ p3+L1
2, then L B3 = L2

2. By (3), we have L2
2+ p3 > αL2

2.
Together with (6), we get L2

2 ≥ p3 + L1
2 > 2(α−1)L2

2, which contradicts with α > 3
2 .

If L2
2 < p3 + L1

2, then L B3 = p3 + L1
2. Again by (3), we have L2

2 + p3 > α(p3 + L1
2).

Thus p3 + L1
2 > L2

2 > (α−1)p3 +αL1
2, or equivalently, p3 > α−1

2−α
L1

2. Consequently,

L2
2 > (α − 1)p3 + αL1

2 >
(α−1)2

2−α
L1

2 + αL1
2 = 1

2−α
L1

2. Combining it with (6), we can

conclude L2
2 > α−1

2−α
L2

2, which is also a contradiction since α > 3
2 . �	

Claim 3.9 If l1 = 2 and l2 = 1, then L1
j ≤ λL2

j−1.

Proof In this case, there are two jobs on M1, denoted by pi and pk (pi arrives before
pk), and one job on M2, denoted by pt , before the arrival of p j . If pi is the first job,
then it must be of hierarchy 1. By exchanging the arrival of pi and pt , the schedule
produced by the algorithm will not change. Therefore, we can always assume that pt

is the first job and pi is the second job. If pi is of hierarchy 1, then exchanging the
arrival of pi and pk must lead to the same assignment by the algorithm. Similarly, if
pk is of hierarchy 1, then exchanging the arrival of pk and p j also leads to the same
assignment. In other words, we only need to consider two kinds of instances. The first
one is that only one job is scheduled on M1 before the arrival of p j , and the second
one is that both pi and pk are of hierarchy 2. For the first one, we are already done
by Claim 3.8. For the second one, we show that the case cannot happen. In fact, if
both pi and pk are of hierarchy 2, then by the algorithm’s rule, pi + pt > αL B2
and pk + pt > αL B3. However, on the other hand, by pi + pk < pt from Lemma
3.2, we have L B2 = L∗

2 = pt , L B3 = L∗
3 = pt . Thus it follows pi > (α − 1)pt

and pk > (α − 1)pt , and consequently pt > pi + pk > 2(α − 1)pt , which is a
contradiction since α > 3

2 . �	
Claim 3.10 If l1 = 1 and l2 = 2, then L1

j ≤ λL2
j−1.

Proof In this case, there are two jobs on M2 and one job on M1 before the arrival of
p j . Let pi , pk (pi ≤ pk) be those on M2 and pt be the one on M1. Since j = 4,
we know that L B j = L∗

j . Firstly, we prove that L2
j−1 = pi + pk > p j . In fact, if

pi + pk ≤ p j , then by Lemma 3.2, we have

123



J Comb Optim (2015) 29:781–795 791

pt = L1
j−1 < L2

j−1 = pi + pk ≤ p j ≤ r < 3, (7)

which indicates that p j is the current largest job.
Case 1. L1

j−1 = pt ≤ pi . Therefore, we obtain that pt ≤ pi ≤ pk < p j , which,

together with (7), leads to L B j = L∗
j = max{pt + pi + pk, p j } = pt + pi + pk =

L2
j−1 + L1

j−1. By (3), we have L2
j−1 + p j > αL B j = α(L2

j−1 + L1
j−1). Therefore,

p j > αL1
j−1 + (α − 1)L2

j−1 ≥ α + 2(α − 1) = 3α − 2

=
{

3φ − 2 > r, φ ≤ r < 3φ − 2,

3 · r+2
3 − 2 = r, 3φ − 2 ≤ r < 3,

which is a contradiction.
Case 2. L1

j−1 = pt > pi . Then we have pi ≤ pt , pk < p j . If pt + pk ≤ p j , then it

is clear that L B j = L∗
j = max{pi + pt + pk, p j } = pi + pt + pk = L2

j−1 + L1
j−1 by

(7). Hence, the same arguments as Case 1 hold, where a contradiction can be found. On
the other hand, if pt + pk > p j , then clearly L B j = L∗

j = max{pt + pk, p j + pi } ≥
p j + pi . Combining it with (3), we can conclude that pk + (p j + pi ) = L2

j−1 + p j >

αL B j ≥ α(p j + pi ), which implies pk > (α − 1)(p j + pi ) directly. On the other
hand, we have pk ≤ p j − pi by (7). Thus it implies that (α − 1)(p j + pi ) < p j − pi

or equivalently that

p j

pi
>

α

2 − α
=

{
φ

2−φ
> 3φ − 2 > r, φ ≤ r < 3φ − 2;

r+2
4−r > r, 3φ − 2 ≤ r < 3,

which is also a contradiction.
Therefore, we must have L2

j−1 = pi + pk > p j . Moreover, we claim that L1
j =

L1
j−1 + p j ≤ φL2

j−1. Otherwise, we have Tj = L1
j + L2

j−1 ≥ (φ + 1)L2
j−1, which

follows L B j ≥ L B j ≥ Tj
2 ≥ φ+1

2 L2
j−1. Combing it with α ≥ φ > 3

2 and (3), we can
conclude that

p j > αL B j − L2
j−1 ≥ φ(φ + 1)

2
L2

j−1 − L2
j−1 =

(

φ − 1

2

)

L2
j−1 > L2

j−1,

which is a contradiction. Therefore, we must have L1
j = L1

j−1 + p j ≤ φL2
j−1 ≤

λL2
j−1, where the last inequality is due to λ ≥ φ. Hence we are done. �	

Claim 3.11 The case of l1 = l2 = 2 cannot happen.

Proof If it is the case, then there are exactly two jobs scheduled on both machines
before the arrival of p j . Thus, we have L1

j−1 ≥ 2 and L2
j−1 ≥ 2. Since j = 5,

we can obtain L B j = L∗
j . If L B j ≥ 4, then by (3) and L2

j−1 < 3, we have p j >

αL B j − L2
j−1 > 4α − 3 > 3, where the last inequality is due to α > 3

2 . Clearly this

is a contradiction. Hence it must be valid that L B j < 4.

123



792 J Comb Optim (2015) 29:781–795

Since L B j = L∗
j < 4, the job p j has to share its machine with another job in the

optimal schedule. It follows that L B j = L∗
j ≥ p j + 1, or equivalently,

p j ≤ L B j − 1. (8)

By L2
j−1 < 3 and (3), we have p j > αL B j − L2

j−1 > αL B j − 3 ≥ φL B j − 3.

Combing it with (8), we get φL B j − 3 < p j ≤ L B j − 1. Hence L B j < 2
φ−1 = 2φ.

On the other hand, by (3) and L1
j−1 ≥ 2, we have

L B j ≥ L B j ≥ Tj

2
= p j + L2

j−1 + L1
j−1

2
>

αL B j + 2

2
≥ φL B j + 2

2
,

which indicates that L B j > 2
2−φ

= 2(1 + φ). Thus we get 2(1 + φ) < L B j < 2φ,
also a contradiction! �	

From Claims 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11, Lemma 3.5 follows. Finally, by
Lemmas 3.3, 3.4, 3.5 and Theorems 3.1, 2.2, the main result of this section can be
summarized as follows.

Theorem 3.12 For any 1 ≤ r < 3, algorithm A has a competitive ratio of α and is
optimal.

4 An optimal preemptive algorithm without introducing idle time

This section considers the preemptive version where idle time is not allowed. We
provide an optimal algorithm as follows:

Algorithm B:

1. Let L1
0 = L2

0 = 0 and j = 1.
2. If p j ∈ P1, schedule p j onto machine M1 at time L1

j−1.
3. Compute the value of L∗

j according to Lemma 2.1.

3.1 If L2
j−1 + p j ≤ βL∗

j , schedule p j onto machine M2 completely at time L2
j−1,

go to 4.
3.2 If L2

j−1 + p j > βL∗
j , schedule the part βL∗

j − L2
j−1 of p j onto machine M2

at time L2
j−1 and the leftover onto machine M1 at time L1

j−1, go to 4.
4. Let j = j + 1. If no new job arrives, stop. Otherwise, go back to 2.

Clearly, in order to show the feasibility of algorithm B, we only need to prove
that the assignment of the job p j scheduled by step 3.2 is feasible, that is, the time
slots assigned to p j on two machines do not overlap. Furthermore, to obtain that the

competitive ratio of B is β, it suffices to verify
L B

j
L∗

j
≤ β for p j with hierarchy 1, since

the assignment of p j with hierarchy 2 satisfies
L B

j
L∗

j
≤ β obviously (because of the

algorithm rule of step 3). The detailed arguments begin with the following lemma.

123



J Comb Optim (2015) 29:781–795 793

Lemma 4.1 Algorithm B is feasible.

Proof As stated above, we only need to show that the time slots assigned to p j in step
3.2 do not overlap, which is equivalent to show

L1
j = L1

j−1 + p j − (βL∗
j − L2

j−1) ≤ L2
j−1,

i.e.,

L1
j−1 + p j − βL∗

j ≤ 0. (9)

Clearly, if j = 2, by the algorithm rule, we can obtain that L1
1 = 0(when g1 = 2)

or alternatively L2
1 = 0(when g1 = 1). For the former, (9) holds clearly because of

L∗
2 = max{p1, p2} and β > 1. For the latter, p2 should be scheduled by step 3.1, a

contradiction.
Now we turn to consider the case j ≥ 3. We prove (9) by contradiction. Suppose

L1
j−1 + p j > βL∗

j . (10)

Note that the algorithm rule of step 3.2 implies

L2
j−1 + p j > βL∗

j . (11)

By (10) and (11) and Lemma 2.1, we have

L1
j−1 + p j + L2

j−1 + p j > 2βL∗
j ≥ 2β

Tj−1 + p j

2
= β(Tj−1 + p j ),

which, together with the fact that Tj−1 ≥ 2 due to j ≥ 3, implies that

p j >
β − 1

2 − β
Tj−1 = r

2
Tj−1 ≥ r,

a contradiction. Hence (9) holds. �	

Before going to achieve the desired competitive ratio, we first give the following
lemma.

Lemma 4.2 For any j , if there exist jobs with hierarchy 2 processed on machine M1,
and let pl , l ≤ j , be the last one (or a part of which) in those jobs, then we have

L1
l

L2
l

≤ r

2
.

123



794 J Comb Optim (2015) 29:781–795

Proof From the algorithm description, we can see that the job pl must be processed
by step 3.2. It follows that L2

l = βL∗
j and L1

l = Tl − L2
l . Note that L∗

l ≥ Tl
2 , we have

L1
l

L2
l

= Tl − L2
l

L2
l

= Tl

βL∗
j

− 1 ≤ 2

β
− 1 = 1

r + 1
≤ r

2
,

where the last inequality holds because of r ≥ 1. �	
Theorem 4.3 The competitive ratio of algorithm B is β. Thus it is optimal.

Proof If the makespan of algorithm B is determined by a job p j with g j = 2, it is
not hard to obtain that C B = L2

j by the assignment of the job p j . From the algorithm

description in steps 3.1 and 3.2 we have C B

C∗ ≤ β. On the other hand, suppose the
makespan of algorithm B is determined by a job p j with hierarchy of 1. Then C B = L1

j .
If there does not exist any job with hierarchy 2 to be processed on machine M1, then

we can conclude that C B = Tj1 ≤ C∗ by Lemma 2.1. Therefore, we assume that there
exist some jobs with hierarchy 2 on machine M1. We denote T = L1

j −L1
l = C B −L1

l ,
where l is defined in the same way as Lemma 4.2.

By Lemma 2.1, we have C∗ ≥ max{ L1
l +L2

l +T
2 , T }. Note that

L1
l

L2
l

≤ r
2 by Lemma

4.2. Therefore,

C B

C∗ ≤ L1
l + T

C∗

=

⎧
⎪⎨

⎪⎩

L1
l +T
T , if L1

l + L2
l ≤ T,

L1
l +T

L1
l +L2

l +T
2

, if L1
l + L2

l > T,

≤ 1 + L1
l

L1
l + L2

l

≤ 1 + 1

1 + 2/r
= β.

By now we have completed the proof of the competitive ratio. Moreover, the opti-
mality of algorithm B is a direct consequence of Theorem 2.4. �	

5 Conclusions

We studied the online hierarchical scheduling problem on two parallel identical
machines with the sizes of all jobs in [p, r p], where p > 0 and r ≥ 1. For non-
preemptive version, we proposed an optimal algorithm for all possible r . For pre-
emptive version, we showed that the semi-online information is useless if idle time is
allowed. Moreover, optimal preemptive algorithm that does not use idle time is also
presented.

123



J Comb Optim (2015) 29:781–795 795

We feel that it is interesting to extend the result to m(m > 2) identical machines,
as well as two uniform machines. In addition, it is also interesting to study what kind
of information it needs to improve preemptive algorithms.

Acknowledgments An Zhang, Yiwei Jiang, and Jueliang Hu were supported by the National Natural
Science Foundation of China through Grant Nos. 11201105, 11001242, and 11071220 respectively. Yiwei
Jiang is also supported by Zhejiang Province Natural Science Foundation of China (Y6090175).

References

Bar-Noy A, Freund A, Naor J (2001) On-line load balancing in a hierarchical server topology. SIAM Journal
on Computing. 31:527–549

Chassid O, Epstein L (2008) The hierarchical model for load balancing on two machines. Journal of
Combinatorial Optimization. 15(4):305–314

Crescenzi P, Gambosi G, Penna P (2004) On-line algorithms for the channel assignment problem in cellular
networks. Discrete Applied Mathematics. 137:237–266

Dósa G, Epstein L (2008) Preemptive scheduling on a small number of hierarchical machines. Information
and Computation. 206(5):602–619

He Y, Zhang G (1999) Semi on-line scheduling on two identical machines. Computing. 62:179–187
Jiang Y (2008) Online scheduling on parallel machines with two GoS levels. Journal of Combinatorial

Optimization. 16:28–38
Jiang Y, He Y, Tang C (2006) Optimal online algorithms for scheduling on two identical machines under a

grade of service. Journal of Zhejiang University Science. 7A:309–314
Liu M, Chu C, Xu Y, Zheng F (2011) Semi-online scheduling on 2 machines under a grade of service

provision with bounded processing times. Journal of Combinatorial Optimization. 21:138–149
Park J, Chang S, Lee K (2006) Online and semi-online scheduling of two machines under a grade of service

provision. Operations Research Letters. 34:692–696
Tan Z, Zhang A (2010) A note on hierarchical scheduling on two uniform machines. Journal of Combinatorial

Optimization. 20:85–95
Tan Z, Zhang A (2011) Online hierarchical scheduling: An approach using mathematical programming.

Theoretical Computer Science. 412:246–256
Wu Y, Ji M, Yang Q (2012) Optimal semi-online scheduling algorithms on two parallel identical machines

under a grade of service provision. International Journal of Production Economics. 135:367–371
Zhang A, Jiang Y, Tan Z (2009) Online parallel machines scheduling with two hierarchies. Theoretical

Computer Science. 410:3597–3605

123


	Optimal online algorithms on two hierarchical machines with tightly-grouped processing times
	Abstract
	1 Introduction
	2 Preliminaries and lower bounds
	3 An optimal non-preemptive algorithm
	4 An optimal preemptive algorithm without introducing idle time
	5 Conclusions
	Acknowledgments
	References


