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Abstract The paper studies a generalization of the Independent Set problem
(IS for short). A distance-d independent set for an integer d ≥ 2 in an unweighted
graph G = (V, E) is a subset S ⊆ V of vertices such that for any pair of vertices
u, v ∈ S, the distance between u and v is at least d in G. Given an unweighted graph G
and a positive integer k, the Distance-d Independent Set problem (DdIS for short)
is to decide whether G contains a distance-d independent set S such that |S| ≥ k. D2IS
is identical to the original IS. Thus D2IS is NP-complete even for planar graphs,
but it is in P for bipartite graphs and chordal graphs. In this paper we investigate
the computational complexity of DdIS, its maximization version MaxDdIS, and its
parameterized version ParaDdIS(k), where the parameter is the size of the distance-d
independent set: (1) We first prove that for any ε > 0 and any fixed integer d ≥ 3,
it is NP-hard to approximate MaxDdIS to within a factor of n1/2−ε for bipartite
graphs of n vertices, and for any fixed integer d ≥ 3, ParaDdIS(k) is W[1]-hard for
bipartite graphs. Then, (2) we prove that for every fixed integer d ≥ 3, DdIS remains
NP-complete even for planar bipartite graphs of maximum degree three. Furthermore,
(3) we show that if the input graph is restricted to chordal graphs, then DdIS can be
solved in polynomial time for any even d ≥ 2, whereas DdIS is NP-complete for
any odd d ≥ 3. Also, we show the hardness of approximation of MaxDdIS and the
W[1]-hardness of ParaDdIS(k) on chordal graphs for any odd d ≥ 3.
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1 Introduction

One of the most important and most investigated computational problems in theoretical
computer science and combinatorial optimization is the Independent Set problem
(IS for short) because of its many applications in scheduling, computer vision, pattern
recognition, coding theory, map labeling, computational biology, and some other fields.
The input of IS is an unweighted graph G = (V, E) and a positive integer k ≤ |V |. An
independent set of G is a subset S ⊆ V of vertices such that, for all u, v ∈ S, the edge
{u, v} is not in E . IS asks whether G contains an independent set S having |S| ≥ k. IS
is among the first problems ever to be shown to be NP-complete, and has been used
as a starting point for proving the NP-completeness of other problems (Garey and
Johnson 1979). Moreover, it is well known that IS remains NP-complete even for
substantially restricted graph classes such as cubic planar graphs (Garey et al. 1976),
triangle-free graphs (Poljak 1974), and graphs with large girth (Murphy 1992).

In this paper, we consider a generalization of IS, named the Distance- d Inde-
pendent Set problem (DdIS for short). A distance-d independent set for an integer
d ≥ 2 in an unweighted graph G = (V, E) is a subset S ⊆ V of vertices such that
for any pair of vertices u, v ∈ S, the distance between u and v is at least d in G. For
a fixed constant d ≥ 2, DdIS considered in this paper is formulated as the following
class of problems (Agnarsson et al. 2004):

Distance-d Independent Set (DdIS)
Input: An unweighted graph G = (V, E) and a positive integer

k ≤ |V |.
Question: Does G contain a distance-d independent set of size k or

more?

The maximization version of DdIS can be also defined:

Maximum Distance-d Independent Set (MaxDdIS)
Input: An unweighted graph G = (V, E).
Output: A distance-d independent set of the maximum size.

The problem parameterized by the solution size k is as follows:

Parameterized Distance-d Independent Set (ParaDdIS(k))
Input: An unweighted graph G = (V, E).
Parameter A positive integer k ≤ |V |.
Question: Does G contain a distance-d independent set of size k or

more?
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It is important to note that D2IS is identical to the original IS, and DdIS is equiv-
alent to IS on the (d − 1)th power graph Gd−1 of the input graph G as pointed out
in (Agnarsson et al. 2004).

Even when d = 2, DdIS (i.e., D2IS) is NP-complete, and thus it would be
easy to show that DdIS is NP-complete in general. Fortunately, however, it is
known that if the input graph is restricted to, for example, bipartite graphs (Harary
1969), chordal graphs (Gavril 1972), circular-arc graphs (Gavril 1974), comparability
graphs (Golumbic 1977), and many other classes (Minty 1980; Lozin and Milanič
2008; Brandstädt and Giakoumakis 2012), then D2IS admits polynomial-time algo-
rithms. Furthermore, Agnarsson et al. (2004) show the following tractability of DdIS
by using the closure property under taking power (Flotow 1995, 1996; Raychaudhuri
1987):

Fact 1 [Agnarsson et al. 2004] Let n denote the number of vertices in the input graph
G. Then, for every integer d ≥ 2, DdIS is solvable in O(n) time for interval graphs, in
O(n(log log n + log d)) time for trapezoid graphs, and in O(n) time for circular-arc
graphs.

This tractability suggests that if we restrict the set of instances to, for example,
subclasses of bipartite graphs and chordal graphs, then DdIS for a fixed d ≥ 3 might
be also solvable efficiently. On the other hand, however, we have a “negative” fact
that if G is planar/bipartite, then the (d − 1)th power graph Gd−1 is not necessarily
planar/bipartite. From those points of view, this paper investigates DdIS, namely, our
work focuses on the computational complexity of DdIS and/or the inapproximability
of MaxDdIS on (subclasses of) bipartite graphs and chordal graphs.

Our main results are summarized in the following list:

(i) For every fixed integer d ≥ 3, DdIS is NP-complete even for bipartite
graphs.

(ii) For any ε > 0 and fixed integer d ≥ 3, it is NP-hard to approximate
MaxDdIS to within a factor of n1/2−ε for bipartite graphs of n vertices.

(iii) For every fixed integer d ≥ 3, ParaDdIS(k) is W[1]-hard for bipartite
graphs.

(iv) For every fixed integer d ≥ 3, DdIS remains NP-complete even for planar
bipartite graphs of maximum degree three.

(v) For every fixed even integer d ≥ 2, DdIS is in P for chordal graphs.
(vi) For every fixed odd integer d ≥ 3, DdIS is NP-complete for chordal graphs.

(vii) For any ε > 0 and fixed odd integer d ≥ 3, it is NP-hard to approximate
MaxDdIS to within a factor of n1/2−ε for chordal graphs of n vertices.

(viii) For every fixed odd integer d ≥ 3, ParaDdIS(k) is W[1]-hard for chordal
graphs.

One can see that the complexity of DdIS depends on the parity of d if the set of input
graphs is restricted to chordal graphs.

The organization of the paper is as follows: Section. 2 is devoted to our notation and
terminology. In Sect. 3 we prove the NP-hardness, the hardness of approximation,
and the W[1]-hardness of the problem for bipartite graphs. In Sect. 4, we provide
tractable and intractable cases for chordal graphs.
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2 Preliminaries

Let G = (V, E) be an unweighted graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and the
edge set of G, respectively. We denote an edge with endpoints u and v by {u, v}.
For a pair of vertices u and v, the length of a shortest path from u to v, i.e., the dis-
tance between u and v is denoted by distG(u, v), and the diameter G is defined as
diam(G) = maxu,v∈V distG(u, v).

A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆ E(G). For
a subset of vertices U ⊆ V , let G[U ] be the subgraph induced by U . For a subgraph
GS = (VS, ES) of G, if ES = VS × VS , then GS (or G[VS]) and VS are called a clique
and a clique set, respectively.

For a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by
Gd = (V (G), Ed), is the graph formed from V (G), where all pairs of vertices
u, v ∈ G such that distG(u, v) ≤ d are connected by an edge {u, v}. Note that
E(G) ⊆ Ed , i.e., the original edges in E(G) are retained.

A path of length �, denoted by P�, from a vertex v0 to a vertex v� is represented as
a sequence of vertices such that P� = 〈v0, v1, . . . , v�〉. A cycle of length �, denoted
by C�, is similarly written as C� = 〈v0, v1, . . . , v�−1, v0〉. A chord of a path (cycle)
is an edge between two vertices of the path (cycle) that is not an edge of the path
(cycle).

A graph G = (V, E) is bipartite if there is a partition of V into two disjoint
independent sets V1 and V2 such that V1 ∪ V2 = V . A planar bipartite graph is
a bipartite graph that can be drawn in the plane without edge crossings. A graph
G is chordal if each cycle in G of length at least four has at least one chord. A
graph G = (V, E) is split if there is a partition of V into a clique set V1 and an
independent set V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Note that the split
graphs are a subclass of the chordal graphs. A graph is star if it is a rooted tree of
height one. See, e.g., (Brandstädt et al. 1999), for the definitions of interval, trape-
zoid, circular-arc, and comparability graphs, and inclusion relations among the graph
classes.

For the maximization problems, an algorithm ALG is called a σ -approximation
algorithm and the approximation ratio of ALG is σ if O PT (G)/ALG(G) ≤ σ

holds for every input G, where ALG(G) and O PT (G) are the number of vertices of
obtained subsets by ALG and the number of vertices of an optimal solution, respec-
tively.

A parameterized problem is a pair (Q, k) where Q ⊆ �∗ is a decision prob-
lem over some alphabet �, and k : �∗ → N is a parameterization of the prob-
lem, assigning a parameter to each instance of Q. An algorithm is fixed-parameter
tractable or fpt if it has a running time at most f (k) · nc for some computable
function f and a constant c, where n is the input length and k is the parameter
assigned to the input. Given two parameterized problems (Q1, k1) and (Q2, k2)

over the alphabet �, an fpt-reduction from (Q1, k1) to (Q2, k2) is a function
g : �∗ → �∗, computable by an fpt-algorithm, such that I ∈ Q1 if and only if
g(I ) ∈ Q2 and k2(g(I )) ≤ f (k1(I )) for some computable function f , for every
I ∈ �∗.
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3 Bipartite graphs

In this section we consider the class of bipartite graphs and its subclasses. As men-
tioned in Sect. 1, D2IS is solvable in polynomial time by using a polynomial time
algorithm which finds the maximum matching in a given bipartite graph (Harary
1969). Unfortunately, however, we can show the NP-hardness of DdIS, the hardness
of approximation of MaxDdIS, and the W[1]-hardness of ParaDdIS(k) on bipartite
graphs when d ≥ 3.

Theorem 1 For every fixed integer d ≥ 3, DdIS is NP-complete even for bipartite
graphs.

Proof We first show the NP-completeness of D3IS and then one of the general DdIS
for d ≥ 4 in order to make the basic ideas of this proof clear. It is obvious that
DdIS is in NP for every d ≥ 3. To show that D3IS is NP-hard, we reduce the
NP-hard problem D2IS on any general graphs to D3IS on bipartite graphs. That
is, given a graph G2 = (V2, E2) of D2IS with n vertices, V2 = {v1, v2, . . . , vn},
and m edges, E2 = {e1, e2, . . . , em}, we construct a new bipartite graph G3 in the
following way. The constructed graph G3 consists of (i) n vertices, u1 through un ,
each ui of which is corresponding to vi ∈ V2, (ii) m vertices, w1 through wm , each wi

of which is corresponding to ei ∈ E2, and (iii) two special vertices α and β. (iv) The
vertex α is connected to each vertex in {β} ∪ {w1, . . . , wm}, i.e., the induced graph
G[{α, β} ∪ {w1, . . . , wm}] is star. (v) If ei = {v j , vk} ∈ E2, then we add two edges
{wi , u j } and {wi , uk}. Since there is a partition of V3 into two disjoint independent
sets {β,w1, . . . , wm} and {α, u1, . . . , un}, the reduced graph G3 must be bipartite. See
Fig. 1. For example, if the instance G2 is the left graph, then the reduced graph G3 is
illustrated in the right graph. It is clear that this reduction can be done in polynomial
time.

For the above construction of G3, we show that G3 has a distance-3 independent
set S3 such that |S3| ≥ k + 1 if and only if G2 has a distance-2 independent set S2
such that |S2| ≥ k.

Fig. 1 (Left) graph G2 of D2IS and (Right) reduced graph G3 of D3IS from G2.
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(If part) Suppose that the graph G2 of D2IS has the distance-2 independent set
S2 = {v1∗ , v2∗ , . . . vk∗} in G2, where {1∗, 2∗, . . . , k∗} ⊆ {1, 2, . . . , n}. Then, we
select a subset of vertices S3 = {u1∗ , u2∗ , . . . , uk∗} ∪ {β} of size k + 1. Note that the
distance distG3(β, ui ) for every i is at least three. Since the distance distG2(vi∗ , v j∗)
for any pair of vertices vi∗ , v j∗ ∈ S2 (i∗ 
= j∗) is at least two, the shortest path from
ui∗ to u j∗ contains at least two vertices in {w1, w2, . . . , wm}. This means that the
distance distG3(ui∗ , u j∗) for any i∗ 
= j∗ is at least four. Thus, the selected vertex set
S3 of size k + 1 is a distance-3 independent set in G3.

(Only-if part) Conversely, suppose that the constructed graph G3 has the distance-3
independent set S3 such that |S3| ≥ k + 1. First, take a look at the induced subgraph
G[{α, β} ∪ {w1, . . . , wm}]. Since its diameter diamG3(G[{α, β} ∪ {w1, . . . , wm}]) is
two, |S3 ∩ V (G[{α, β} ∪ {w1, . . . , wm}])| ≤ 1 holds, i.e., |S3 ∩ {u1, u2, . . . , un}| ≥
k must be satisfied. Let {u1∗ , u2∗ , . . . , uk∗} be a subset of k vertices in S3 ∩
{u1, u2, . . . , un}. Then, the pairwise distance of vertices in {v1∗ , v2∗ , . . . , vk∗} of G2
corresponding to {u1∗ , u2∗ , . . . , uk∗} in G3 is surely at least 2, i.e., G2 has a distance-2
independent set S2 such that |S2| ≥ k. This completes the proof of the NP-hardness
of D3IS.

To prove the NP-hardness of DdIS for d ≥ 4, we add the following two small
modifications to the constructed graph G3 in the above reduction, and construct a
new bipartite graph Gd . Let L = (d − 3) − � d−1

4 � and let L = � d−1
4 �. Note that

L + L = d − 3. (1) The top vertex β in Fig. 1 is replace with a simple path of length
L say, 〈β, β1, . . . , βL 〉, and (2) every bottom vertex u j is replaced with a simple path
of length L , say, 〈u j , u j,1, . . . , u j,L 〉 for 1 ≤ j ≤ n. Then, we can again show that
Gd has a distance-d independent set Sd such that |Sd | ≥ k + 1 if and only if G2 has a
distance-2 independent set S2 such that |S2| ≥ k.

(If part for d ≥ 4) If G2 of D2IS has a distance-2 independent set S2 =
{v1∗ , v2∗ , . . . vk∗} in G2 as before, then Gd has a subset of vertices Sd =
{u1∗,L , u2∗,L , . . . , uk∗,L} ∪ {βL} of size k + 1, which must be a distance-d inde-

pendent set since distGd (βL , ui∗,L) = L + L + 3 = (d − 3) + 3 = d and

distGd (ui∗,L , u j∗,L) = 4(L + 1) = 4� d−1
4 � + 4 ≥ d for any i∗ 
= j∗.

(Only-if part for d ≥ 4) Conversely, suppose that the constructed graph Gd

has the distance-d independent set Sd such that |Sd | ≥ k + 1. Similarly to
the case of d = 3, since diamGd (G[{α, β, β1, . . . , βL} ∪ {w1, . . . , wm}]) ≤ d,
which means that |Sd ∩ ({α, β, β1, . . . , βL} ∪ {w1, . . . , wm})| ≤ 1 holds, |Sd ∩
{u1, u1,1, . . . , u1,L , u2, u2,1, . . . , u2,L , . . . , un, . . . , un,L}| ≥ k must be satisfied.
Now we can assume that (at least) those k vertices in Sd are in the set of bottom vertices
{u1,L , u2,L , . . . , un,L}, because |Sd ∪ {u j,L} \ {u j,L ′ }| ≥ |Sd | even if u j,L ′ ∈ Sd for
L ′ < L . Let {u1∗,L , u2∗,L , . . . , uk∗,L} be a subset of k vertices in Sd ∩{u1,L , . . . , un,L}.
Then, the pairwise distance of vertices in {v1∗ , v2∗ , . . . , vk∗} of G2 corresponding to
{u1∗,L , . . . , uk∗,L} in Gd is surely at least two, i.e., G2 has a distance-d independent
set S2 such that |S2| ≥ k. This completes the proof of the theorem. ��

Next, we consider the maximization version MaxDdIS of DdIS, which asks for a
distance-d independent set of the maximum size in an input graph G. Since MaxD2IS
is equivalent to Maximum Independent Set, it cannot be approximated within a fac-
tor of n1−ε (Zuckerman 2007). In the following, we will show that the above reduction
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can preserve the approximation-gap and thus gives us the following inapproximability
of MaxDdIS for d ≥ 3.

Corollary 1 For any ε > 0 and a fixed integer d ≥ 3, it is NP-hard to approximate
MaxDdIS to within a factor of n1/2−ε for bipartite graphs of n vertices.

Proof Let O PT (G2) denote the number of vertices of an optimal solution for an
n-vertex input graph G2 of MaxD2IS. Let O PT ′(Gd) denote the number of vertices of
an optimal solution for a ν-vertex input bipartite graph Gd of MaxDdIS for a fixed d ≥
3. Let g(n) be a parameter function of the instance G2 of D2IS. Note that the reduction
described in the proof of Theorem 1 is the following gap-preserving reduction: (1) If
O PT (G2) ≥ g(n), then O PT ′(Gd) ≥ g(n) + 1, and (2) if O PT (G2) <

g(n)

n1−ε for a

positive constant ε, then O PT ′(Gd) <
g(n)

n1−ε + 1.

The constructed graph Gd has at most n × n
4 vertices labeled “u”, m ≤ n2

2 vertices
labeled “w”, at most n vertices labeled “β”, and one vertex α, i.e., |V (Gd)| = ν =
O(n2). Hence the approximation-gap is n1−ε = 	(ν1/2−ε) for any ε > 0. By renam-
ing ν to n, we obtain the n1/2−ε-inapproximability of MaxDdIS on bipartite graphs
of n vertices. ��

Also, the reduction in the proof of Theorem 1 shows the following fixed-parameter
intractability of ParaDdIS(k):

Corollary 2 For every fixed integer d ≥ 3, ParaDdIS(k) is W[1]-hard for bipartite
graphs.

Proof It is known (Downey and Fellows 1995) that ParaD2IS(k) on general graphs
is W[1]-hard. Let (G2, k) and (Gd , k′) be the instances of ParaD2IS(k) and
ParaDdIS(k’) on bipartite graphs, respectively. Then, the reduction in the proof of
Theorem 1 is the fpt-reduction such that (i) k′ ≤ k + 1, and (ii) (G2, k) is a yes-
instance of ParaD2IS(k) if and only if (Gd , k′) is a yes-instance of ParaDdIS(k’) on
bipartite graphs. ��

Even if the input graph is restricted to planar bipartite graphs of maximum degree
three, DdIS remains intractable for d ≥ 3. Note that a planar bipartite graph is of
course bipartite, and therefore D2IS on planar bipartite graphs is tractable.

Theorem 2 For every fixed integer d ≥ 3, DdIS is NP-complete even for planar
bipartite graphs of maximum degree three.

Proof We first show the NP-completeness of D3IS and then one of the general
DdIS for d ≥ 4. Obviously, DdIS is in NP for every d ≥ 3. To show that D3IS is
NP-complete, we reduce the NP-complete problem D2IS on any cubic planar graph
G2 = (V2, E2) to D3IS on a new planar bipartite graph G3 = (V3, E3) of maximum
degree three.

Let V2 = {v1, v2, . . . , vn} and E2 = {e1, e2, . . . , em} be vertex and edge sets of
the planar graph G2. We construct the planar bipartite graph G3 which consists of
(i) n vertices, u1 through un , which are associated with n vertices in V2, v1 through
vn , respectively, and (ii) m subgraphs, SG3,1 through SG3,m , which are associated
with m edges in E2, e1 through em , respectively. For every i (1 ≤ i ≤ m), the i th
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Fig. 2 An illustration of the construction when d = 3.

subgraph SG3,i contains three vertices, wi,0, wi,1, and wi,2 and two edges, {wi,0, wi,1}
and {wi,1, wi,2} such that SG3,i forms a path P2 of length 2. (iii) If ei = {v j , vk} ∈ E2,
then we introduce two edges {wi,0, u j } and {wi,0, uk}. Note that every simple path
SG3,i of length two becomes a single vertex by applying the edge-contraction twice,
and also every path 〈u j , wi,0, uk〉 becomes back an edge {u j , uk} by applying one
edge-contraction for 1 ≤ i ≤ m and 1 ≤ j, k ≤ n. Namely, the constructed graph G3
is a minor of the planar graph G2 and thus it must be planar. The maximum degree is
clearly three. The construction can be accomplished in polynomial time. For example,
if the cubic planar graph G2 is the left graph in Fig. 1, then the reduced graph G3 is
illustrated in Fig. 2.

For the above construction of G3, we will show that G3 has a distance-3 independent
set S3 such that |S3| ≥ k + m if and only if G2 has a distance-2 independent set S2
such that |S2| ≥ k.

(If part) Suppose that the graph G2 of D2IS has a distance-2 independent set S2 =
{v1∗ , v2∗ , . . . vk∗} in G2, where {1∗, 2∗, . . . , k∗} ⊆ {1, 2, . . . , n}. Then, we select two
subsets of vertices S′

3 = {u1∗ , u2∗ , . . . , uk∗} and S′′
3 = {w1,2, w2,2, w3,2, . . . , wm,2}

such that |S′
3| = k and |S′′

3 | = m. One can verify that S3 = S′
3 ∪ S′′

3 is a distance-3
independent set in G3 since the pairwise distance in S′

3 is at least four, the pairwise
distance in S′′

3 is at least six, and the distance between wi,2 in S′′
3 and every vertex in

S′
3 is at least three for each i .

(Only-if part) Conversely, suppose that the graph G3 has the distance-3 indepen-
dent set S3 such that |S3| ≥ k + m. First, from each subgraph SG3,i which is the
path of length 2, we can select at most one vertex as the distance-3 independent
set since its diameter is two. Thus, the maximum size of the distance-3 indepen-
dent set in V (SG3,1) ∪ V (SG3,2) ∪ . . . ∪ V (SG3,m) is at most m, which means that
|S3 ∩ {u1, u2, . . . , un}| ≥ k holds. Let {u1∗ , u2∗ , . . . , uk∗} be a subset of k vertices
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Fig. 3 (Le f t) subgraphs SG4,i for d = 4, (Center ) SG5,i for d = 5, and (Right) SG6,i for d = 6.

in S3 ∩ {u1, u2, . . . , un}. Then, the pairwise distance in the corresponding subset of
vertices {v1∗ , v2∗ , . . . , vk∗} of G2 is surely at least two, i.e., G2 has a distance-2 inde-
pendent set S2 such that |S2| ≥ k. This completes the proof of the NP-hardness of
D3IS.

In the following, we give a brief sketch of the ideas to prove the NP-hardness
of DdIS for d ≥ 4. In the case of D4IS, all we have to do is replace the
2-length path SG3,i corresponding to the edge ei with a 3-length path SG4,i =
({wi,0, wi,1, wi,2, wi,3}, {(wi,0, wi,1), (wi,1, wi,2), (wi,2, wi,3)}) for each i . See the
left graph in Fig. 3. In the case of D5IS, SG3,i is replaced with SG5,i =
(V (SG5,i ), E(SG5,i )):

V (SG5,i ) = {w0
i,0, w

1
i,0, w

2
i,0, wi,1, wi,2, wi,3}

E(SG5,i ) = {{w0
i,0, w

1
i,0}, {w1

i,0, w
2
i,0}, {w1

i,0, wi,1}, {wi,1, wi,2}, {wi,2, wi,3}}.

Then, u j (uk) corresponding to the vertex v j (vk) is connected to w0
i,0 (w2

i,0) if ei =
{v j , vk} ∈ E2 (see the center graph in Fig. 3). For d = 6, we connect one vertex
wi,4 to the top vertex wi,3 of SG5,i (see the right graph in Fig. 3). Similarly, for a
general d ≥ 7, such a ⊥-shape subgraph consists of one horizontal path of length
2� d

4 �− 2 and one vertical path of d −� d
4 �. Since the diameter of SGd,i is less than d,

we can select at most one vertex as the distance-d independent set from each subgraph
SGd,i as before. Also, if {vi , v j } ∈ E2, then distGd (ui , u j ) < d; on the other hand if
distG2(vi , v j ) ≥ 2, then distGd (ui , u j ) = 2 × 2� d

4 � ≥ d. ��

4 Chordal graphs

In this section we restrict the instances to chordal graphs. In 1972, Gavril showed that
D2IS admits an efficient algorithm for chordal graphs:

Lemma 1 [Gavril 1972] D2IS is in P for chordal graphs.

Recall that if the dth power graph Gd is interval trapezoid, or circular-arc, resp.),
then the (d+1)th power Gd+1 is also interval (Raychaudhuri 1987) [trapezoid (Flotow
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1995), or circular-arc (Flotow 1996), resp.] for any integer d ≥ 1. The class of chordal
graphs does not satisfy the closure property under the graph power operation, i.e.,
the square G2 of a chordal graph G is not necessarily chordal, but it does satisfy the
closure property under the graph odd power operation:

Lemma 2 [Agnarsson et al. 2000; Balakrishnan and Paulraja 1983] Let do ≥ 1 be an
odd integer. If G is a chordal graph, then Gdo is also chordal.

Together with Lemma 1, this yields:

Theorem 3 For every fixed even integer de ≥ 2, DdeIS is in P for chordal graphs.

Proof Given a chordal graph G, we first construct the odd power graph Gde−1 from G
in polynomial time, which must be chordal by Lemma 2. Then, by using a polynomial-
time algorithm for D2IS in Lemma 1, we can obtain a solution of DdeIS in polynomial
time. ��

For an odd do, DdoIS is hard:

Theorem 4 For every fixed odd do ≥ 3, DdoIS is NP-complete for chordal graphs.

Proof Obviously, DdoIS on chordal graphs is in NP for every odd do ≥ 3. To
show that DdoIS on chordal graphs is NP-complete, we reduce D2IS on any graph
G2 = (V2, E2) to DdoIS on a new chordal graph Gdo = (Vdo , Edo).

Given the graph G2 = (V2, E2) of D2IS with n vertices, V2 = {v1, v2, . . . , vn}, and
m edges, E2 = {e1, e2, . . . , em}, we construct the following chordal graph Gdo : (i) We
prepare n paths of length (do − 3)/2, SGdo,1 = 〈u1,1, u1,2, . . . , u1,(do−1)/2〉 through
SGdo,n = 〈un,1, un,2, . . . , un,(do−1)/2〉, each SGdo,i of which is corresponding to
vi ∈ V2, and (ii) m vertices, w1 through wm , each wi of which is corresponding to
ei ∈ E2. (iii) All the vertices w1 through wm are connected such that G[{w1, . . . , wm}]
forms a clique of m vertices. (iv) If ei = {v j , vk} ∈ E2, then we connect wi to two
vertices u j,1 and uk,1.

Figure 4 illustrates the reduced graph G7 from G2 which is illustrated in Fig. 1
when d = 7. The constructed graph Gdo is chordal since all C4’s in the clique graph
G[{w1, . . . , wm}] have chords and also G[{w1, . . . , wm}∪{vi,0}] contains only cycles
C3’s for every i . Gdo can be constructed in polynomial time from G2.

We show that the reduction satisfies that if Gdo has a distance-do independent set
Sdo such that |Sdo | ≥ k if and only in G2 has a distance-2 independent set S2 such that
|S2| ≥ k. In the remaining of this proof, the crucial observations are: (1) The distance
between any vertex v in Vdo \ {u1,(do−1)/2, u2,(do−1)/2, . . . , un,(do−1)/2} and another
vertex u in Vdo \ {v} is at most do − 1. On the other hand, (2) the pairwise distance
of any two vertices in {u1,(do−1)/2, u2,(do−1)/2, . . . , un,(do−1)/2} is at most do. The two
observations (1) and (2) imply that the distance-do independent set Sdo in Gdo must
be a subset of outside vertices {u1,(do−1)/2, u2,(do−1)/2, . . . , un,(do−1)/2}. (3) If v j and
vk are two endpoints of single edge ei in G2, then there must be a path

〈u j,(do−1)/2, u j,(do−3)/2, . . . , u j,1, wi , uk,1, uk,2, . . . , uk,(do−1)/2〉

by the above reduction rules. Thus, the distance between u j,do and uk,do in Gdo is
(do − 1)/2 × 2 = do − 1.
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Fig. 4 An illustration of the construction when d = 7.

(If part) Now suppose that the graph G2 of D2IS has a distance-2 independent
set S2 = {v1∗ , v2∗ , . . . vk∗} in G2, where {1∗, 2∗, . . . , k∗} ⊆ {1, 2, . . . , n}. Then, we
select a subset Sdo = {u1∗,(do−1)/2, u2∗,(do−1)/2, . . . , uk∗,(do−1)/2} of size k. It is easy
to verify that the pairwise distance in Sdo is exactly do.

(Only-if part) Conversely, suppose that the reduced graph Gdo has the distance-do

independent set Sdo = {u1∗,(do−1)/2, u2∗,(do−1)/2, . . . , uk∗,(do−1)/2} of size k. Then,
the pairwise distance in the corresponding subset of vertices {v1∗ , v2∗ , . . . , vk∗} of G2
is surely at least two, i.e., G2 has a distance-2 independent set S2 such that |S2| ≥ k.

��
Corollary 3 D3IS is NP-complete for split graphs.

Proof When d = 3 in the proof of Theorem 4, the constructed graph G3 is a split
graph since there is a partition of V (G3) into a clique set {w1, w2, . . . , wm} and an
independent set {u1,1, u2,1, . . . , un,1}. ��

Similarly to the previous section, it can be shown that the reduction in the proof of
Theorem 4 can preserve the approximation-gap, and also it is an fpt-reduction:

Corollary 4 For any ε > 0 and fixed odd integer do ≥ 3, it isNP-hard to approximate
MaxDdoIS to within a factor of n1/2−ε for chordal graphs.

Proof The proof is very similar to the proof of Corollary 1. Now, let O PT ′(Gdo)

denote the number of vertices of an optimal solution for a ν-vertex input chordal graph
Gdo of MaxDdoIS for a fixed do ≥ 3. Then, we can show that (1) if O PT (G2) ≥ g(n),
then O PT ′(Gdo) ≥ g(n), and (2) if O PT (G2) <

g(n)

n1−ε for a positive constant ε, then

O PT ′(Gdo) <
g(n)

n1−ε . Hence the corollary follows from ν = O(n2). ��
Corollary 5 For every fixed odd integer do ≥ 3, ParaDdoIS(k) is W[1]-hard for
chordal graphs.
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Proof Let (G2, k) and (Gdo , k′) be the inputs of ParaD2IS(k) and ParaDdoIS(k’) on
chordal graphs, respectively. Then, the reduction in the proof of Theorem 4 satisfies
the condition k′ ≤ k. ��

5 Concluding remarks

In the conference version (Eto et al. 2012) of this paper we claimed that the reduced
graph Gd in the proof of Theorem 1 is chordal bipartite and thus DdIS on chordal
bipartite graphs is NP-hard. However, Gd is not chordal bipartite since it includes an
induced cycle of length six or more (for example, actually G3 in Fig. 1 contains an
induced cycle 〈u1, w1, u2, w3, u3, w2, u1〉 of length six). Therefore, the computational
complexity of DdIS on chordal bipartite graphs is still open.
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