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Abstract In this paper we study several geometric problems of color-spanning sets:
given n points with m colors in the plane, selecting m points with m distinct col-
ors such that some geometric properties of the m selected points are minimized or
maximized. The geometric properties studied in this paper are the maximum diam-
eter, the largest closest pair, the planar smallest minimum spanning tree, the planar
largest minimum spanning tree and the planar smallest perimeter convex hull. We
propose an O(n1+ε) time algorithm for the maximum diameter color-spanning set
problem where ε could be an arbitrarily small positive constant. Then, we present
hardness proofs for the other problems and propose two efficient constant factor ap-
proximation algorithms for the planar smallest perimeter color-spanning convex hull
problem.
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1 Introduction

Most of the classic algorithms in computational geometry are based on the assump-
tion that the locations of input points are known exactly. In practice, that is not always
the case. Data stored in computers are imprecise in most cases. The causes of impre-
cise data are various, for example, the uncertain properties of a moving object (Cheng
et al. 2004), measurement error, sampling error, network latency (Sistla et al. 1997;
Pfoser and Jensen 1999), location privacy protection (Beresford and Stajano 2003;
Cheng et al. 2006; Gedik and Liu 2005), etc. Any or a combination of these could be
the causes leading to imprecision of the data.

A continuous region model such as a disc model, a square model and so on can be
used to describe an imprecise point in general. There are many studies based on such
a model. Löffler et al. studied the largest and the smallest convex hull problems based
on the disc model, the square model, and the parallel line segment model (Kreveld
and Löffler 2007). They proved the NP-hardness for some problems and proposed
polynomial time algorithms for some other problems, ranging in running time from
O(n logn) to O(n13). Other papers dealing with the problems based on the con-
tinuous region models include (Khanban and Edalat 2003; Nagai and Tokura 2000;
Boissonnat and Lazard 1996) and so on.

In addition to this, a discrete point set model can be used to describe imprecise
points. In the discrete point set model, a set of discrete points is used for the possible
positions where an imprecise point may appear. In computational geometry, the dis-
crete point set model is also called the color-spanning set model because the set of
positions for an imprecise point is regarded as the positions with the same color. The
input of color-spanning set problems are usually n points with m colors.

There has also been a lot of research studying the color-spanning set problems.
Zhang et al. proposed a brute force algorithm to solve the minimum diameter color-
spanning set (MDCS) problem and the running time of their algorithm is O(nm)

(Zhang et al. 2009). Fleischer and Xu showed that the MDCS problem can be solved
in polynomial time for the L1 and L∞ metrics, while it is NP-hard for Lp (p =
2,3,4, . . .) metrics (Fleischer 2010). They also proposed an efficient constant factor
approximation algorithm for the problem. Abellanas et al. showed that the Farthest
Color Voronoi Diagram (FCVD) is of complexity �(nm) if m ≤ n/2 (Abellanas et al.
2001a, 2001b). They proposed an efficient algorithm to construct FCVD and then
they presented efficient algorithms to construct the smallest color-spanning circle, the
smallest color-spanning rectangle and the narrowest color-spanning strip of arbitrary
orientation with the help of FCVD. In Das et al. (2009) proposed an algorithm for
identifying the smallest color-spanning corridor in O(n2 logn) time and O(n) space
and an algorithm for identifying the smallest color-spanning rectangle of arbitrary
orientation with an O(n3 logm) running time and O(n) space.

In the database community, a similar framework under a different name “uncertain
data” has been used. An imprecise point is called an uncertain object and the different
positions with the same color are regarded as the different possible instances of an
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uncertain object. Pei et al. have performed some research that pertains to geometric
problems in this framework (Pei et al. 2007; Cheema et al. 2010; Yuen et al. 2010).

In this paper, we study five color-spanning set problems. We select m points with
m colors such that

• The diameter of the m points is maximized. This problem is called the Maximum
Diameter Color-spanning Set problem (MaxDCS).

• The distance between the closest pair of the m points is maximized. This problem
is called the Largest Closest Pair Color-spanning Set problem (LCPCS).

• The length of the planar minimum spanning tree over the m points is mini-
mized. This problem is called the Planar Smallest Minimum Spanning Tree Color-
spanning Set problem (PSMSTCS).

• The length of the planar minimum spanning tree over the m points is maximized.
This problem is called the Planar Largest Minimum Spanning Tree Color-spanning
Set problem (PLMSTCS).

• The perimeter of the planar convex hull over the m points is minimized. This prob-
lem is called the Planar Smallest Perimeter Convex Hull Color-spanning Set prob-
lem (PSPCHCS).

We discuss these five problems in the following five sections and then give con-
clusions in the last section.

2 An efficient algorithm for MaxDCS

Computing the diameter of a point set has a long history. By a reduction to set
disjointness, it can be shown that computing the diameter of n points with the
same color in Rd requires �(n logn) operations in the algebraic computation tree
model (Preparata and Shamos 1985). However, to the best of our knowledge, the
maximum diameter color-spanning set problem (see an example in Fig. 1) has not
been studied yet.

Let S be a set of n points with m colors. The steps of our algorithm (MaxDCS1)
to compute the maximum color-spanning diameter of S are as follows:

1. Compute the maximum distance between two points of S in the plane (ignoring
colors) using the algorithm in Preparata and Shamos (1985). Let these two points
be pa and pb . If pa and pb have different colors, then the distance d0 between
pa and pb is the maximum color-spanning diameter D of S, and we can exit the
algorithm; else, we continue to the next step.

Fig. 1 Illustration of the
maximum diameter of
color-spanning sets
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2. Let the subset of points with the same colors as that of points pa and pb be Sab

(Sab also includes pa and pb). Let S′
ab = S − Sab. We compute the distance be-

tween every pair of points, one in Sab and the other in S′
ab , and let the resulting

maximum distance be dab .
3. Let the set of points of S′

ab which are on or to the left of the line papb be set Sl .
Let the set of points of S′

ab which are on the right of the line papb be Sr . For any
point p in Sr such that no point in Sl has the same color of p, we put p into set S′

r .
Symmetrically, for any point p in Sl such that no point in Sr has the same color
of p, we put p into set S′

l . Let S′′
l = Sl \ S′

l and S′′
r = Sr \ S′

r .
4. Let S1 = Sl ∪ S′

r and compute the maximum distance dl between two points in S1
(ignoring colors) using the algorithm in Preparata and Shamos (1985). Similarly,
let S2 = Sr ∪ S′

l and compute the maximum distance dr between two points in S2.
5. Compute the diameter D′ of point set S′′

l ∪ S′′
r (considering colors). The details of

this step will be given in Algorithm MaxDCS2.
6. Let D = max(dab, dl, dr ,D

′).

Next, we prove the correctness and the time complexity of our algorithm.

Lemma 1 For two points pe and pf in set Sl (Sr ), at least one of the four segments
pape, papf , pbpe , pbpf has a length longer than that of pepf .

Proof Since pe and pf are on the same side of line papb , there are only two cases
for the positions of four points pa , pb , pe, pf :

1. Four points pa , pb , pe, pf form a convex quadrangle (see Fig. 2(a)). If the length
of segment pepf is longer than or equal to the lengths of the segments pape,
papf , pbpe, pbpf , then the angles ∠pepf pb and ∠pf pepa are smaller than
π/2. Because the length of the segment papb is longer than or equal to all the
above segments, the angles ∠papbpf and ∠pbpape are smaller than π/2. This
contradicts to the fact that the sum of four angles of a convex quadrangle is 2π .

2. The three points pa , pb , pe form a triangle and pf is in �papbpe, peph is the
height of triangle; moreover, the point ph must be on segment papb (see Fig. 2(b)).
Otherwise, the length of pape or pbpe is longer than papb. Since pf is either in
the right triangle �paphpe or in the right triangle �pbpeph, the length of pepf

is shorter than the longer of pepa and pepb .

Hence the lemma is proven. �

Let px and py be the two points corresponding to the maximum color-spanning
diameter of S. There are five cases:

Fig. 2 The illustration for the
proof of Lemma 1
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1. px is pa and py is pb .
2. px ∈ Sab and py ∈ S′

ab .
3. px and py are in set Sl , or px and py are in set Sr .
4. px is in set Sl , while py is in set S′

r , or px in set S′
l and py in set Sr .

5. px is in set S′′
l and py is in set S′′

r .

Cases 1, 2 and 4 are computed at Steps 1, 2 and 4 of the algorithm MaxDCS1. We
do not need to compute the diameter in Case 3 according to Lemma 1 and the fact
that the color of pa (pb) is different from those points in Sl (Sr ). In other words, the
maximum diameter in Case 3 is less than dab in Case 2. Step 1, 3, 4, and 6 can be
finished in O(n logn) time. Step 2 can be finished in O(k′n) time where k′ is the
size of the set Sab . However, if k′ is larger than O(logn), in order to reduce the time
complexity to O(n logn), we cannot use a brute force method at Step 2. Instead, we
can compute the farthest-point Voronoi diagram of set Sab in O(k′ logk′) time (Berg
et al. 2008). The Voronoi cell where each point p in set S′

ab is located can be found in
O(log k′) time, and then we can compute the distance between p and corresponding
site in an additional O(1) time. Therefore, Step 2 can be finished in O(n logn) time.

How about the time complexity of Step 5 (or the algorithm MaxDCS2) (Algo-
rithm 1)? The time consuming parts of MaxDCS2 are two FOR loops. Since those
two loops are symmetric, we only analyze the first one. Notice that the difference
between the consecutive steps inside the loop are point sets of two colors. In total,
each point is inserted and deleted from S′ once, that means only O(n) insertions and
deletions. It is shown that the diameter for n points without color after each insertion
or deletion can be updated in O(nε) time where ε could be an arbitrarily small pos-

Algorithm 1 MaxDCS2

Require: Point set S′′
l and S′′

r with m′ colors where m′ ≤ m − 1;
Ensure: Maximum diameter D of color-spanning sets of S′′

l ∪ S′′
r ;

D = 0
Let Sk

l be the k-th color points in S′′
l and Sk

r be the k-th color points in S′′
r

S′ = S′′
l ∪ S1

r \ S1
l

Compute the diameter D′ of S′ (ignoring colors)
D = Max(D,D′)
for k = 2 to m′ do

S′ = S′ ∪ Sk
r ∪ Sk−1

l \ Sk
l \ Sk−1

r

Compute the diameter D′ of S′ (ignoring colors)
D = Max(D,D′)

end for
S′ = S′′

r ∪ S1
l \ S1

r

Compute the diameter D′ of S′ (ignoring colors)
D = Max(D,D′)
for k = 2 to m′ do

S′ = S′ ∪ Sk
l ∪ Sk−1

r \ Sk
r \ Sk−1

l

Compute the diameter D′ of S′ (ignoring colors)
D = Max(D,D′)

end for
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itive constant (Agarwal et al. 1992; Eppstein 1996). Therefore, the running time of
MaxDCS2 is O(n1+ε).

In Steps 4 and 5 of the algorithm MaxDCS1, the two points realizing dl (dr

or D′) could be on the same side of papb and could be of the same color. How-
ever, according to Lemma 1, those dl, dr ,D

′ are all shorter than dab and we let
D = max(dab, dl, dr ,D

′). Therefore, those dl, dr ,D
′ cannot be the real diameter D.

Our algorithm considers the distances of all points with its farthest point of different
color. Hence we have the following theorem.

Theorem 1 Let S be a set of n points of m colors. The maximum color-spanning
diameter of S can be computed in O(n1+ε) time, where ε could be an arbitrarily
small positive constant.

3 Hardness of LCPCS

In this section, we show that LCPCS is NP-Complete even in one dimension. To
facilitate the reading, we first present the proofs in the plane, under different metrics.

Theorem 2 LCPCS is NP-hard under the Lp metric, for 2 ≤ p < ∞,

Proof We prove the hardness of LCPCS by a reduction from 3-SAT. We give the
proof for the L2 metric in two dimensions and then show how to extend it to any Lp

metric and to higher dimensions.
Let F be a Boolean formula in conjunctive normal form with n variables

x1, . . . , xn and m clauses c1, . . . , cm, each of size at most three. We take the following
steps to construct an instance I of LCPCS.

For each Boolean variable xi,¬xi in F , let ki be the maximum number of times
that xi and ¬xi appear in F . Then we draw a rectangle Vi vertically and separate
it into ki − 1 small rectangles horizontally. Every small rectangle has length b and
height a. The diagonal length of each small rectangle is d (d2 = a2 + b2, d < 2a).
We place 2ki points with different colors on the 2ki vertices of small rectangles (see
Fig. 3). The 2ki points of different colors are placed on ki rows and two columns.

Fig. 3 Variable gadget
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Let Axy (1 ≤ x ≤ ki,1 ≤ y ≤ 2) denote the point at row x and column y. Then we
draw another rectangle Hi horizontally which is far away from Vi and separate it into
ki − 1 small rectangles vertically. Every small rectangle has length c (c = d + ε) and
height d − ε (see Fig. 3). We place 2ki points with different colors on the 2ki vertices
of those small rectangles. Let Bxy (1 ≤ x ≤ 2,1 ≤ y ≤ ki ) denote the point at row x

and column y. When x is an odd number, only Ax1 and B2x have the same distinct
color, and only Ax2 and B1x have the same distinct color.1 When x is an even number,
only Ax2 and B2x have the same distinct color, and only Ax1 and B1x have the same
distinct color (see Fig. 3).

Let P1 be the set of points Axy where x is odd and y = 1 or x is even and y = 2.
Let P2 be the set of points Axy where x is even and y = 1 or x is odd and y = 2. Let
Q1 be the set of points Bxy where x = 1 and Q2 be the set of points Bxy where x = 2.
The idea is that if we want to maximize the distance between the closest pair with this
configuration, we either choose the point sets P1 and Q1, or point sets P2 and Q2.
The fist case represents the value 1 for this variable, and the second case represents
the value 0. The rectangles corresponding to different variables lie far away enough to
each other (at least 4d). The points in different variables have totally different colors.

For each clause in F , we add three points and these three points have the same
distinct color. We deal with the clauses from left to right. For example, let the i-th
clause be (x1 ∨x2 ∨¬x3), and suppose that x1 appears l1 −1 times, x2 appears l2 −1
times, ¬x3 appears l3 − 1 times in the previous i − 1 clauses. Then we put one point
next to rectangle H1 and it is right below the point B2l1 with distance ε. The second
point is next to rectangle H2 and it is right below B2l2 with distance ε. The third point
is next to rectangle H3 and it is right above B1l3 with distance ε (see Fig. 4). One of
these three points has to be selected for this color. For the distance between the closest

Fig. 4 Clause gadget for
(x1 ∨ x2 ∨ ¬x3). Different
shapes of points also mean
different colors

1Throughout this paper, when we say that points in set S′ have the same distinct color and points in set
S′′ have the same distinct color, it means that points in S′ have a color c′ and points in S′′ have a color c′′
with c′ 	= c′′.
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pair to be maximum (i.e., equal to d), it is only possible when x1 is assigned 1, or x2

is assigned 1, or x3 is assigned 0.
It is easy to see that F is satisfiable if and only if the largest distance between the

closest pair is equal to d .
In order to extend the proof to the Lp metric, the only requirement is d > a and

d > b. When 1 ≤ p < ∞, we have d > a and d > b. Only when p = ∞, we have
d = a or d = b (then the above construction fails). Also, the hardness for two dimen-
sions implies the hardness for higher dimensions. Therefore LCPCS is NP-hard for
the Lp metric, for 1 ≤ p < ∞, in two or higher dimensions. �

We next show that LCPCS is NP-hard even in one dimension.

Theorem 3 LCPCS is NP-Complete in one dimension.

Proof We prove LCPCS is NP-Complete by a reduction from the 3-SAT problem. Of
course, in this case all points lie on a line l. Given a 3-SAT formula F , we make the
following construction.

For each Boolean variable xi in F , let ki be the maximum number of times that xi

and ¬xi appear in F (see Fig. 5) . We first put 2ki points A1, . . . ,A2ki
on the segment

li1 which is a part of the line l and the distance between two adjacent points is d/2.
Then we put anther 2ki points B1, . . . ,B2ki

on the segment li2 which is another part
of the line l. The distance between two points Bj and Bj+1 is d − ε when j is odd, or
2d when j is even. Furthermore, we require that Bj+1 and Aj have the same distinct
color for 1 ≤ j ≤ 2ki − 1, and B1 and A2ki

have the same distinct color.
Let P1 be the set of points Aj when j is odd, and P2 be the set of points Aj when

j is even. Let Q1 be the set of points Bj when j is odd, and Q2 be the set of points
Bj when j is even. If we want to maximize the distance between the closest pair with
this configuration, we must select either the point sets P1 and Q1 or the point sets
P2 and Q2. If we select P1 and Q1, xi is assigned 0 and if we select P2 and Q2, xi

is assigned 1. The distance between every two variable gadgets is great enough (not
less than 4d). The colors of points in different variable gadgets are totally different.

For every clause in F , we need three additional points Pa , Pb and Pc. Certainly,
only Pa , Pb and Pc for the same clause have the same distinct color. We deal with
the clauses from left to right. For example, let the i-th clause be (xu ∨ xv ∨ ¬xw),
and suppose that xu appears h1 − 1 times, xv appears h2 − 1 times, ¬xw appears
h3 − 1 times in the previous i − 1 clauses. Then we put Pa on the segment lu2 and it
is to the left of the point B2h1−1 with distance ε, Pb on lv2 and it is to the left of the
pointB2h2−1 with distance ε, and Pc on the segment lw2 and it is to the right of the

Fig. 5 Variable gadget for variable xi for one dimension
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Fig. 6 Clause gadget for (xu ∨ xv ∨ ¬xw) for one dimension

point B2h3 (see Fig. 6). The distance between the closest pair become maximum (i.e.,
equal to d) if and only if at least one of xu or xv or ¬xw is assigned 1.

Therefore, F is satisfiable if and only if the largest possible distance between the
closest pair is equal to d . �

Actually we can prove that LCPCS is ( 1
2 + ε)-APX-hard, which means that it

is NP-hard to find any approximation algorithm with an approximation ratio better
than 1

2 .

Theorem 4 LCPCS is ( 1
2 + δ)-APX-hard (0 < δ ≤ 1

2 ) in one dimension.

Proof Consider Theorem 3 and Figs. 5 and 6, and let ε = d/2. Let O∗ be the optimal
solution value of LCPCS. We need to consider two cases:

(1) O∗ = d if and only if the 3-SAT formula F is satisfiable.
(2) O∗ ≤ d/2 if and only if the 3-SAT formula F is not satisfiable.

Hence, to find an approximation algorithm whose approximation ratio is better
than 1

2 is equivalent to finding an algorithm for O∗ = d , which is NP-hard. The the-
orem is proved. �

4 Hardness of PSMSTCS

In this section, we prove the NP-completeness of the Planar Smallest Minimum Span-
ning Tree Color-Spanning Set (PSMSTCS) problem. First we show that this problem
belongs to NP. Given an instance of the problem, we use as a certificate the m dif-
ferent color points chosen from n points. The verification algorithm computes the
MST of those m points and check whether the length is at most L. This process can
certainly be done in polynomial time.

We then prove that PSMSTCS is NP-hard by a reduction from the 3-SAT problem.
The general idea is that for a 3-SAT formula, we put some colored points on the plane
such that the given 3-SAT formula is satisfiable if and only if the length of the smallest
color-spanning minimum spanning tree equals some given value.

First we put the point O with a distinct color at (0,0). Given a 3-SAT formula
ψ , suppose that it has n1 variables x1, x2, . . . , xn1 and m1 clauses. For each variable
xi (1 ≤ i ≤ n1), six points p1

i , p2
i , p3

i , p4
i , p5

i and p6
i are put at (400i − 300,0),

(400i − 200,0), (400i − 100,0), (400i,0), (400i − 200,−100) and (400i,−100)

respectively.
If the j -th literal, which is in the k-th clause in ψ , is xi (¬xi ), we denote

the literal by xi,j,k (¬xi,j,k). For every literal xi,j,k (¬xi,j,k), where 1 ≤ i ≤ n1,
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Fig. 7 (a) The gadget for the variable x1, which is also the first literal and in the first clause, in PSMSTCS.
(b) The gadget for the variable x1, which is also the first literal and in the first clause, in PLMSTCS.
Different symbols means different colors. Every solid circle has a distinct color

j = 1,2,3, . . . and 1 ≤ k ≤ m1, eight additional points are constructed. p7
i,j,k is put

at (400i − 200,−100), p8
i,j,k at (400i,−100), p9

i,j,k at (0,400j − 300), p10
i,j,k at

(0,400j −200), p11
i,j,k at (0,400j −100), p12

i,j,k at (0,400j), p13
i,j,k at (− 1

3m1
,400j −

200) and p14
i,j,k at (− 1

3m1
,400j). Among those fourteen points, only p5

i and p6
i have

the same distinct color, only p7
i,j,k and p13

i,j,k have the same distinct color, only p8
i,j,k

and p14
i,j,k have the same distinct color, and every one of the other points has a distinct

color. Figure 7(a) shows the gadget for the variable x1 which is also the first literal
and in the first clause.

Then, we have a set P of 6n1 + 24m1 + 1 points for the formula ψ . 4n1 points
(except O) are put on the x-axis, 2n1 +2×3m1 = 2n1 +6m1 points are put on the line
y = −100, 4 × 3m1 = 12m1 (except O) points are put on the y-axis, 2 × 3m1 = 6m1

points are put on the line x = − 1
3m1

, one point is on the point O . Let TP be the planar
smallest color-spanning minimum spanning tree over P .

Since only p5
i and p6

i have the same distinct color, only p7
i,j,k and p13

i,j,k have the

same distinct color and only p8
i,j,k and p14

i,j,k have the same distinct color, we have to

select either {p5
i , p

7
i,j,k,p

14
i,j,k} or {p6

i , p
8
i,j,k,p

13
i,j,k} to get the planar smallest color-

spanning minimum spanning tree TP . Whichever set of points is selected, the length
of TP is 500n1 +400×3m1 +3m1 × 1

3m1
= 500n1 +1200m1 +1. If {p5

i , p
7
i,j,k,p

14
i,j,k}

are selected, xi is assigned 0. If {p6
i , p

8
i,j,k,p

13
i,j,k} are selected, xi is assigned 1 (see

Fig. 8).
Now, we need three additional points for every clause in the 3-SAT formula, where

only the three points in the same clause have the same distinct color. If there is a
literal xi1,j1,k1 which is the j1-th literal and in the k1-th clause, we put a point
por

i1,� j1
3 � at the position of p13

i1,j1,k1. If there is a literal ¬xi1,j1,k1, we put a point

por
i1,� j1

3 � at the position of p14
i1,j1,k1. Note that the points representing the literals in the

same clause should have the same distinct color. For example, we assume that one
clause is ¬xi1,j1,k1 ∨xi2,j1+1,k2 ∨xi3,j1+2,k3. We put three points por

i1,� j1
3 �, por

i2,� j1+1
3 �
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Fig. 8 Suppose x1 is the first
literal in the first clause of
3-SAT formula. (a) The planar
smallest color-spanning
minimum spanning tree when x1
is assigned 0. (b) The planar
smallest color-spanning
minimum spanning tree when x1
is assigned 1

Fig. 9 Gadget for the clause (x1 ∨ x2 ∨ ¬x3), assuming it is the first clause

and por
i3,� j1+2

3 � at p14
i1,j1,k1, p13

i2,j1+1,k2 and p13
i3,j1+2,k3 respectively. Note that only

por
i1,� j1

3 �, por
i2,� j1+1

3 � and por
i3,� j1+2

3 � have the same distinct color.

Figure 9 shows the variable gadget for the first clause (x1 ∨ x2 ∨ ¬x3) and Fig. 10
shows the gadgets for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4). Let Topt be the planar
smallest color-spanning minimum spanning tree over P plus the 3m1 points for every
clause. For literal xi,j,k (¬xi,j,k), if a variable xi is assigned 1 (0), {p6

i , p
8
i,j,k,p

13
i,j,k}

({p5
i , p

7
i,j,k,p

14
i,j,k}) are selected. That means the point por

i,� j
3 � can be selected to con-

struct Topt without adding any extra length comparing with TP . Therefore, if at least
one literal is assigned 1 in every clause, the length of Topt equals that of TP . If all
three literals in at least one clause are assigned 0, all the three points for the clause
cannot be covered by points in TP and the length of Topt is greater than that of TP .
Therefore, we obtain that a 3-SAT formula ψ with n1 variables x1, x2, . . . , xn1 and
m1 clauses is satisfiable if and only if the length of the corresponding Topt is equal
to 500n1 + 1200m1 + 1. Because the 3-SAT problem is NP-Complete, we obtain the
following theorem:

Theorem 5 PSMSTCS is NP-Complete.
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Fig. 10 Gadgets for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4)

5 Hardness of PLMSTCS

In this section, we prove the NP-completeness of the Planar Largest Minimum Span-
ning Tree Color-Spanning Set (PSMSTCS) problem. Again, we first show that this
problem belongs to NP. Given an instance of the problem, we use as a certificate the
m different color points chosen from n points. The verification algorithm computes
the MST of those m points and check whether the length is at most L. This process
can certainly be done in polynomial time.

We prove this problem is NP-hard by a reduction from the 3-SAT problem. First
we put a point O with a distinct color at (0,0). For a 3-SAT formula ψ , suppose that
it has n1 variables x1, x2, . . . , xn1 and m1 clauses. For each variable xi (1 ≤ i ≤ n1),
five points p1

i , p2
i , p3

i , p4
i and p5

i are put at (201i − 101,0), (201i − 1,0), (201i,0),
(201i − 1,−10), (201i,−10) respectively.

If the j -th literal, which is in the k-th clause in ψ , is xi (¬xi ), we also denote
the literal by xi,j,k (¬xi,j,k). For every literal xi,j,k (or ¬xi,j,k), ten additional points
are put down. p6

i,j,k is put at (201i − 1,−9 − 2k), p7
i,j,k at (201i,−9 − 2k), p8

i,j,k at

(201i − 1,−10 − 2k), p9
i,j,k at (201i,−10 − 2k), p10

i,j,k at (0,400j − 300), p11
i,j,k at

(0,400j − 200), p12
i,j,k at (0,400j − 100), p13

i,j,k at (0,400j), p14
i,j,k at (−0.5,400j −

200) and p15
i,j,k at (−0.5,400j). Among those fifteen points, only p4

i and p5
i have the

same distinct color, only p6
i,j,k and p14

i,j,k have the same distinct color, only p7
i,j,k and

p15
i,j,k have the same distinct color, only p8

i,j,k and p9
i,j,k have the same distinct color,

and every one of the other points has a distinct color. Figure 7(b) shows the gadget
for the variable x1 which is the first literal and in the first clause.
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Fig. 11 (a) The planar largest
color-spanning minimum
spanning tree when x1 is
assigned 0. (b) The planar
largest color-spanning minimum
spanning tree when x1 is
assigned 1

Then, we obtain a set P of 5n1 + 30m1 + 1 points in the plane. Let TP be the
planar largest color-spanning minimum spanning tree over P . 3n1 + 12m1 + 1 points
are on the x-axis and the y-axis, and every one of them has a distinct color.

Since only p4
i and p5

i have the same distinct color, only p6
i,j,k and p14

i,j,k have the

same distinct color, only p7
i,j,k and p15

i,j,k have the same distinct color, only p8
i,j,k and

p9
i,j,k have the same distinct color, we have to select either {p4

i , p
7
i,j,k,p

8
i,j,k,p

14
i,j,k} or

{p5
i , p

6
i,j,k,p

9
i,j,k,p

15
i,j,k} to obtain the planar largest color-spanning minimum span-

ning tree TP whose length is (201 + 10)n1 + 3m1(400 + 0.5 + 2
√

2) = 211n1 +
1201.5m1 + 6

√
2m1. If {p4

i , p
7
i,j,k,p

8
i,j,k,p

14
i,j,k} are selected, xi is assigned 0. If

{p5
i , p

6
i,j,k,p

9
i,j,k,p

15
i,j,k} are selected, xi is assigned 1 (see Fig. 11).

Now, we need three additional points for every clause in the 3-SAT formula, where
only the three points in the same clause have the same distinct color. For every literal
xi,j,k (or ¬xi,j,k), we put one point por

i,� j
3 � at the position of p14

i,j,k (or p15
i,j,k). Figure 12

shows the gadgets for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4).
Let Topt be the planar largest color-spanning minimum spanning tree over P plus

the 3m1 points for every clause. For literal xi,j,k (¬xi,j,k), if a variable xi is assigned
1 (0), {p5

i , p
6
i,j,k,p

9
i,j,k,p

15
i,j,k} ({p4

i , p
7
i,j,k,p

8
i,j,k,p

14
i,j,k}) are selected. This means

that the point por
i,� j

3 � can be selected to construct Topt . Therefore, if at least one literal

is assigned 1 in every clause, the length of Topt equals that of TP plus m1 ∗ 0.5. If
all three literals in at least one clause are assigned 0, the length of Topt is less than
that of TP plus 3m1 ∗ 0.5. Consequently, we obtain that a 3-SAT formula ψ with
n1 variables x1, x2, . . . , xn1 and m1 clauses is satisfiable if and only if the length of
the corresponding Topt is equal to 211n1 + 1202m1 + 6

√
2m1. Because the 3-SAT

problem is NP-Complete, we obtain the following theorem:

Theorem 6 PLMSTCS is NP-Complete.

6 Hardness of PSPCHCS

Finally in Sect. 6, we prove the NP-completeness of the Planar Smallest Perimeter
Convex Hull Color-Spanning Set (PSPCHCS) problem, followed with two simple
approximation algorithms.
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Fig. 12 Gadgets for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4)

6.1 NP-completeness for PSPCHCS

First we show that this problem belongs to NP. Given an instance of the problem, we
use as a certificate the m different color points chosen from n points. The verification
algorithm computes the perimeter of the convex hull of those m points and check
whether the perimeter is at most p. This process can certainly be done in polynomial
time.

Again, we prove this problem is NP-hard by a reduction from the 3-SAT problem.
For a given 3-SAT formula, suppose that it has n1 variables x1, x2, . . . , xn1 . First we
draw a circle C. For two points a and b on C, let ˜ab be the arc of C from a to b and
ab be the line segment between a and b. Let the length of ab be |ab|.

For each variable xj (j = 1,2, . . . , n1), we put 10 points x1
j , x2

j , . . . , x10
j on the

circle C in clockwise order (see Fig. 13). Note that in Fig. 13 these points are shown
just for the clarity purpose, we can in fact screeze these points so that all the 10n1
points can be put on the circle C. Only x2

j and x3
j have the same distinct color and

only p has a distinct color for every one point p of the other points. |x1
j x2

j | = |x3
j x4

j |.
Then we add two additional points x11

j and x12
j , where x11

j is on the line segment x1
j x2

j

and x12
j is on the line segment x3

j x4
j . Only x11

j and x6
j have the same distinct color,

and only x12
j and x9

j have the same distinct color. Moreover, we have the following
equations:

∣

∣x1
j x2

j

∣

∣ + ∣

∣x2
j x4

j

∣

∣ = ∣

∣x1
j x3

j

∣

∣ + ∣

∣x3
j x4

j

∣

∣ = Z1;
∣

∣x5
j x7

j

∣

∣ = ∣

∣x8
j x10

j

∣

∣ = Z2;
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Fig. 13 The gadget for xj . The
colors of all the empty circles
are different from each other and
from solid colored points. Solid
line segments must appear on
CHopt . Dashed line segments
are candidates for edges on
CHopt

∣

∣x5
j x6

j

∣

∣ = ∣

∣x6
j x7

j

∣

∣ = ∣

∣x8
j x9

j

∣

∣ = ∣

∣x9
j x10

j

∣

∣ = Z3;
∣

∣x1
j x11

j

∣

∣ + ∣

∣x11
j x3

j

∣

∣ − ∣

∣x1
j x3

j

∣

∣ = ∣

∣x2
j x12

j

∣

∣ + ∣

∣x12
j x4

j

∣

∣ − ∣

∣x2
j x4

j

∣

∣ = �Z1;
2Z3 − Z2 = �Z2;�Z1 � �Z2.

�p1 � �p2 ensures that either x1
j x2

j ∪ x2
j x4

j or x1
j x3

j ∪ x3
j x4

j is the part of CHopt.

Suppose we select x1
j , x2

j and x4
j to be the vertices of CHopt. Then we must select

x11
j , x8

j , x9
j , x10

j , x5
j and x7

j in order to obtain the minimum length.

If we select x1
j x2

j ∪ x2
j x4

j ∪ x4
j x5

j ∪ x5
j x7

j ∪ x7
j x8

j ∪ x8
j x9

j ∪ x9
j x10

j as a part of CHopt,

the Boolean variable xj is assigned 1. If we select x1
j x3

j ∪ x3
j x4

j ∪ x4
j x5

j ∪ x5
j x6

j ∪
x6
j x7

j ∪ x7
j x8

j ∪ x8
j x10

j as a part of CHopt, xj is assigned 0.
Therefore, if we connect all the n1 gadgets for the n1 variables together to con-

struct a convex hull CH, the perimeter of CH is n1 × (Z1 + 2Z2 + �Z2) + Z4 where

Z4 = 2
∑n1

j=1(|x4
j x5

j | + |x7
j x8

j |) + ∑n1−1
j=1 |x10

j x1
j+1| + |x10

n1
x1

1 |.
We need three additional points for every clause and only the three points for the

same clause have the same distinct color. For every positive literal xj in one clause,
we put a new point at the position of x13

j which is inside the triangle �x5
j x6

j x7
j such

that �Z3 = |x5
j x13

j | + |x13
j x7

j | − |x5
j x7

j | � �Z2. For every negative literal ¬xj in

one clause, we put a new point at the position of x14
j which is inside the triangle

�x8
j x9

j x10
j such that �Z3 = |x8

j x14
j | + |x14

j x10
j | − |x8

j x10
j | � �Z2. For example, if

there is a clause (x1 ∨ x2 ∨ ¬x3), we put three points at the position of x13
1 , x13

2
and x14

3 respectively. x13
1 , x13

2 and x14
3 lie in the triangle �x5

1x6
1x7

1 , �x5
2x6

2x7
2 and

�x8
3x9

3x10
3 respectively.

We call x6
j and x9

j the apex-points, and call x13
j and x14

j the or-points. If all the
three literals in one clause are assigned 0, then the corresponding apex-points will not
be selected as the vertices of CHopt. One of the three or-points has to be selected as
the vertex of CHopt because only they have the same distinct color. Then the perimeter
of CHopt at least equals that of CH plus �Z3. If a given 3-SAT formula with n1
variables is satisfiable, the perimeter of CHopt equals n1 × (Z1 + 2Z2 + �Z2) +
Z4. Similarly, at least one literal of every clause is assigned 1 and the given 3-SAT
formula is satisfiable if the perimeter of CHopt over the gadgets equals n1 × (Z1 +
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2Z2 + �Z2) + Z4. Otherwise, the perimeter of the convex hull CHopt ≥ n1 × (Z1 +
2Z2 + �Z2) + Z4 + �Z3. Because the 3-SAT problem is NP-Complete, we obtain
the following theorem:

Theorem 7 PSPCHCS is NP-Complete.

6.2 Approximation algorithms for PSPCHCS

Here we present two simple approximation algorithms for the PSPCHCS problem.

6.2.1 The π -approximation algorithm

For every point p in the plane, select m− 1 points p1, . . . , pm−1. The colors of every
two points of the m selected points are different. Moreover, pi (1 ≤ i ≤ m − 1) is the
closest point from p among all the points which have the same color with pi . Use the
m points to construct a convex hull CHp and compute the perimeter of CHp . Thus,
we can obtain n perimeters and the smallest one is what we would return.

The running time for constructing a convex hull is O(m logm) according to Gra-
ham (1972) and the running time for finding out the other m− 1 points is O(n) when
p is selected. Therefore, the total running time of this algorithm is O(n(n+m logm)).

Assume that the convex hull we obtain is CHapp, the length of CHapp is perapp,
the optimal convex hull is CHopt and perimeter of CHopt is peropt . Now we prove that
perapp ≤ π ∗ peropt.

Suppose pa and pb are the vertices of CHopt and papb is the diameter of CHopt

(see Fig. 14). Let r = |papb|. We draw a circle C with center pa and radius r . When
we select pa as the above p and select the m − 1 points p1, . . . , pm−1 to construct
CHpa , CHpa must be inside C because pi (1 ≤ i ≤ m− 1) is the closest point from p

among all the points which have the same color with pi and CHopt is inside C. Then
the perimeter of CHpa , denoted by perpa

, satisfies perpa
≤ 2πr . Because perapp ≤

perpa
and peropt ≥ 2r , perapp ≤ π ∗ peropt.

Theorem 8 There is a π -approximation algorithm for PSPCHCS with a running
time O(n2 + nm logm).

Fig. 14 Illustration of the
π -approximation algorithm
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Fig. 15 Illustration of the
√

2-approximation algorithm

6.2.2 The
√

2-approximation algorithm

In Abellanas et al. (2001b) proposed an O(min{n(n − m)2, nm(n − m)}) time algo-
rithm for computing the smallest perimeter axis-parallel rectangle enclosing at least
one point of each color. We use the above algorithm to obtain the smallest perimeter
axis-parallel rectangle R. After R is obtained, we construct a convex hull CHapp over
the points inside R. CHapp is the convex hull we need.

Let the perimeter of R be perR and let the diagonal of R be ldia and the length
of ldia be d . CHapp contains at least one point of each color and CHapp is totally
inside R (see Fig. 15). Therefore perapp ≤ perR . Let R′ be the smallest perimeter
axis-parallel rectangle enclosing CHopt, perR′ be the perimeter of R′, l′dia be the
diagonal of R′ and d ′ be the length of l′dia. Because R′ is the smallest perimeter axis-
parallel rectangle, at least one point with a distinct color lies on every edge of R′.
Then perR′ ≥ peropt ≥ 2d ′. We know perR′ ≤ 2

√
2d ′. Therefore, perR′ ≥ peropt ≥√

2
2 perR′ . Hence we have peropt ≤ perapp ≤ √

2peropt, due to that perR′ ≥ perR ≥
perapp.

Theorem 9 There is a
√

2-approximation algorithm for PSPCHCS with a running
time O(min{n(n − m)2, nm(n − m)}).

7 Conclusions

In this paper we study several geometric problems of color-spanning sets. We propose
an O(n1+ε) time algorithm for MaxDCS and show that LCPCS is NP-Complete for
the Lp (1 ≤ p < ∞) metric. Moreover, we prove that LCPCS is ( 1

2 +ε)-APX-hard in
one dimension, which means that finding an approximation algorithm whose approx-
imation ratio is better than 1

2 is NP-hard. Then we prove that PSMSTCS, PLMSTCS
and PSPCHCS are NP-Complete and propose two efficient constant factor approxi-
mation algorithms for PSPCHCS. For the future work, it will be interesting to inves-
tigate whether there exists an 1

2 -approximation for LCPCS in one dimension.
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