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Abstract In this paper, we study the complexity and the approximation of the k
most vital edges (nodes) and min edge (node) blocker versions for the minimum
spanning tree problem (MST). We show that the k most vital edges MST problem
is NP-hard even for complete graphs with weights O or 1 and 3-approximable for
graphs with weights O or 1. We also prove that the k£ most vital nodes MST problem
is not approximable within a factor n' =€, for any € > 0, unless NP = ZPP, even for
complete graphs of order n with weights O or 1. Furthermore, we show that the min
edge blocker MST problem is NP-hard even for complete graphs with weights 0 or 1
and that the min node blocker MST problem is NP-hard to approximate within a
factor 1.36 even for graphs with weights O or 1.

Keywords Most vital edges/nodes - Min edge/node blocker - Minimum spanning
tree - Complexity - Approximation
1 Introduction

For problems of security or reliability, it is important to assess the capacity of a sys-
tem to resist to a destruction or a failure of a number of its entities. This amounts
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to identifying critical entities which can be determined with respect to a measure of
performance or a cost associated to the system. Modeling the network as a weighted
connected graph where entities are edges or nodes and costs are weights associated
to edges, one way of identifying critical entities is to determine a subset of edges
or nodes whose removal from the graph causes the largest cost increase. Another
way is to find a subset of edges or nodes of minimum cardinality whose removal
involves that the optimal cost in the residual network is larger than a given thresh-
old. In the literature these problems are referred to respectively as the k most vital
edges/nodes problem and min edge/node blocker problem. In this paper the k most
vital edges/nodes and min edge/node blocker versions for the minimum spanning tree
problem are investigated.

The problem of finding the k most vital edges of a graph has been studied for
various problems including shortest path (Bar-Noy et al. 1995; Khachiyan et al. 2008;
Nardelli et al. 2001), maximum flow (Wollmer 1964; Ratliff et al. 1975; Wood 1993),
1-median and 1-center (Bazgan et al. 2010). For the minimum spanning tree problem,
Frederickson and Solis-Oba (1996) showed that Kk MOST VITAL EDGES MST is NP-
hard and proposed an O (log k)-approximation algorithm. For a fixed k, the problem is
obviously polynomial. The case kK = 1 has been largely studied in the literature (Hsu
et al. 1991; Iwano and Katoh 1993; Suraweera et al. 1995). Several exact algorithms
based on an explicit enumeration of possible solutions have been proposed (Liang
2001; Liang and Shen 1997; Shen 1999; Bazgan et al. 2011).

After introducing some preliminaries in Sect. 2, we show in Sect. 3 that kK MOST
VITAL EDGES MST is NP-hard even for complete graphs with weights 0 or 1 and 3-
approximable for graphs with weights 0 or 1. We also prove, in Sect. 4, that k MOST
VITAL NODES MST is not approximable within a factor n' ¢, for any € > 0, unless
NP = ZPP, even for complete graphs of order n with weights O or 1. In Sect. 5, we
establish that MIN EDGE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1. In Sect. 6, we show that MIN NODE BLOCKER MST is NP-hard to
approximate within a factor 1.36 even for graphs with weights O or 1. Final remarks
are provided in Sect. 7.

2 Basic concepts and preliminary results

Let G = (V, E) be a weighted undirected connected graph where |V | =n, |E| =m
and w(e) > 0 is the integer weight of each edge e € E. Denote by G — R the graph
obtained from G by removing the subset R of edges or nodes.

We consider in this paper the k most vital edges (nodes) and min edge (node)
blocker versions of the minimum spanning tree problem. These problems are defined
as follows:

k MOST VITAL EDGES (resp. NODE) MST

Input: A connected weighted graph G = (V, E) where each edge e € E has an in-
teger weight w, > 0 and a positive integer k.

Output: A subset S* C E (resp. S* C V), with |S*| = k, such that the weight of a
minimum spanning tree in G — S* is maximum.
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For an instance of k MOST VITAL EDGES MST defined on a graph G, we consider
that k < A(G) — 1 where A(G) is the edge-connectivity of G. Otherwise, any selection
of k edges including the edges of a minimum cardinality cut would lead to a solution
with infinite value since we disconnect G.

For an instance of kK MOST VITAL NODES MST defined on a graph G, we con-
sider that k < «(G) — 1, where «(G) is the node-connectivity of G. Otherwise, any
selection of k nodes including the nodes of a minimum node separator would lead to
a solution with infinite value since we disconnect G.

MIN EDGE (resp. NODE) BLOCKER MST

Input: A connected weighted graph G = (V, E) where each edge ¢ € E has an in-
teger weight w, > 0 and a positive integer U.

Output: A subset $* C E (resp. $* C V) of minimum cardinality such that the
weight of a minimum spanning tree in G — S* is greater than or equal to U.

An optimal solution S* of an instance of MIN EDGE (resp. NODE) BLOCKER
MST defined on a graph G is such that |[S*| < A(G) (resp. |S*| < x(G)) since, at
worst, it is necessary to disconnect G so as to exceed the threshold U'.

Given an optimization problem in NPO and an instance / of this problem, we use
|1] to denote the size of I, opt(I) to denote the optimum value of 7, and val(Z, S) to
denote the value of a feasible solution S of instance /. The performance ratio of S
(or approximation factor) is r (I, §) = max{ VZ;%’]‘;), VZ‘;’Z;IS)) }. The error of S, (1, S),
is defined by ¢(Z, S) =r ([, S) — 1.

For a function f, an algorithm is an f (|1|)-approximation, if for every instance
of the problem, it returns a solution S such that » (1, S) < f(|I]).

The notion of a gap-reduction was introduced in Arora and Lund (1996). A max-
imization problem IT is called gap-reducible to a maximization problem IT" with pa-
rameters (c, p) and (c/, p’), p, p’ > 1, if there exists a polynomial time computable
function f which maps any instance I of IT to an instance I’ of IT’, while satisfying
the following properties.

o Ifopt(I) > c then opt(I') > ¢’
o Ifopt(I) < % then opt(I') < %.

The interest of a gap-reduction is that if IT is not approximable within a factor p
then IT’ is not approximable within a factor p’.

The notion of an E-reduction (error-preserving reduction) was introduced by
Khanna et al. (1994). A problem IT is called E-reducible to a problem IT’, if there
exist polynomial time computable functions f, g and a constant 8 such that

e f maps an instance [ of IT to an instance I’ of IT’ such that opt(I) and opt(I’) are
related by a polynomial factor, i.e. there exists a polynomial p such that opt(I’) <
p(IDopt(1),

e g maps any solution S’ of I’ to one solution S of I such that (I, §) < Be(I’, S').

An important property of an E-reduction is that it can be applied uniformly to all
levels of approximability; that is, if IT is E-reducible to IT" and I1" belongs to C then
IT belongs to C as well, where C is a class of optimization problems with any kind of
approximation guarantee (see also Khanna et al. 1994).
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A problem IT is called E-equivalent to a problem I1" if I1 is E-reducible to T’
and IT' is E-reducible to TI.

3 k most vital edges MST

Frederickson and Solis-Oba (1996) show that k MoOST VITAL EDGES MST is
NP-hard even for graphs with weights 0 or 1 and that the problem is O (logk)-
approximable for graphs with arbitrary weights. In this section, we strengthen the
NP-hardness result of Frederickson and Solis-Oba by specifying a more restricted
class of instances for which the problem remains NP-hard. Moreover, we establish a
constant approximation result for graphs with weights O or 1.

First we show that we can decide in polynomial time if the optimum value is a
fixed constant.

Proposition 1 For any fixed value ¢ > 0, it can be checked in polynomial time if the
optimum value of k MOST VITAL EDGES MST on graphs with weights 0 or 1 on
edges is c.

Proof Consider an instance I of k MOST VITAL EDGES MST formed by a weighted
graph G = (V, E), with weights 0 or 1, and by a positive integer k. Denote by
Gy = (V, Ep) the subgraph induced by the edges of weight 0. Let E1 = E \ Ep and
my = |Eq].

We have that opt(I) = 0 if and only if Gg is (k + 1) edge-connected. Indeed,
if opt(I) = 0 then G must be (k + 1) edge-connected otherwise opt(I) > 0. Con-
versely, if Gg is (k 4 1) edge-connected, then removing any subset of k edges from
Gy induces a minimum spanning tree of weight 0. Consequently, it is polynomial to
verify if opt(I) = 0 since it is polynomial to determine the edge-connectivity of a
given graph. Once we checked iteratively that opt(I) # £, for 0 < ¢ <c¢ — 1, we con-
sider all the ("Z‘) graphs G U R, for any subset R C E| with |R| = c. We can decide
in polynomial time if opt(I) = c by verifying if Go U R is (k + 1) edge-connected. []

We show in the following that K MOST VITAL EDGES MST is E-equivalent to
MAX COMPONENT defined as follows.

MAX COMPONENT

Input: a connected graph and a positive integer k.
Output: a subset of k edges to be removed such that the number of connected com-
ponents in the obtained graph is maximum.

Theorem 1 k& MoOST VITAL EDGES MST for graphs with weights 0 or 1 is
E-equivalent to MAX COMPONENT.

Proof We first show that MAX COMPONENT is E-reducible to k MOST VITAL

EDGES MST. Given an instance / of MAX COMPONENT formed by a graph G =
(V, E) with n nodes, we construct an instance I’ of k MOST VITAL EDGES MST
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consisting of a complete graph G’ = (V, E’) where each edge (i, j) € E’ is assigned
aweight 0 if (i, j) € E and 1 otherwise.

Let S* C E be a subset of k edges whose deletion from G generates a maximum
number of connected components. By removing S* from G’, all the connected com-
ponents of G — S* are linked in G’ — S* by edges of weight 1. Thus, the weight of a
minimum spanning tree in G’ — S* is equal to the number of connected components
in G — $* minus 1. Therefore, we have opt(I") > opt(I) — 1.

Let S’ C E’ be a subset of k edges whose deletion from G’ generates a minimum
spanning tree in G’ — 8’ of weight v. If §” contains edges of weight 1 then by replac-
ing these edges by edges of weight 0, either the weight of a minimum spanning tree
in the modified graph remains unchanged or it increases. Thus, considering S defined
from S’ by replacing edges of weight 1 with edges from E’\ S’ of weight 0, se de-
fine a subset S C E such that G — S contains at least v + 1 connected components.
Hence, val(1, S) > val(I’, S’) + 1. In particular, when S is an optimum solution,
we have opt(I') + 1 <val(1, S) < opt(I). It follows from the previous result that
opt(I) = opt(I') + 1.

Therefore, we have opt(1’) < opt(I) and s(I, S) = VZ%];) —-1< v;ﬁtl(,{g;l_l —1=
Pt = P = e’ S,

We show now that K MOST VITAL EDGES MST is E-reducible to MAX COMPO-
NENT. Consider an instance I of kK MOST VITAL EDGES MST formed by a graph
G = (V, E) with edges of weight 0 or 1. From Proposition 1, we can consider that
opt(I) > 0. We construct an instance I’ of MAX COMPONENT consisting of the graph
G’ = (V, E’) obtained from G by considering only edges of weight 0.

Let S* be a subset of k edges whose removal from G generates a minimum span-
ning tree 7 in G — §* of maximum weight. The weight of T being equal to the num-
ber of edges of T of weight 1, by deleting edges of $* N E’ plus any k — |S* N E’|
edges from E’, the number of connected components in G’ — S* is at least equal to
the weight of T plus 1. Thus, we have opr(I) > opt(I) + 1.

Consider a subset S’ of k edges whose deletion from G’ partitions G’ into
val(I’, S") connected components. If val(1’, S’) = 1 then we can replace S’ by an-
other solution with value at least 2 obtained by selecting k edges including a mini-
mum cut since from Proposition 1, G’ is not (k + 1) edge-connected. Thus, we can
assume that val(I’, S") > 2. By removing S’ from G, all connected components of
G’ — &' are linked in G — S’ by edges of weight 1. Thus, the weight of a minimum
spanning tree in G — S’ is equal to val(I’, S") — 1. Then, val(I, ") > val(I’, §') — 1.
In particular, when S’ is an optimum solution in G’, we have val(I, S") = opt(I') — 1
and thus opt(I) > opt(I') — 1. It follows from the previous result that ops(I') =
opt(I)+ 1.

Therefore, since opt(I) > 0, we have opt(I') < 2o0pt(I) and £(1,S’)

opr(l) 1 < opr(IH—1 1 = opt(I")—val(I',S") __ val(I',S") opt(I")—val(l’,S")

val(1,5") — val(I’,§5")—1 val(1',8")—1 — wval(I’,§")—1 val(I',S") =
opt(I")—val(l’,S") __ ;oo
ZW = 28(1 5 S ) O

From Theorem 1, we obtain the two following results. First, we slightly strengthen
the NP-hardness result of Frederickson and Solis-Oba (1996) by specifying a more
restricted class of instances for which the problem remains NP-hard.
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Corollary 1 k£ MOST VITAL EDGES MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof The E-reduction from MAX COMPONENT to k MOST VITAL EDGES MST
constructs from any graph G a complete graph G’ with weights 0 or 1. Since MAX
COMPONENT is NP-hard (Frederickson and Solis-Oba 1996), the results follows. []

Second, we establish a constant approximation result for graphs with weights 0
or 1.

Corollary 2 k¥ MoST VITAL EDGES MST is 3-approximable for graphs with
weights 0 or 1.

Proof In the E-reduction from £ MOST VITAL EDGES MST to MAX COMPONENT,
we have shown that any solution S of I’ is such that (I, S) < 2&(I’, §). Thus,
r(I,S) — 1 <2(r(I',S) — 1) and then r(I,S) < 2r(I’,S) — 1. Since r(I’, S) =2
as established in Frederickson and Solis-Oba (1996), we have r(I, S) < 3. Il

4 k most vital nodes MST

We study in this section the complexity of K MOST VITAL NODES MST. First we
show that K MOST VITAL NODES MST is at least as hard as k MOST VITAL EDGES
MST by establishing an E-reduction from the edge version to the node version. As
far as we know, this is the first result in the literature that establishes a direct rela-
tionship between the k most vital edge version and the & most vital node version of a
problem. Using the NP-hardness of the edge version even for graphs with weights 0
or 1 (Frederickson and Solis-Oba 1996), this reduction implies the NP-hardness of k
MosST VITAL NODES MST on the same class of graphs. We strengthen this result by
proving that k MOST VITAL NODES MST is not approximable within a factor n! ¢,
for any € > 0, if NP # ZPP, even for complete graphs with weights O or 1.

Theorem 2 kX MOST VITAL EDGES MST is E-reducible to k MOST VITAL NODES
MST.

Proof Consider an instance I of K MOST VITAL EDGES MST formed by a weighted

graph G = (V, E) with V = {vy,...,v,} and |E| = m. We construct an instance
I’ of Kk MOST VITAL NODES MST formed by a graph G’ = (V’, E’) as follows
(see Fig. 1). We consider in G’ the nodes of V and m nodes ry,...,ry,. Let R =
{r1,...,rm}. To each edge e, = (v;, v;) € E of weight w;;, £=1,...,mandi < j,
we associate two edges in E” : (v;, r¢) of weight w;; and (r¢, v;) of weight 0. Let K",
fori =1,...,n, ben complete graphs of size k with X, = {vi], e vf} and weights
0 on their edges. We connect each node v;, fori = 1,...,n, to the k nodes of K,l)"

and assign a weight 0 to these added edges. We also add, for each edge (v;,r¢) € E’
the edges (vf, re), for h =1, ..., k, with the same weight as the weight of the edge

(vi, o).
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Fig. 1 Construction of an instance of k MOST VITAL NODES MST from an instance of k MOST VITAL
EDGES MST

Suppose first that there exists a subset $* C E, with |S*| = k, such that a minimum
spanning tree 7' in G — S* has a maximum weight. We set N* = {r¢ : e, € S*}. By
deleting N* from G’, we construct a spanning tree T’ in G’ — N* as follows: we
take for each edge ey = (v;, vj) € T withi < j, the edges (v;, 7¢) and (¢, v;) in T,
for each edge e, = (v;,v;) ¢ T withi < j, the edge (1, v;) in T’, and we add the
paths v;, vil, cee, vl'f, i =1,...,n. We prove, by contradiction, that 7’ is a minimum
spanning tree in G’ — N*. Suppose that there exists a spanning tree 7”7 in G’ — N*
of weight strictly inferior to that of 7’. Then, the spanning tree constituted by the
edges e; = (v;, v;) such that (v;,r¢) € T” has a smaller weight than 7' in G — §*,
contradicting the optimality of 7. Thus, 7" is a minimum spanning tree in G’ — N*.
Therefore, we have opt(I’) > opt(I).

Consider now a subset N, with |N| = k, and a minimum spanning tree 7’ in G’ —
N.If N contains v; or one node vf’, for a given i and #, then the weight of a MST
in G’ — N is the same asin G’ — (N \ {v;}) or G’ — (N \ {vf’}). When removing all
nodes v;, vf’ from N we obtain a subset N’ C R, |N'| < k. Since N’ corresponds to
edges in G, any subset N” C R containing N’ such that |[N”| = k is such that the
weight of a MST in G’ — N” is at least as large as the weight of a MST in G’ — N'.
Let S = {e; : r¢ € N”}. Consider T the spanning tree in G — S constituted by the
edges e; = (v;, v;) such that the edge (v;, r¢) € T’'. T is optimal, since otherwise, the
existence of a spanning tree 7" of weight strictly inferior to that of T would imply
that the corresponding spanning tree constructed from T” in G’ — N”, as explained
above, has a weight strictly inferior to that of T’. Thus, T is a minimum spanning tree
in G — S of the same weight as T’. Hence, val(I, §) = val(I’, N"). In particular, when
N" is an optimal solution in G’, we have opt(I") = val(I, §) < opt(I). It follows from
the previous result that ops(I) = opt(I'). Therefore, we have (I, S) =¢(I’, N"). O
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Fig. 2 Construction of an instance of k MOST VITAL NODES MST from an instance of MAX INDEPEN-
DENT SET

Theorem 3 k MoOST VITAL NODES MST is not approximable within a factor n' =€,
for any € > 0, unless NP = ZPP, even for complete graphs of order n with weights 0
orl.

Proof We propose a gap-reduction from MAX INDEPENDENT SET to kK MOST VITAL
NODES MST.

Denote by o(G) the cardinality of maximum independent set of G. Let g be the
non approximation gap of MAX INDEPENDENT SET. Thus, for a given integer ¢, it is
NP-hard to decide if «(G) = £ or a(G) < g

Given an instance / of MAX INDEPENDENT SET formed by a graph G = (V, E),
we construct an instance I’ of kK MOST VITAL NODES MST constituted by a com-
plete graph G’ = (V, E’) where each edge (i, j) € E’ is assigned a weight 0 if
(i, j) € E and 1 otherwise (see Fig. 2). We set k =n — £. We show that:

1. a(G)=t=opt(I')> £ — 1
2. a(G) < f = opt(l') < ‘fg;l

1. Suppose first that there exists an independent set V* in G of cardinality £ and
let N* = V\V*. By removing N* from G’, all nodes of G’ — N* are connected by
edges of weight 1 only. Thus, we obtain a minimum spanning tree in G’ — N* of
value £ — 1. Therefore, opt(I') > £ — 1.

2. Suppose now that «(G) < é Hence, there exists a maximum independent set
V* such that |[V*| < é If the node set N* of cardinality n — £ to be removed from
G’ is such that N* N V* = {J then let V| = V\(N* U V*). Each node of V; is at least
connected to one node of V* by an edge of weight 0, otherwise V* U {v} would be an
independent set in G of larger cardinality. Thus, the weight of a minimum spanning
tree in G’ — N* cannot exceed § — 1. Since g > 1, we have ﬁ —1< %. Therefore
if x(G) < g then opr(I') < g;—l If N* N V* % () then a minimum spanning tree in
G’ — N* would have a weight strictly inferior to § — 1.

Since MAX INDEPENDENT SET is not approximable within a factor n!~¢, for any
€ > 0, unless NP = ZPP (Hastad 1999), we deduce that kK MOST VITAL NODES
MST is also not nl_f-approximable, for any € > 0, unless NP = ZPP. O

From Theorem 3 and Corollary 2, we can give the following result.
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Corollary 3 There is no E-reduction from k MOST VITAL NODES MST for graphs
with weights 0 or 1 to k MOST VITAL EDGES MST for graphs with weights 0 or 1.

5 Min edge blocker MST

We present in the following a relationship between k MOST VITAL EDGES MST and
MIN EDGE BLOCKER MST.

Proposition 2 k¥ MoST VITAL EDGES MST and MIN EDGE BLOCKER MST are
polynomial-time equivalent.

Proof 1f an algorithm A solves k MOST VITAL EDGES MST defined on graph G
for all 1 <k < A(G) — 1, then we can run A; for k =1,...,A(G) — 1 and choose
the smallest k yielding optimum at least U. If no k exists then the optimum for MIN
EDGE BLOCKER MST is A(G). Conversely, if an algorithm By solves MIN EDGE
BLOCKER MST with any bound U, we can apply binary search to locate the largest
U that requires the removal of at most k nodes. |

Theorem 4 MIN EDGE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof Follows from Proposition 2 and Corollary 1. g

6 Min node blocker MST
The equivalent of Proposition 2 applied to nodes also holds (with a similar proof).

Proposition 3 k£ MOST VITAL NODES MST and MIN NODE BLOCKER MST are
polynomial-time equivalent.

Theorem 5 MIN NODE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof Follows from Proposition 3 and Theorem 3. g

This result could also be established by the following gap-reduction from MIN
EDGE BLOCKER MST.

Theorem 6 MIN EDGE BLOCKER MST is gap-reducible to MIN NODE BLOCKER
MST.

Proof Consider an instance I for MIN EDGE BLOCKER MST formed by a graph
G = (V,E), with |V| =n and |E| = m, and a positive integer U. We construct an
instance I’ for MIN NODE BLOCKER MST, constituted by a graph G’ = (V’, E) and
a positive integer U, using the same construction as in Theorem 2, but we modify the
size of the n complete graphs which we set to be m + 1. We show that
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1. opt(I) <c= opt(I') <c
2. opt(I) > cp = opt(I') > cp.

1. Let S* C E be a subset of minimum cardinality such that a minimum spanning
tree T in G — S™* has a weight at least U. We set N* = {ry : ¢, € S*}. By deleting N*
from G’, we construct a minimum spanning tree 7’ in G’ — N* of the same weight as
that of T as explained in Theorem 2. Thus, the weight of 7’ is at least U. Therefore,
opt(I') < opt(I) < c.

2. Suppose now that opt(I) > cp. When we remove all nodes of R from G’, the
weight of a minimum spanning tree is infinite. Hence, opt(I') < m. Let N C V' be
an optimal solution whose deletion generates a minimum spanning tree 7’ in G’ — N
of weight at least U. If N contains v; or one node vf’, for a given i and h, then
N must contain all the m 4 1 nodes v; and X,,, since otherwise the weight of a
minimum spanning in G’ — N is the same as in G’ — (N \ {v;}) or G’ — (N \ {vl.h}).
Therefore, since opt(I’) < m, we can consider that N € R. Let S = {e; : rp € N}.
We construct a minimum spanning tree 7 in G — S as explained in Theorem 2. The
weight of T being equal to the weight of 7" is at least U. Hence, opt(I) < val(I, S) =
val(I', N) = opt(1’) and thus opt(1') > cp. O

In the absence of known inapproximability results for MIN EDGE BLOCKER
MST, we can only exploit the above gap-reduction to establish the NP-hardness of
MIN NODE BLOCKER MST. Nevertheless, we can obtain the following stronger re-
sult.

Theorem 7 MIN NODE BLOCKER MST is NP-hard to approximate within a factor
1.36 even for graphs with weights 0 or 1.

Proof We propose a gap-reduction from MIN VERTEX COVER. Consider an instance
I of MIN VERTEX COVER formed by a graph G = (V, E) with V = {vy, ..., v,}.
We construct from I, an instance I’ of MIN NODE BLOCKER MST constituted
by a graph G’ = (V’, E’) and a positive integer U as follows (see Fig. 3). G’ is

a copy of G to which we add a path x1, x2,...,x, with X = {x1,...,x,} and we
connect each node x; to the nodes xil, ...,x! of a complete graph K i of size n.
We also connect each node x; to node x;y; and each node x; to node x; 1 for
i=1,....n—1and r = 1,...,n. We connect each node v; to nodes x; and
xi’, fori =1,...,n and r = 1,...,n. We associate a weight 1 to all edges of
the path (x1, x2), (x2,x3), ..., (xp—1, X,) and to edges (x], x;+1) and (xi,xl.’ﬂ) for

i=1,...,n—1land r=1,...,n, and a weight 0 to all other edges in E’. We set
U=n-1.
We show that

1. opt(I) <c=opt(I') <c
2. opt(I) > cp = opt(I') > cp
which establishes that MIN NODE BLOCKER MST is NP-hard to approximate within

a factor 1.36, since MIN VERTEX COVER is NP-hard to approximate within a factor
1.36 (Dinur and Safra 2005).
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V4
0
0
1
0

Fig. 3 Construction of an instance of MIN NODE BLOCKER MST from an instance of MIN VERTEX
COVER

U3
0 0

o W AVa

1. Let V* C V be a minimum vertex cover in G. By deleting the nodes of V* from
G’, the nodes of V\V* form an independent set in G’ — V*. Then, connecting any two
nodes x;, x; in G’ — V* requires to use a path of weight at least 1. Thus, a minimum
spanning tree in G’ — V*, of weight U = n — 1, is obtained by connecting the nodes

x; through the path x1, x2, ..., x, and each node v; € V\V* and x/ to node x;, for
i=1,...,nandr =1,...,n. Therefore, we get opt(I") < opt(I) <c.
2. Suppose now that opt(I) > cp. When we remove all nodes v;, i =1,...,n

from G’, the weight of a minimum spanning tree in the resulting graph is U. Hence,
opt(I') < n.Let N C V' be an optimal solution. If N contains nodes x; or xf for a
given i and £, then N must contain all the nodes x; and x[.’ forr =1,...,n, otherwise
the weight of a minimum spanning tree in G’ — N is the same as in G’ — (N \{x;})
or G — (N \{xf}). Therefore, since opt(I’) < n, we can consider in the following
that N is included in V. We show in the following that N is a vertex cover in G.
Suppose that there exists an edge (v;,v;) € E such that v; ¢ N and v; ¢ N. By
deleting N from G’, the weight of a minimum spanning tree in G’ — N is at most
equal to n — 2. Indeed, in such a minimum spanning tree the nodes x;, v;, v}, x; are
not connected by the edges (v;, x;), (x;, v;) and the path on X from x; to x; but by the
path (x;, v;), (v;, v}), (v}, x;) of weight 0, thus contradicting the fact that the weight
of a minimum spanning tree in G’ — N must be at least n — 1. Thus, N is a vertex
cover in G and opt(I) <val(I, N) =val(I’, N) = opt(I") and then opt(I') > cp. O

7 Conclusions
As a first result, we established or strengthened the NP-hardness of the four studied
problems. Regarding approximation, negative results were obtained only for the node

related versions and positive results were obtained only for k MOST VITAL EDGES
MST. This situation, combined with our reductions from edge related versions to
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node related versions (see Theorems 2 and 6, and Corollary 3) clearly shows that
node related versions are more difficult than edge related versions. An interesting
perspective is to look for approximability results for kK MOST VITAL NODES MST
and MIN EDGE (NODE) BLOCKER MST and for inapproximability results for edge
related versions.
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