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Abstract In this paper, we study the complexity and the approximation of the k

most vital edges (nodes) and min edge (node) blocker versions for the minimum
spanning tree problem (MST). We show that the k most vital edges MST problem
is NP-hard even for complete graphs with weights 0 or 1 and 3-approximable for
graphs with weights 0 or 1. We also prove that the k most vital nodes MST problem
is not approximable within a factor n1−ε , for any ε > 0, unless NP = ZPP, even for
complete graphs of order n with weights 0 or 1. Furthermore, we show that the min
edge blocker MST problem is NP-hard even for complete graphs with weights 0 or 1
and that the min node blocker MST problem is NP-hard to approximate within a
factor 1.36 even for graphs with weights 0 or 1.

Keywords Most vital edges/nodes · Min edge/node blocker · Minimum spanning
tree · Complexity · Approximation

1 Introduction

For problems of security or reliability, it is important to assess the capacity of a sys-
tem to resist to a destruction or a failure of a number of its entities. This amounts
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to identifying critical entities which can be determined with respect to a measure of
performance or a cost associated to the system. Modeling the network as a weighted
connected graph where entities are edges or nodes and costs are weights associated
to edges, one way of identifying critical entities is to determine a subset of edges
or nodes whose removal from the graph causes the largest cost increase. Another
way is to find a subset of edges or nodes of minimum cardinality whose removal
involves that the optimal cost in the residual network is larger than a given thresh-
old. In the literature these problems are referred to respectively as the k most vital
edges/nodes problem and min edge/node blocker problem. In this paper the k most
vital edges/nodes and min edge/node blocker versions for the minimum spanning tree
problem are investigated.

The problem of finding the k most vital edges of a graph has been studied for
various problems including shortest path (Bar-Noy et al. 1995; Khachiyan et al. 2008;
Nardelli et al. 2001), maximum flow (Wollmer 1964; Ratliff et al. 1975; Wood 1993),
1-median and 1-center (Bazgan et al. 2010). For the minimum spanning tree problem,
Frederickson and Solis-Oba (1996) showed that k MOST VITAL EDGES MST is NP-
hard and proposed an O(log k)-approximation algorithm. For a fixed k, the problem is
obviously polynomial. The case k = 1 has been largely studied in the literature (Hsu
et al. 1991; Iwano and Katoh 1993; Suraweera et al. 1995). Several exact algorithms
based on an explicit enumeration of possible solutions have been proposed (Liang
2001; Liang and Shen 1997; Shen 1999; Bazgan et al. 2011).

After introducing some preliminaries in Sect. 2, we show in Sect. 3 that k MOST

VITAL EDGES MST is NP-hard even for complete graphs with weights 0 or 1 and 3-
approximable for graphs with weights 0 or 1. We also prove, in Sect. 4, that k MOST

VITAL NODES MST is not approximable within a factor n1−ε , for any ε > 0, unless
NP = ZPP, even for complete graphs of order n with weights 0 or 1. In Sect. 5, we
establish that MIN EDGE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1. In Sect. 6, we show that MIN NODE BLOCKER MST is NP-hard to
approximate within a factor 1.36 even for graphs with weights 0 or 1. Final remarks
are provided in Sect. 7.

2 Basic concepts and preliminary results

Let G = (V ,E) be a weighted undirected connected graph where |V | = n, |E| = m

and w(e) ≥ 0 is the integer weight of each edge e ∈ E. Denote by G − R the graph
obtained from G by removing the subset R of edges or nodes.

We consider in this paper the k most vital edges (nodes) and min edge (node)
blocker versions of the minimum spanning tree problem. These problems are defined
as follows:

k MOST VITAL EDGES (resp. NODE) MST

Input: A connected weighted graph G = (V ,E) where each edge e ∈ E has an in-
teger weight we ≥ 0 and a positive integer k.

Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ), with |S∗| = k, such that the weight of a
minimum spanning tree in G − S∗ is maximum.
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For an instance of k MOST VITAL EDGES MST defined on a graph G, we consider
that k ≤ λ(G)−1 where λ(G) is the edge-connectivity of G. Otherwise, any selection
of k edges including the edges of a minimum cardinality cut would lead to a solution
with infinite value since we disconnect G.

For an instance of k MOST VITAL NODES MST defined on a graph G, we con-
sider that k ≤ κ(G) − 1, where κ(G) is the node-connectivity of G. Otherwise, any
selection of k nodes including the nodes of a minimum node separator would lead to
a solution with infinite value since we disconnect G.

MIN EDGE (resp. NODE) BLOCKER MST

Input: A connected weighted graph G = (V ,E) where each edge e ∈ E has an in-
teger weight we ≥ 0 and a positive integer U .

Output: A subset S∗ ⊆ E (resp. S∗ ⊆ V ) of minimum cardinality such that the
weight of a minimum spanning tree in G − S∗ is greater than or equal to U .

An optimal solution S∗ of an instance of MIN EDGE (resp. NODE) BLOCKER

MST defined on a graph G is such that |S∗| ≤ λ(G) (resp. |S∗| ≤ κ(G)) since, at
worst, it is necessary to disconnect G so as to exceed the threshold U .

Given an optimization problem in NPO and an instance I of this problem, we use
|I | to denote the size of I , opt(I ) to denote the optimum value of I , and val(I, S) to
denote the value of a feasible solution S of instance I . The performance ratio of S

(or approximation factor) is r(I, S) = max{ val(I,S)
opt(I )

,
opt(I )

val(I,S)
}. The error of S, ε(I, S),

is defined by ε(I, S) = r(I, S) − 1.
For a function f , an algorithm is an f (|I |)-approximation, if for every instance I

of the problem, it returns a solution S such that r(I, S) ≤ f (|I |).
The notion of a gap-reduction was introduced in Arora and Lund (1996). A max-

imization problem � is called gap-reducible to a maximization problem �′ with pa-
rameters (c, ρ) and (c′, ρ′), ρ,ρ′ ≥ 1, if there exists a polynomial time computable
function f which maps any instance I of � to an instance I ′ of �′, while satisfying
the following properties.

• If opt(I ) ≥ c then opt(I ′) ≥ c′
• If opt(I ) < c

ρ
then opt(I ′) < c′

ρ′ .

The interest of a gap-reduction is that if � is not approximable within a factor ρ

then �′ is not approximable within a factor ρ′.
The notion of an E-reduction (error-preserving reduction) was introduced by

Khanna et al. (1994). A problem � is called E-reducible to a problem �′, if there
exist polynomial time computable functions f , g and a constant β such that

• f maps an instance I of � to an instance I ′ of �′ such that opt(I ) and opt(I ′) are
related by a polynomial factor, i.e. there exists a polynomial p such that opt(I ′) ≤
p(|I |)opt(I ),

• g maps any solution S′ of I ′ to one solution S of I such that ε(I, S) ≤ βε(I ′, S′).
An important property of an E-reduction is that it can be applied uniformly to all

levels of approximability; that is, if � is E-reducible to �′ and �′ belongs to C then
� belongs to C as well, where C is a class of optimization problems with any kind of
approximation guarantee (see also Khanna et al. 1994).
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A problem � is called E-equivalent to a problem �′ if � is E-reducible to �′
and �′ is E-reducible to �.

3 k most vital edges MST

Frederickson and Solis-Oba (1996) show that k MOST VITAL EDGES MST is
NP-hard even for graphs with weights 0 or 1 and that the problem is O(logk)-
approximable for graphs with arbitrary weights. In this section, we strengthen the
NP-hardness result of Frederickson and Solis-Oba by specifying a more restricted
class of instances for which the problem remains NP-hard. Moreover, we establish a
constant approximation result for graphs with weights 0 or 1.

First we show that we can decide in polynomial time if the optimum value is a
fixed constant.

Proposition 1 For any fixed value c ≥ 0, it can be checked in polynomial time if the
optimum value of k MOST VITAL EDGES MST on graphs with weights 0 or 1 on
edges is c.

Proof Consider an instance I of k MOST VITAL EDGES MST formed by a weighted
graph G = (V ,E), with weights 0 or 1, and by a positive integer k. Denote by
G0 = (V ,E0) the subgraph induced by the edges of weight 0. Let E1 = E \ E0 and
m1 = |E1|.

We have that opt(I ) = 0 if and only if G0 is (k + 1) edge-connected. Indeed,
if opt(I ) = 0 then G0 must be (k + 1) edge-connected otherwise opt(I ) > 0. Con-
versely, if G0 is (k + 1) edge-connected, then removing any subset of k edges from
G0 induces a minimum spanning tree of weight 0. Consequently, it is polynomial to
verify if opt(I ) = 0 since it is polynomial to determine the edge-connectivity of a
given graph. Once we checked iteratively that opt(I ) �= 	, for 0 ≤ 	 ≤ c − 1, we con-
sider all the

(
m1
c

)
graphs G0 ∪ R, for any subset R ⊆ E1 with |R| = c. We can decide

in polynomial time if opt(I ) = c by verifying if G0 ∪R is (k + 1) edge-connected. �

We show in the following that k MOST VITAL EDGES MST is E-equivalent to
MAX COMPONENT defined as follows.

MAX COMPONENT

Input: a connected graph and a positive integer k.
Output: a subset of k edges to be removed such that the number of connected com-

ponents in the obtained graph is maximum.

Theorem 1 k MOST VITAL EDGES MST for graphs with weights 0 or 1 is
E-equivalent to MAX COMPONENT.

Proof We first show that MAX COMPONENT is E-reducible to k MOST VITAL

EDGES MST. Given an instance I of MAX COMPONENT formed by a graph G =
(V ,E) with n nodes, we construct an instance I ′ of k MOST VITAL EDGES MST
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consisting of a complete graph G′ = (V ,E′) where each edge (i, j) ∈ E′ is assigned
a weight 0 if (i, j) ∈ E and 1 otherwise.

Let S∗ ⊆ E be a subset of k edges whose deletion from G generates a maximum
number of connected components. By removing S∗ from G′, all the connected com-
ponents of G − S∗ are linked in G′ − S∗ by edges of weight 1. Thus, the weight of a
minimum spanning tree in G′ − S∗ is equal to the number of connected components
in G − S∗ minus 1. Therefore, we have opt(I ′) ≥ opt(I ) − 1.

Let S′ ⊆ E′ be a subset of k edges whose deletion from G′ generates a minimum
spanning tree in G′ − S′ of weight v. If S′ contains edges of weight 1 then by replac-
ing these edges by edges of weight 0, either the weight of a minimum spanning tree
in the modified graph remains unchanged or it increases. Thus, considering S defined
from S′ by replacing edges of weight 1 with edges from E′ \ S′ of weight 0, se de-
fine a subset S ⊆ E such that G − S contains at least v + 1 connected components.
Hence, val(I, S) ≥ val(I ′, S′) + 1. In particular, when S is an optimum solution,
we have opt(I ′) + 1 ≤ val(I, S) ≤ opt(I ). It follows from the previous result that
opt(I ) = opt(I ′) + 1.

Therefore, we have opt(I ′) ≤ opt(I ) and ε(I, S) = opt(I )
val(I,S)

−1 ≤ opt(I ′)+1
val(I ′,S′)+1 −1 =

opt(I ′)−val(I ′,S′)
val(I ′,S′)+1 ≤ opt(I ′)−val(I ′,S′)

val(I ′,S′) = ε(I ′, S′).
We show now that k MOST VITAL EDGES MST is E-reducible to MAX COMPO-

NENT. Consider an instance I of k MOST VITAL EDGES MST formed by a graph
G = (V ,E) with edges of weight 0 or 1. From Proposition 1, we can consider that
opt(I ) > 0. We construct an instance I ′ of MAX COMPONENT consisting of the graph
G′ = (V ,E′) obtained from G by considering only edges of weight 0.

Let S∗ be a subset of k edges whose removal from G generates a minimum span-
ning tree T in G − S∗ of maximum weight. The weight of T being equal to the num-
ber of edges of T of weight 1, by deleting edges of S∗ ∩ E′ plus any k − |S∗ ∩ E′|
edges from E′, the number of connected components in G′ − S∗ is at least equal to
the weight of T plus 1. Thus, we have opt(I ′) ≥ opt(I ) + 1.

Consider a subset S′ of k edges whose deletion from G′ partitions G′ into
val(I ′, S′) connected components. If val(I ′, S′) = 1 then we can replace S′ by an-
other solution with value at least 2 obtained by selecting k edges including a mini-
mum cut since from Proposition 1, G′ is not (k + 1) edge-connected. Thus, we can
assume that val(I ′, S′) ≥ 2. By removing S′ from G, all connected components of
G′ − S′ are linked in G − S′ by edges of weight 1. Thus, the weight of a minimum
spanning tree in G − S′ is equal to val(I ′, S′) − 1. Then, val(I, S′) ≥ val(I ′, S′) − 1.
In particular, when S′ is an optimum solution in G′, we have val(I, S′) = opt(I ′) − 1
and thus opt(I ) ≥ opt(I ′) − 1. It follows from the previous result that opt(I ′) =
opt(I ) + 1.

Therefore, since opt(I ) > 0, we have opt(I ′) ≤ 2opt(I ) and ε(I, S′) =
opt(I )

val(I,S′) − 1 ≤ opt(I ′)−1
val(I ′,S′)−1 − 1 = opt(I ′)−val(I ′,S′)

val(I ′,S′)−1 = val(I ′,S′)
val(I ′,S′)−1

opt(I ′)−val(I ′,S′)
val(I ′,S′) ≤

2 opt(I ′)−val(I ′,S′)
val(I ′,S′) = 2ε(I ′, S′). �

From Theorem 1, we obtain the two following results. First, we slightly strengthen
the NP-hardness result of Frederickson and Solis-Oba (1996) by specifying a more
restricted class of instances for which the problem remains NP-hard.
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Corollary 1 k MOST VITAL EDGES MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof The E-reduction from MAX COMPONENT to k MOST VITAL EDGES MST
constructs from any graph G a complete graph G′ with weights 0 or 1. Since MAX

COMPONENT is NP-hard (Frederickson and Solis-Oba 1996), the results follows. �

Second, we establish a constant approximation result for graphs with weights 0
or 1.

Corollary 2 k MOST VITAL EDGES MST is 3-approximable for graphs with
weights 0 or 1.

Proof In the E-reduction from k MOST VITAL EDGES MST to MAX COMPONENT,
we have shown that any solution S of I ′ is such that ε(I, S) ≤ 2ε(I ′, S). Thus,
r(I, S) − 1 ≤ 2(r(I ′, S) − 1) and then r(I, S) ≤ 2r(I ′, S) − 1. Since r(I ′, S) = 2
as established in Frederickson and Solis-Oba (1996), we have r(I, S) ≤ 3. �

4 k most vital nodes MST

We study in this section the complexity of k MOST VITAL NODES MST. First we
show that k MOST VITAL NODES MST is at least as hard as k MOST VITAL EDGES

MST by establishing an E-reduction from the edge version to the node version. As
far as we know, this is the first result in the literature that establishes a direct rela-
tionship between the k most vital edge version and the k most vital node version of a
problem. Using the NP-hardness of the edge version even for graphs with weights 0
or 1 (Frederickson and Solis-Oba 1996), this reduction implies the NP-hardness of k

MOST VITAL NODES MST on the same class of graphs. We strengthen this result by
proving that k MOST VITAL NODES MST is not approximable within a factor n1−ε ,
for any ε > 0, if NP �= ZPP, even for complete graphs with weights 0 or 1.

Theorem 2 k MOST VITAL EDGES MST is E-reducible to k MOST VITAL NODES

MST.

Proof Consider an instance I of k MOST VITAL EDGES MST formed by a weighted
graph G = (V ,E) with V = {v1, . . . , vn} and |E| = m. We construct an instance
I ′ of k MOST VITAL NODES MST formed by a graph G′ = (V ′,E′) as follows
(see Fig. 1). We consider in G′ the nodes of V and m nodes r1, . . . , rm. Let R =
{r1, . . . , rm}. To each edge e	 = (vi, vj ) ∈ E of weight wij , 	 = 1, . . . ,m and i < j ,
we associate two edges in E′ : (vi, r	) of weight wij and (r	, vj ) of weight 0. Let K

vi

k ,
for i = 1, . . . , n, be n complete graphs of size k with Xvi

= {v1
i , . . . , v

k
i } and weights

0 on their edges. We connect each node vi , for i = 1, . . . , n, to the k nodes of K
vi

k

and assign a weight 0 to these added edges. We also add, for each edge (vi, r	) ∈ E′
the edges (vh

i , r	), for h = 1, . . . , k, with the same weight as the weight of the edge
(vi, r	).
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Fig. 1 Construction of an instance of k MOST VITAL NODES MST from an instance of k MOST VITAL

EDGES MST

Suppose first that there exists a subset S∗ ⊆ E, with |S∗| = k, such that a minimum
spanning tree T in G − S∗ has a maximum weight. We set N∗ = {r	 : e	 ∈ S∗}. By
deleting N∗ from G′, we construct a spanning tree T ′ in G′ − N∗ as follows: we
take for each edge e	 = (vi, vj ) ∈ T with i < j , the edges (vi, r	) and (r	, vj ) in T ′,
for each edge eh = (vi, vj ) �∈ T with i < j , the edge (rh, vj ) in T ′, and we add the
paths vi, v

1
i , . . . , v

k
i , i = 1, . . . , n. We prove, by contradiction, that T ′ is a minimum

spanning tree in G′ − N∗. Suppose that there exists a spanning tree T ′′ in G′ − N∗
of weight strictly inferior to that of T ′. Then, the spanning tree constituted by the
edges e	 = (vi, vj ) such that (vi, r	) ∈ T ′′ has a smaller weight than T in G − S∗,
contradicting the optimality of T . Thus, T ′ is a minimum spanning tree in G′ − N∗.
Therefore, we have opt(I ′) ≥ opt(I ).

Consider now a subset N , with |N | = k, and a minimum spanning tree T ′ in G′ −
N . If N contains vi or one node vh

i , for a given i and h, then the weight of a MST
in G′ − N is the same as in G′ − (N \ {vi}) or G′ − (N \ {vh

i }). When removing all
nodes vi, v

h
i from N we obtain a subset N ′ ⊆ R, |N ′| ≤ k. Since N ′ corresponds to

edges in G, any subset N ′′ ⊆ R containing N ′ such that |N ′′| = k is such that the
weight of a MST in G′ − N ′′ is at least as large as the weight of a MST in G′ − N ′.
Let S = {e	 : r	 ∈ N ′′}. Consider T the spanning tree in G − S constituted by the
edges e	 = (vi, vj ) such that the edge (vi, r	) ∈ T ′. T is optimal, since otherwise, the
existence of a spanning tree T ′′ of weight strictly inferior to that of T would imply
that the corresponding spanning tree constructed from T ′′ in G′ − N ′′, as explained
above, has a weight strictly inferior to that of T ′. Thus, T is a minimum spanning tree
in G−S of the same weight as T ′. Hence, val(I, S) = val(I ′,N ′′). In particular, when
N ′′ is an optimal solution in G′, we have opt(I ′) = val(I, S) ≤ opt(I ). It follows from
the previous result that opt(I ) = opt(I ′). Therefore, we have ε(I, S) = ε(I ′,N ′′). �
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Fig. 2 Construction of an instance of k MOST VITAL NODES MST from an instance of MAX INDEPEN-
DENT SET

Theorem 3 k MOST VITAL NODES MST is not approximable within a factor n1−ε ,
for any ε > 0, unless NP = ZPP, even for complete graphs of order n with weights 0
or 1.

Proof We propose a gap-reduction from MAX INDEPENDENT SET to k MOST VITAL

NODES MST.
Denote by α(G) the cardinality of maximum independent set of G. Let g be the

non approximation gap of MAX INDEPENDENT SET. Thus, for a given integer 	, it is
NP-hard to decide if α(G) = 	 or α(G) < 	

g
.

Given an instance I of MAX INDEPENDENT SET formed by a graph G = (V ,E),
we construct an instance I ′ of k MOST VITAL NODES MST constituted by a com-
plete graph G′ = (V ,E′) where each edge (i, j) ∈ E′ is assigned a weight 0 if
(i, j) ∈ E and 1 otherwise (see Fig. 2). We set k = n − 	. We show that:

1. α(G) = 	 ⇒ opt(I ′) ≥ 	 − 1
2. α(G) < 	

g
⇒ opt(I ′) < 	−1

g
.

1. Suppose first that there exists an independent set V ∗ in G of cardinality 	 and
let N∗ = V \V ∗. By removing N∗ from G′, all nodes of G′ − N∗ are connected by
edges of weight 1 only. Thus, we obtain a minimum spanning tree in G′ − N∗ of
value 	 − 1. Therefore, opt(I ′) ≥ 	 − 1.

2. Suppose now that α(G) < 	
g

. Hence, there exists a maximum independent set

V ∗ such that |V ∗| < 	
g

. If the node set N∗ of cardinality n − 	 to be removed from
G′ is such that N∗ ∩ V ∗ = ∅ then let V1 = V \(N∗ ∪ V ∗). Each node of V1 is at least
connected to one node of V ∗ by an edge of weight 0, otherwise V ∗ ∪ {v} would be an
independent set in G of larger cardinality. Thus, the weight of a minimum spanning
tree in G′ − N∗ cannot exceed 	

g
− 1. Since g > 1, we have 	

g
− 1 < 	−1

g
. Therefore

if α(G) < 	
g

then opt(I ′) < 	−1
g

. If N∗ ∩ V ∗ �= ∅ then a minimum spanning tree in

G′ − N∗ would have a weight strictly inferior to 	
g

− 1.

Since MAX INDEPENDENT SET is not approximable within a factor n1−ε , for any
ε > 0, unless NP = ZPP (Håstad 1999), we deduce that k MOST VITAL NODES

MST is also not n1−ε -approximable, for any ε > 0, unless NP = ZPP. �

From Theorem 3 and Corollary 2, we can give the following result.
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Corollary 3 There is no E-reduction from k MOST VITAL NODES MST for graphs
with weights 0 or 1 to k MOST VITAL EDGES MST for graphs with weights 0 or 1.

5 Min edge blocker MST

We present in the following a relationship between k MOST VITAL EDGES MST and
MIN EDGE BLOCKER MST.

Proposition 2 k MOST VITAL EDGES MST and MIN EDGE BLOCKER MST are
polynomial-time equivalent.

Proof If an algorithm Ak solves k MOST VITAL EDGES MST defined on graph G

for all 1 ≤ k ≤ λ(G) − 1, then we can run Ak for k = 1, . . . , λ(G) − 1 and choose
the smallest k yielding optimum at least U . If no k exists then the optimum for MIN

EDGE BLOCKER MST is λ(G). Conversely, if an algorithm BU solves MIN EDGE

BLOCKER MST with any bound U , we can apply binary search to locate the largest
U that requires the removal of at most k nodes. �

Theorem 4 MIN EDGE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof Follows from Proposition 2 and Corollary 1. �

6 Min node blocker MST

The equivalent of Proposition 2 applied to nodes also holds (with a similar proof).

Proposition 3 k MOST VITAL NODES MST and MIN NODE BLOCKER MST are
polynomial-time equivalent.

Theorem 5 MIN NODE BLOCKER MST is NP-hard even for complete graphs with
weights 0 or 1.

Proof Follows from Proposition 3 and Theorem 3. �

This result could also be established by the following gap-reduction from MIN

EDGE BLOCKER MST.

Theorem 6 MIN EDGE BLOCKER MST is gap-reducible to MIN NODE BLOCKER

MST.

Proof Consider an instance I for MIN EDGE BLOCKER MST formed by a graph
G = (V ,E), with |V | = n and |E| = m, and a positive integer U . We construct an
instance I ′ for MIN NODE BLOCKER MST, constituted by a graph G′ = (V ′,E′) and
a positive integer U , using the same construction as in Theorem 2, but we modify the
size of the n complete graphs which we set to be m + 1. We show that
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1. opt(I ) ≤ c ⇒ opt(I ′) ≤ c

2. opt(I ) > cρ ⇒ opt(I ′) > cρ.

1. Let S∗ ⊆ E be a subset of minimum cardinality such that a minimum spanning
tree T in G − S∗ has a weight at least U . We set N∗ = {r	 : e	 ∈ S∗}. By deleting N∗
from G′, we construct a minimum spanning tree T ′ in G′ −N∗ of the same weight as
that of T as explained in Theorem 2. Thus, the weight of T ′ is at least U . Therefore,
opt(I ′) ≤ opt(I ) ≤ c.

2. Suppose now that opt(I ) > cρ. When we remove all nodes of R from G′, the
weight of a minimum spanning tree is infinite. Hence, opt(I ′) ≤ m. Let N ⊆ V ′ be
an optimal solution whose deletion generates a minimum spanning tree T ′ in G′ −N

of weight at least U . If N contains vi or one node vh
i , for a given i and h, then

N must contain all the m + 1 nodes vi and Xvi
, since otherwise the weight of a

minimum spanning in G′ − N is the same as in G′ − (N \ {vi}) or G′ − (N \ {vh
i }).

Therefore, since opt(I ′) ≤ m, we can consider that N ⊆ R. Let S = {e	 : r	 ∈ N}.
We construct a minimum spanning tree T in G − S as explained in Theorem 2. The
weight of T being equal to the weight of T ′ is at least U . Hence, opt(I ) ≤ val(I, S) =
val(I ′,N) = opt(I ′) and thus opt(I ′) > cρ. �

In the absence of known inapproximability results for MIN EDGE BLOCKER

MST, we can only exploit the above gap-reduction to establish the NP-hardness of
MIN NODE BLOCKER MST. Nevertheless, we can obtain the following stronger re-
sult.

Theorem 7 MIN NODE BLOCKER MST is NP-hard to approximate within a factor
1.36 even for graphs with weights 0 or 1.

Proof We propose a gap-reduction from MIN VERTEX COVER. Consider an instance
I of MIN VERTEX COVER formed by a graph G = (V ,E) with V = {v1, . . . , vn}.
We construct from I , an instance I ′ of MIN NODE BLOCKER MST constituted
by a graph G′ = (V ′,E′) and a positive integer U as follows (see Fig. 3). G′ is
a copy of G to which we add a path x1, x2, . . . , xn with X = {x1, . . . , xn} and we
connect each node xi to the nodes x1

i , . . . , xn
i of a complete graph Ki

n of size n.
We also connect each node xr

i to node xi+1 and each node xi to node xr
i+1 for

i = 1, . . . , n − 1 and r = 1, . . . , n. We connect each node vi to nodes xi and
xr
i , for i = 1, . . . , n and r = 1, . . . , n. We associate a weight 1 to all edges of

the path (x1, x2), (x2, x3), . . . , (xn−1, xn) and to edges (xr
i , xi+1) and (xi, x

r
i+1) for

i = 1, . . . , n − 1 and r = 1, . . . , n, and a weight 0 to all other edges in E′. We set
U = n − 1.

We show that

1. opt(I ) ≤ c ⇒ opt(I ′) ≤ c

2. opt(I ) > cρ ⇒ opt(I ′) > cρ

which establishes that MIN NODE BLOCKER MST is NP-hard to approximate within
a factor 1.36, since MIN VERTEX COVER is NP-hard to approximate within a factor
1.36 (Dinur and Safra 2005).
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Fig. 3 Construction of an instance of MIN NODE BLOCKER MST from an instance of MIN VERTEX

COVER

1. Let V ∗ ⊆ V be a minimum vertex cover in G. By deleting the nodes of V ∗ from
G′, the nodes of V \V ∗ form an independent set in G′−V ∗. Then, connecting any two
nodes xi, xj in G′ − V ∗ requires to use a path of weight at least 1. Thus, a minimum
spanning tree in G′ − V ∗, of weight U = n − 1, is obtained by connecting the nodes
xi through the path x1, x2, . . . , xn and each node vi ∈ V \V ∗ and xr

i to node xi , for
i = 1, . . . , n and r = 1, . . . , n. Therefore, we get opt(I ′) ≤ opt(I ) ≤ c.

2. Suppose now that opt(I ) > cρ. When we remove all nodes vi , i = 1, . . . , n

from G′, the weight of a minimum spanning tree in the resulting graph is U . Hence,
opt(I ′) ≤ n. Let N ⊆ V ′ be an optimal solution. If N contains nodes xi or x	

i for a
given i and 	, then N must contain all the nodes xi and xr

i for r = 1, . . . , n, otherwise
the weight of a minimum spanning tree in G′ − N is the same as in G′ − (N\{xi})
or G′ − (N\{x	

i }). Therefore, since opt(I ′) ≤ n, we can consider in the following
that N is included in V . We show in the following that N is a vertex cover in G.
Suppose that there exists an edge (vi, vj ) ∈ E such that vi /∈ N and vj /∈ N . By
deleting N from G′, the weight of a minimum spanning tree in G′ − N is at most
equal to n − 2. Indeed, in such a minimum spanning tree the nodes xi, vi, vj , xj are
not connected by the edges (vi, xi), (xj , vj ) and the path on X from xi to xj but by the
path (xi, vi), (vi, vj ), (vj , xj ) of weight 0, thus contradicting the fact that the weight
of a minimum spanning tree in G′ − N must be at least n − 1. Thus, N is a vertex
cover in G and opt(I ) ≤ val(I,N) = val(I ′,N) = opt(I ′) and then opt(I ′) > cρ. �

7 Conclusions

As a first result, we established or strengthened the NP-hardness of the four studied
problems. Regarding approximation, negative results were obtained only for the node
related versions and positive results were obtained only for k MOST VITAL EDGES

MST. This situation, combined with our reductions from edge related versions to
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node related versions (see Theorems 2 and 6, and Corollary 3) clearly shows that
node related versions are more difficult than edge related versions. An interesting
perspective is to look for approximability results for k MOST VITAL NODES MST
and MIN EDGE (NODE) BLOCKER MST and for inapproximability results for edge
related versions.
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