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Abstract In this paper we solve the edge isoperimetric problem for circulant net-
works and consider the problem of embedding circulant networks into various graphs
such as arbitrary trees, cycles, certain multicyclic graphs and ladders to yield the min-
imum wirelength.

Keywords Circulant networks · Multicyclic graphs · Embedding · Congestion ·
Wirelength

1 Introduction

Graph embedding has been known as a powerful tool for implementation of paral-
lel algorithms or simulation of different interconnection networks. A parallel algo-
rithm can be modeled by a task interaction graph, where nodes and edges represent
tasks and direct communications between tasks, respectively. Thus, the problem of
efficiently executing a parallel algorithm A on a parallel computer M can be often
reduced to the problem of mapping the graph G, representing A, on the graph H ,
representing M , so that the communication overhead is minimized. This is called
graph embedding (Opatrny and Sotteau 2000), which is defined more precisely as
follows:

Let G(V,E) and H(V,E) be finite graphs with n vertices. An embedding f of G

into H is defined (Bezrukov et al. 1998) as follows:
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Fig. 1 Wiring diagram of a
hypercube G into a cycle H

with WLf (G,H) = 20. The
edge congestions are marked on
the edges of H

1. f is a bijective map from V (G) → V (H)

2. f is a one-to-one map from E(G) to {Pf (f (u), f (v)) : Pf (f (u), f (v)) is a path
in H between f (u) and f (v) for (u, v) ∈ E(G)}.
Here G is called the guest graph and H , the host graph. The edge congestion of an

embedding f of G into H is the maximum number of edges of the graph G that are
embedded on any single edge of H . Let ECf (G,H(e)) denote the number of edges
(u, v) of G such that e is in the path Pf (f (u), f (v)) between f (u) and f (v) in H .
In other words,

ECf (G,H(e)) = |{(u, v) ∈ E(G) : e ∈ Pf (f (u), f (v))}|
where Pf (f (u), f (v)) denotes the path between f (u) and f (v) in H with respect
to f . For convenience of notation we write ECf (e) instead of ECf (G,H(e)) in the
sequel.

If we think of G as representing the wiring diagram of an electronic circuit,
with the vertices representing components and the edges representing wires con-
necting them, then the edge congestion EC(G,H) is the minimum, over all embed-
dings f : V (G) → V (H), of the maximum number of wires that cross any edge of
H (Bezrukov et al. 2000a).

The Wirelength Problem The wirelength (Manuel et al. 2009) of an embedding f

of G into H is given by

WLf (G,H) =
∑

e∈E(H)

ECf (e) =
∑

(u,v)∈E(G)

dH (f (u), f (v))

where dH (f (u), f (v)) denotes the length of the shortest path Pf (f (u), f (v)) in H .
See Fig. 1. Then, the minimum wirelength of G into H is defined as

WL(G,H) = min WLf (G,H)

where the minimum is taken over all embeddings f of G into H . The wirelength
problem (Bezrukov et al. 1998, 2000a; Chavez and Trapp 1998; Manuel et al. 2009;
Opatrny and Sotteau 2000; Rajasingh et al. 2004) of a graph G into H is to find an
embedding of G into H that induces the minimum wirelength WL(G,H).

The wirelength of a graph embedding arises from VLSI designs, data structures
and data representations, networks for parallel computer systems, biological models
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that deal with cloning and visual stimuli, parallel architecture, structural engineering
and so on (Lai and Williams 1999; Xu 2001).

Grid embedding plays an important role in computer architecture. VLSI Layout
Problem (Bhatt and Leighton 1984), Crossing Number Problem (Djidjev and Vrto
2003), Edge Embedding Problem (Garey and Johnson 1979) are all a part of grid
embedding. Embedding problems have been considered for binary trees into paths
(Lai and Williams 1999), complete binary trees into hypercubes (Bezrukov 2001),
tori and grids into twisted cubes (Lai and Tsai 2010), meshes into locally twisted
cubes (Han et al. 2010), paths into twisted cubes (Fan et al. 2007), cycles into twisted
cubes (Fan et al. 2008), meshes into faulty crossed cubes (Yang et al. 2010), star graph
into path (Yang 2009), snarks into torus (Vodopivec 2008), generalized ladders into
hypercubes (Caha and Koubek 2001), grids into grids (Rottger and Schroeder 2001),
binary trees into grids (Opatrny and Sotteau 2000), hypercubes into cycles (Chavez
and Trapp 1998), generalized wheels into arbitrary trees (Rajasingh et al. 2004), and
hypercubes into grids (Manuel et al. 2009). Even though there are numerous results
and discussions on the wirelength problem, most of them deal with only approximate
results and the estimation of lower bounds (Bezrukov et al. 1998; Chavez and Trapp
1998). All the embeddings discussed in this paper produce exact wirelengths.

Another interesting NP-complete problem (Garey and Johnson 1979) is the edge
isoperimetric problem (Harper 2004) which will be used to solve the wirelength prob-
lem. We consider the following version of the edge isoperimetric problem of a graph
G(V,E).

Find a subset of vertices of a given graph, such that the number of edges
in the subgraph induced by this subset is maximal among all induced subgraphs
with the same number of vertices. Mathematically, for a given m, if IG(m) =
maxA⊆V,|A|=m |IG(A)| where IG(A) = {(u, v) ∈ E : u,v ∈ A}, then the problem is
to find A ⊆ V such that |A| = m and IG(m) = |IG(A)|. We call such a set A opti-
mal. Further for regular graphs a subset of vertices A is optimal, then its complement
V �A is also an optimal set (Bezrukov et al. 2000b; Bezrukov and Elsässer 2003). In
the literature, this problem is also defined as the maximum subgraph problem.

2 Background

Lemma 1 (Congestion lemma) (Manuel et al. 2009) Let G be an r-regular graph
and f be an embedding of G into H . Let S be an edge cut of H such that the removal
of edges of S leaves H into 2 components H1 and H2 and let G1 = f −1(H1) and
G2 = f −1(H2). Also S satisfies the following conditions:

(i) For every edge (a, b) ∈ Gi , i = 1,2,Pf (f (a), f (b)) has no edges in S.
(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf (f (a), f (b)) has exactly

one edge in S.
(iii) G1 is a maximum subgraph on k vertices where k = |V (G1)|.

Then ECf (S) is minimum and ECf (S) = rk − 2|E(G1)|.

Lemma 2 (Partition lemma) (Manuel et al. 2009) Let f : G → H be an embedding.
Let {S1, S2, . . . , Sp} be a partition of E(H) such that each Si is an edge cut of H .
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Then

WLf (G,H) =
p∑

i=1

ECf (Si).

Lemma 3 (Generalized Partition lemma) Let f : G → H be an embedding. For 1 ≤
i ≤ k, suppose Si = {Si

1, S
i
2, . . . , S

i
pi

} partitions E(H) \ Fi for mutually disjoint Fi ’s

such that Si
j , 1 ≤ j ≤ pi , 1 ≤ i ≤ k and S = ⋃k

i=1 Fi are all edge cuts of H . Then

WLf (G,H) = 1

k

⎡

⎣
k∑

i=1

pi∑

j=1

ECf (Si
j ) + ECf (S)

⎤

⎦ .

Proof For 1 ≤ i ≤ k, we have

WLf (G,H) =
pi∑

j=1

ECf (Si
j ) + ECf (Fi).

By summing up for all i, we get

kWLf (G,H) =
p1∑

j=1

ECf (S1
j ) +

p2∑

j=1

ECf (S2
j )

+ · · · +
pk∑

j=1

ECf (Sk
j ) + ECf (F1) + ECf (F2) + · · · + ECf (Fk).

Therefore

WLf (G,H) = 1

k

⎡

⎣
k∑

i=1

pi∑

j=1

ECf (Si
j ) + ECf (S)

⎤

⎦ .
�

Remark 1 When k = 1, we obtain the Partition lemma.

3 Edge isoperimetric problem for circulant networks

In 2004, L.H. Harper (2004) quotes “In analyzing Harary graph he wished to solve
its edge isoperimetric problem”. In this section we solve the maximum subgraph
problem for circulant networks which is a particular class of Harary graphs.

Definition 1 (Xu 2001) A circulant undirected graph, denoted by G(n;±S) where
S ⊆ {1,2, . . . , �n/2�}, n ≥ 3 is defined as a graph consisting of the vertex set V =
{0,1, . . . , n − 1} and the edge set E = {(i, j) : |j − i| ≡ s(modn), s ∈ S}.

The circulant graph shown in Fig. 2 is G(10;±{1,2,3}). It is clear that G(n;±1)

is the undirected cycle Cn and G(n;±{1,2, . . . , �n/2�}) is the complete graph Kn.
Further G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2�, n ≥ 3 is a 2j -regular graph.
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Fig. 2 Circulant graph
G(10;±{1,2,3})

Fig. 3 (a) K1,K2,D1 and D2 are disjoint segments on C (b) d2 ≥ j , (c) u ∈ K1, v ∈ D1

Lemma 4 Let C denote the cycle G(n;±1) in G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2�,
n ≥ 3. Let K1 and K2 be disjoint segments induced by k1 and k2 consecutive vertices
on C respectively such that k1 +k2 ≤ �n/2�. Then G[K1 ∪K2], the subgraph induced
by K1 ∪ K2, contains a vertex of degree at most j .

Proof Let the complement of K1 ∪ K2 in C consist of two disjoint segments D1 and
D2 induced by d1 and d2 consecutive vertices on C respectively. Then d1 + d2 ≥
�n/2�. Without loss of generality, let k2 ≤ 1

2�n/2� and d2 ≥ 1
2�n/2�. This implies

k2 ≤ d2. Suppose k1 = 1 and K1 = {u}. Then

degG[K1∪K2] u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2j − (d1 + d2) d1, d2 ≤ j

0 d1, d2 ≥ j

j − d1 d2 ≥ j, d1 ≤ j

j − d2 d1 ≥ j, d2 ≤ j

But 2j − (d1 + d2) ≤ 2j − �n/2� ≤ 2j − j = j . Therefore degG[K1∪K2] u ≤ j . The
same argument holds when k2 = 1. We now assume that k1 ≥ 2 and k2 ≥ 2. Let a, b

be the end vertices of K1 and α, β be the end vertices of K2 taken in the clockwise
sense. See Fig. 3(a). We claim that degG[K1∪K2] β ≤ j .

Case 1 (d2 ≥ j ): In this case degG[K1∪K2] β ≤ j . See Fig. 3(b).

Case 2 (d2 < j ): Let u be a vertex on C such that dC(β,u) = j measured in the
clockwise direction and let the shortest path of length j on C with origin β and
passing through α have its other end at v.
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Subcase 2.1 (v ∈ K1): In this case u ∈ K1. Therefore degG[K1∪K2] β ≤ 2j − (d1 +
d2) ≤ j .

Subcase 2.2 (v ∈ D1): If u lies on K1 then degG[K1∪K2] β ≤ (k2 − 1) + j − d2.
But (k2 − 1) + j − d2 = (k2 − d2) + j − 1 ≤ (d2 − d2) + j − 1 < j . Therefore
degG[K1∪K2] β < j . See Fig. 3(c). If u lies on D1 then degG[K1∪K2] β ≤ (k2 −1)+k1.
In this case k1 < j − d2. Therefore degG[K1∪K2] β < j .

Subcase 2.3 (v ∈ K2): Since k2 ≤ d2 and d2 < j , we have k2 < j . Hence this case
does not occur. �

Lemma 5 Let C denote the cycle G(n;±1) in G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2�,
n ≥ 3. Let K be a segment on C induced by k consecutive vertices on C where k ≤
�n/2�. If K1 and K2 are disjoint segments induced by k1 and k2 consecutive vertices
on C respectively such that k1 + k2 = k then |E(G[K1 ∪ K2])| ≤ |E(G[K])|.

Proof The proof is by induction on k. Suppose k = 2. Then |E(G[K])| = 1. If u and
v are nonadjacent vertices on C such that dC(u, v) ≤ j then |E(G[{u,v}])| = 1 and
if dC(u, v) > j , then |E(G[{u,v}])| = 0. Thus |E(G[{u,v}])| ≤ |E(G[K])|. Assume
the result to be true for k − 1 consecutive vertices. Consider k consecutive vertices
on C, k ≤ �n/2�. If k ≤ j + 1 then G[K] is the complete graph on k vertices and
hence it contains the maximum number of edges. Suppose k > j + 1. Let K1 and
K2 be disjoint segments induced by k1 and k2 consecutive vertices on C respectively
such that k1 + k2 = k. By Lemma 4, G[K1 ∪ K2] contains an end vertex v in K1

or K2 of degree at most j . Without loss of generality, let v be an end vertex of K1

with degG[K1∪K2] v ≤ j . Delete the vertex v from K1 ∪ K2 to obtain K ′
1 ∪ K2 with

k − 1 vertices. By induction hypothesis |E(G[K ′
1 ∪ K2])| ≤ |E(G[K ′])| where K ′ is

induced by k − 1 consecutive vertices on C. Thus, |E(G[K1 ∪ K2])| = |E(G[K ′
1 ∪

{v} ∪ K2])| ≤ |E(G[K ′
1 ∪ K2])| + j ≤ |E(G[K ′])| + j = |E(G[K])|. �

Lemma 6 A set of k consecutive vertices of G(n;±1) induces a maximum subgraph
of G(n;±S) on k vertices, k ≤ �n/2�, S = {1,2, . . . , j}, 1 ≤ j < �n/2�, n ≥ 3.

Proof Let the cycle G(n;±1) be denoted by C and let A be a set of k consecutive
vertices on C. Let B be a set of k non-consecutive vertices on C. Then B = ⋃p

i=1 Xi

where p ≥ 2, Xi ’s are mutually disjoint and each Xi is a set of consecutive vertices
on C such that

∑p

i=1 |Xi | = k. We claim that |E(G[B])| ≤ |E(G[A])|. We prove this
claim by induction on p. When p = 2, by Lemma 5, we get |E(G[B])| ≤ |E(G[A])|.
Assume that the claim is true for p − 1. Then |E(G[⋃p−1

i=1 Xi])| ≤ |E(G[X])| where
X is induced by k − |Xp| consecutive vertices on C. Now, |E(G[⋃p

i=1 Xi])| =
|E(G[⋃p−1

i=1 Xi ∪ Xp])| ≤ |E(G[X ∪ Xp])| ≤ |E(G[A])|. See Fig. 4. �

The following result shows that Lemma 6 is true even if the restriction on the
upper bound of k is relaxed.
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Fig. 4 |X| = k − |Xp | and |A| = k

Theorem 1 A set of k consecutive vertices of G(n;±1), 1 ≤ k ≤ n induces a maxi-
mum subgraph of G(n;±S), where S = {1,2, . . . , j}, 1 ≤ j < �n/2�, n ≥ 3.

Proof By Lemma 6, a set of k ≤ �n/2� consecutive vertices of G(n;±1) in
G(n;±{1,2, . . . , j}) induces a maximum subgraph of G(n;±{1,2, . . . , j}). Since
G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2� is a regular graph, the remaining n − k vertices
also induce a maximum subgraph of G. �

Theorem 2 The number of edges in a maximum subgraph on k vertices of G(n;±S),
S = {1,2, . . . , j}, 1 ≤ j < �n/2�, 1 ≤ k ≤ n, n ≥ 3 is given by

ξ =
⎧
⎨

⎩

k(k − 1)/2 k ≤ j + 1
kj − j (j + 1)/2 j + 1 < k ≤ n − j
1
2 {(n − k)2 + (4j + 1)k − (2j + 1)n} n − j < k ≤ n.

Proof Let K = {v1, v2, . . . , vk} be a set of k consecutive vertices of G(n;±1) in
G(n;±S). By Theorem 1, G[K] is a maximum subgraph of G(n;±S) on k vertices.

Case 1 (k ≤ n − j ): The number of edges induced by K in G(n;±i), 1 ≤ i ≤ j is
given by

ξi =
{

k − i k > i

0 otherwise.

See Fig. 5. Therefore,

|E(G[K])| =
j∑

i=1

ξi =
min{j,k−1}∑

i=1

(k − i).

This implies that

ξ =
{

k(k − 1)/2 k ≤ j + 1

kj − j (j + 1)/2 k > j + 1.
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Fig. 5 Circulant graph (a) G(8;±1), (b) G(8;±2), (c) G(8;±3)

Case 2 (k > n − j ):

|E(G[K])| = |E(G)| − {2j (n − k)-number of edges induced by (n − k)

consecutive vertices of G}
= nj − 2j (n − k) + (n − k)(n − k − 1)/2

= 1

2
{(n − k)2 + (4j + 1)k − (2j + 1)n}. �

4 Wirelength of circulant networks into arbitrary trees

A tree is a connected graph having no cycles. Any two vertices of a tree are joined
by a unique path. The most common type of tree is the binary tree. It is so named
because each node can have at most two descendents. A binary tree is said to be a
complete binary tree if each internal node has exactly two descendents. These descen-
dents are described as left and right children of the parent node. The binary search
tree property (Cormen et al. 2001) of a binary tree states that all labels in the left
subtree of any vertex x are all less than x, and all labels in the right subtree of x are
greater than x. The consecutive label property is motivated by the binary search tree
property (Rajasingh et al. 2004).

Definition 2 Let T be an ordered rooted tree with vertex labels 1,2, . . . , n. A subtree
T ′ of the tree T is consecutively labelled if the labels of T ′ are consecutive numbers
y + 1, y + 2, . . . , y + k where k denotes the number of vertices of T ′.

Definition 3 Let T be an ordered rooted tree with vertex labels 1,2, . . . , n. A labeling
of T satisfies the consecutive label property if for every vertex v of T , the subtrees
T1, T2, . . . , Tm rooted at v are consecutively labeled.

Remark 2 Preorder, Inorder and Postorder labeling (Quadras 2005) of the vertices of
trees induce consecutive label property in trees.
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Embedding Algorithm A

Input: A circulant network G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2� and an arbitrary
rooted tree T on n vertices.

Algorithm: Label the consecutive vertices of G(n;±1) in G(n;±{1,2, . . . , j}) as
0,1, . . . , n− 1 in the clockwise sense. Label the vertices of the tree as 0,1, . . . , n− 1
using inorder labeling.

Output: An embedding f of G(n;±{1,2, . . . , j}) into T given by f (x) = x with
minimum wirelength.

Proof of correctness: Let e be an edge of T . Then T − e yields a component T1
which is consecutively labeled (Rajasingh et al. 2004). By Theorem 1, the subgraph
of G(n;±{1,2, . . . , j}) induced by {f −1(v) : v ∈ T1} is maximum. By Congestion
lemma, the congestion on e is minimum. This is true for every edge of T . Partition
lemma implies that the wirelength is minimum.

The proof of the following result is an easy consequence of Lemma 2 and of the
discussion in the proof of Theorem 2.

Theorem 3 The wirelength of G(n;±{1,2, . . . , j}),1 ≤ j < �n/2� into T is given
by

WL(G(n;±{1,2, . . . , j}), T ) = 2
∑

e∈E(T )

⎧
⎨

⎩jk(e) −
min{j,k(e)−1}∑

i=1

{k(e) − i}
⎫
⎬

⎭

where k(e) is the number of vertices in the component T1 of T − e with k(e) ≤ �n/2�.

As G(n;±{1,2, . . . , �n/2�}) � Kn, we have the following result.

Theorem 4 The wirelength of the complete graph Kn into T is given by

WL(Kn,T ) =
∑

e∈E(T )

k(e){n − k(e)}

where k(e) is the number of vertices in the component T1 of T − e with k(e) ≤ �n/2�.

5 Wirelength of circulant networks into cycle related graphs

In this section we consider the embedding of circulant network into cycles and certain
multicyclic graphs. Here Cn denotes a cycle on n vertices.

5.1 Even and odd cycles

Embedding Algorithm B

Input: A circulant network G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2� and Cn.
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Fig. 6 (a) Si contains two diametrically opposite edges of Cn, n even (b) edge cuts of C5

Algorithm: Label the consecutive vertices of G(n;±1) in G(n;±{1,2, . . . , j}) and
Cn as 0,1, . . . , n − 1 in the clockwise sense.

Output: An embedding f of G(n;±{1,2, . . . , j}) into Cn given by f (x) = x with
minimum wirelength.

Proof of correctness:

Case 1 (n even): Let the edge set E of Cn be partitioned into {S1, S2, . . . , Sn/2}
where each Si contains two diametrically opposite edges of Cn. In other words,
Si = {(i − 1, i), (n/2 + i − 1, n/2 + i)}, 1 ≤ i ≤ n/2 where the labels are taken
modulo n. See Fig. 6(a). For each i, E(Cn)\Si has two components Hi1 and Hi2. Let
Gi1 = f −1(Hi1) and Gi2 = f −1(Hi2). Then each Gij , j = 1,2 is on n/2 consecu-
tive vertices of G(n;±1). By Theorem 1, these vertices induce a maximum subgraph
of G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2�. Thus each Si satisfies conditions (i), (ii) and
(iii) of the Congestion lemma. Therefore ECf (Si) is minimum. Partition Lemma im-
plies that the wirelength is minimum.

Case 2 (n odd): For 1 ≤ i ≤ 2, let Si = {Si
1, S

i
2, . . . , S

i
(n−1)/2} where S1

j = {(j −
1, j), ( n−3

2 + j, n−1
2 + j)} and S2

j = {(j − 1, j), ( n−1
2 + j, n+1

2 + j)}, 1 ≤ j ≤
(n − 1)/2, the labels taken modulo n. Let F1 = {(n − 1,0)} and F2 = {( n−1

2 , n+1
2 )}.

Then Si partitions E(Cn) \ Fi , i = 1,2. The sets F1,F2 are mutually disjoint and
S = F1 ∪F2 is an edge cut of Cn. See Fig. 6(b). For each j , E(Cn) \Si

j has two com-

ponents Hi
j1 and Hi

j2 induced by consecutive vertices on Cn with |Hi
j1| = �n/2� and

|Hi
j2| = �n/2�. Let Gi

j1 = f −1(H i
j1) and Gi

j2 = f −1(H i
j2). Then Gi

j1 is on �n/2�
consecutive vertices of G(n;±1). By Theorem 1, these vertices induce a maximum
subgraph of G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2�. Thus each Si

j satisfies conditions

(i), (ii) and (iii) of the Congestion lemma. Therefore ECf (Si
j ) is minimum. Similarly

ECf (S) is minimum. The Generalized Partition lemma (when k = 2) implies that the
wirelength is minimum.

Theorem 5 WL(G(n;±{1,2, . . . , j});1 ≤ j < �n/2�,Cn) = nj (j+1)
2 .

Proof We have already proved that the embedding f defined in Embedding Algo-
rithm B induces minimum wirelength of G(n;±{1,2, . . . , j}) onto Cn.
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Case 1 (n even): Following the notation used in Case 1 of the algorithm, we have
by Lemma 1, ECf (S1) = 2j�n/2� − 2

∑j

i=1(�n/2� − i) = j (j + 1). But Cn \ Si

is isomorphic to Cn \ Sj for i �= j . Therefore, WL(G(n;±{1,2, . . . , j}),Cn) =
n
2 ECf (S1) = nj (j+1)

2 .

Case 2 (n odd): Following the notation used in Case 2 of the algorithm, we
have by Lemma 1, ECf (S) = j (j + 1). But Cn \ S is isomorphic to Cn \ Si

j

for 1 ≤ i ≤ 2, 1 ≤ j ≤ (n − 1)/2. Therefore, WL(G(n;±{1,2, . . . , j}),Cn) =
1
2 {∑2

i=1
∑(n−1)/2

j=1 ECf (Si
j )+ECf (S)} = 1

2 {(n−1)ECf (S)+ECf (S)} = nj (j+1)
2 . �

Theorem 6 WL(Kn,Cn) = n
2 �n/2��n/2�.

5.2 Unicyclic graphs

A connected unicyclic graph arises from a tree by adding an extra edge. In other
words, a graph which contains exactly one cycle C : v1v2 . . . vmv1 is said to be
a unicyclic graph, denoted by UCm. Let T1, T2, . . . , Tm be trees with roots at
v1, v2, . . . , vm respectively. Then UCm contains n vertices where n = |V (T1)| +
|V (T2)| + · · · + |V (Tm)|.
Embedding Algorithm C

Input: A circulant network G(n;±{1,2, . . . , j}), 1 ≤ j < �n/2� and UCm.

Algorithm: Label the consecutive vertices of G(n;±1) in G(n;±{1,2, . . . , j}) as
0,1, . . . , n − 1 in the clockwise sense. Label the vertices of the unicyclic graph
as follows: Label the vertex v1 as 0 and the vertices vi+1, 1 ≤ i ≤ m − 1 as∑i

k=1 |V (Tk)|. Label the vertices of V (T1)�v1 from 1 to |V (T1)| − 1 and the ver-
tices of V (Ti+1)�vi+1, 1 ≤ i ≤ m − 1 from

∑i
k=1 |V (Tk)| + 1 to

∑i
k=1 |V (Tk)| +

|V (Ti+1)| − 1 using inorder labeling.

Output: An embedding f of G(n;±{1,2, . . . , j}) into UCm given by f (x) = x with
minimum wirelength.

Proof of correctness: We partition the edges of each tree as in Sect. 4 and the edges of
the cycle as in Sect. 5.1. A straightforward computation yields minimum wirelength.

5.3 Multicyclic graphs

A multicyclic graph is obtained from a tree by replacing at least two of the edges by
two parallel edges and subdividing the parallel edges to obtain paths. The multicyclic
graph can also be viewed as a particular class of series-parallel graphs. Series-parallel
graphs are an important class of recursively defined graphs that can be characterized
in many ways. The oldest and the most popular characterization due to Duffin (1965)
provides a Kuratowski-like condition which states that a graph G is series-parallel if
and only if it contains no subgraph homeomorphic to K4, the complete graph on four
vertices.

A series–parallel graph is usually defined recursively by using parallel and se-
ries compositions. This classical definition justifies another name of these graphs,
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namely, 2-terminal series–parallel graphs, since we assume that every such graph has
two nodes distinguished as poles and denoted by S (for South) and N (for North).
A series–parallel graph G with poles S and N is defined as either

(i) an edge (S,N)

or can be constructed as in (ii) or (iii):

(ii) G is a parallel composition of at least two series-parallel graphs G1,G2, . . . ,

Gk(k ≥ 2), denoted by G = G1 ‖ G2 ‖ . . . ‖ Gk . This operation identifies the
South Poles Si of the component graphs into the South Pole S of G, and simi-
larly the North Poles Ni become N of G.

(iii) G is a series composition of at least two series-parallel graphs G1,G2, . . . ,

Gl(l ≥ 2), denoted by G = G1 ◦ G2 ◦ · · · ◦ Gl . This operation identifies Ni

and Si+1 for i = 1,2, . . . , l − 1, and assigns S1 to S and Nl to N .

Embedding Algorithm D

Input: A circulant graph G(l(n − 1) + 1;±{1,2, . . . , j}), 1 ≤ j < � l(n−1)+1
2 � and a

series-parallel graph H = G1 ◦ G2 ◦ · · · ◦ Gl where Gi � Cn,1 ≤ i ≤ l, n even and
the south pole and the north pole of each Gi are diametrically opposite vertices of Cn.

Algorithm: Label the consecutive vertices of G(l(n−1)+1;±1) in G(l(n−1)+1;
±{1,2, . . . , j}) as 0,1, . . . , l(n − 1) in the clockwise sense. Label the vertices of the
series-parallel graph as follows: Without loss of generality, we name north pole N as
Sl+1. Label south poles Si as (i−1)n

2 , 1 ≤ i ≤ l + 1. For each Gi , there are two edge
disjoint paths between the south pole and the north pole. For 1 ≤ i ≤ l, the internal
vertices of a path from Si to Si+1 are labeled consecutively from (i−1)n

2 + 1 to in
2 − 1

and the internal vertices of the other path from Si to Si+1 are labeled consecutively
from (2l−i+1)n

2 − l + i − 1 to (2l−i)n
2 − l + i + 1.

Output: An embedding f of G(l(n − 1) + 1;±{1,2, . . . , j}), 1 ≤ j < � l(n−1)+1
2 �

into H = G1 ◦ G2 ◦ · · · ◦ Gl where Gi � Cn,1 ≤ i ≤ l, n even, given by f (x) = x

with minimum wirelength.

Proof of correctness: As in the case of embedding circulant graph into an even cycle,
let edge set E of the series-parallel graph H be partitioned into {Si

m : 1 ≤ i ≤ l,

1 ≤ m ≤ n/2} where each Si
m contains two diametrically opposite edges of Gi , 1 ≤

i ≤ l, in G1 ◦ G2 ◦ · · · ◦ Gl . See Fig. 7. For 1 ≤ i ≤ l, 1 ≤ m ≤ n/2, E(H) \ Si
m has

two components Hi
m1 and Hi

m2 induced by consecutive vertices on H . Let Gi
m1 =

f −1(H i
m1) and Gi

m2 = f −1(H i
m2). Then Gi

m1 is induced by consecutive vertices of
G(l(n − 1) + 1;±{1,2, . . . , j}). Again by Lemmas 1 and 2, f induces minimum
wirelength.
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Fig. 7 Si
1 and Si

n/2 contain two diametrically opposite edges of Gi � C6, l = 5, n = 6

Theorem 7 The wirelength of G(l(n − 1) + 1;±{1,2, . . . , j}), 1 ≤ j < � l(n−1)+1
2 �

into H = G1 ◦ G2 ◦ · · · ◦ Gl where Gi � Cn,1 ≤ i ≤ l, n even, is given by

WL(G,H) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n
∑l/2

i=1

{
jx − ∑min{j,x−1}

p=1 (x − p)
}

l even

2n
∑(l−1)/2

i=1

{
jx − ∑min{j,x−1}

p=1 (x − p)
}

+ n
{
jy − ∑min{j,y−1}

p=1 (y − p)
}

l odd

where x = [2(i − 1)(n − 1) + n]/2 and y = [(l − 1)(n − 1) + n]/2.

Proof Clearly, H \Si
m is isomorphic to H \S

(l−i+1)
m for 1 ≤ i ≤ �l/2�, 1 ≤ m ≤ n/2.

Therefore, ECf (Si
m) = ECf (S

(l−i+1)
m ).

Case 1 (l even):

WL(G,H)

=
l∑

i=1

n/2∑

m=1

ECf (Si
m)

= 2
l/2∑

i=1

[ECf (Si
1) + ECf (Si

2) + · · · + ECf (Si
(n/2))]

= 2
l/2∑

i=1

n

2

⎧
⎨

⎩2jx − 2
min{j,x−1}∑

p=1

(x − p)

⎫
⎬

⎭ where x = [2(i − 1)(n − 1) + n]/2

= 2n

l/2∑

i=1

⎧
⎨

⎩jx −
min{j,x−1}∑

p=1

(x − p)

⎫
⎬

⎭ .

Case 2 (l odd):

WL(G,H)

=
l∑

i=1

n/2∑

m=1

ECf (Si
m)
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= 2
(l−1)/2∑

i=1

n/2∑

m=1

ECf (Si
m) +

n/2∑

m=1

ECf (S
( l+1

2 )
m )

= 2
(l−1)/2∑

i=1

n

2

⎧
⎨

⎩2jx − 2
min{j,x−1}∑

p=1

(x − p)

⎫
⎬

⎭ + n

2

⎧
⎨

⎩2jy − 2
min{j,y−1}∑

p=1

(y − p)

⎫
⎬

⎭

= 2n

(l−1)/2∑

i=1

⎧
⎨

⎩jx −
min{j,x−1}∑

p=1

(x − p)

⎫
⎬

⎭ + n

⎧
⎨

⎩jy −
min{j,y−1}∑

p=1

(y − p)

⎫
⎬

⎭

where x = [2(i − 1)(n − 1) + n]/2 and y = [(l − 1)(n − 1) + n]/2. �

Remark 3 The techniques adopted in this Section allow us to compute the exact wire-
length of circulant networks into all classes of multicyclic graphs.

6 Wirelength of circulant networks into ladders

In this section we consider the embedding of circulant network G(2n;±{1,2, . . . , j}),
1 ≤ j < n into the ladder P2 × Pn.

Embedding Algorithm E

Input: A circulant network G(2n;±{1,2, . . . , j}), 1 ≤ j < n and the ladder P2 ×Pn.

Algorithm: Label the consecutive vertices of G(2n;±1) in G(2n;±{1,2, . . . , j}) as
0,1, . . . ,2n − 1 in the clockwise sense. Label the vertices of the ladder as follows:
The first row is labeled 0 to n − 1 from left to right and the second row is labeled n

to 2n − 1 from right to left.

Output: An embedding f of G(2n;±{1,2, . . . , j}) into P2 × Pn given by f (x) = x

with minimum wirelength.

Proof of correctness: Let X be a horizontal edge cut of the ladder such that X

disconnects the ladder into two components R1 and R2 where V (R1) = {0,1, . . . ,

n− 1} and V (R2) = {n,n+ 1, . . . ,2n− 1}. Let Yi be a vertical edge cut of the ladder
such that Yi disconnects the ladder into two components Ci and C′

i where V (Ci) =
{0,1, . . . , i −1}∪ {2n− i,2n− i +1, . . . ,2n−1} and V (C′

i ) = V (P2 ×Pn)\V (Ci).
See Fig. 8. Let G1 and G2 be the inverse images of R1 and R2 under this labeling.
The edge cut X satisfies the conditions (i) and (ii) of the Congestion lemma. Since G1

is on n consecutive vertices of G(2n;±1) in G(2n;±{1,2, . . . , j}), by Theorem 1,
|E(G1)| is maximum satisfying the condition (iii) of the Congestion lemma. Thus
by the Congestion lemma, ECf (X) is minimum. Again let Gi and G′

i be the inverse
images of Ci and C′

i under this labeling. The edge cut Yi satisfies the conditions
(i) and (ii) of the Congestion lemma. Also Gi is induced by 2i consecutive vertices
of G(2n;±1) in G(2n;±{1,2, . . . , j}). Thus ECf (Yi) is minimum for i = 1,2, . . . ,

n − 1. Hence by Partition lemma the wirelength is minimum.
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Fig. 8 X is a horizontal edge cut and Yi is a vertical edge cut

Theorem 8 The wirelength of G(2n;±{1,2, . . . , j}),1 ≤ j < n into P2 ×Pn is given
by

WL(G(2n;±{1,2, . . . , j}),P2 × Pn)

=
⎧
⎨

⎩
j (j + 1) + j (n2 − 1) − 4

∑(n−1)/2
m=1

∑min{j,2m−1}
i=1 (2m − i) n odd

jn(n + 2) − 4
∑n/2

m=1

∑min{j,2m−1}
i=1 (2m − i) n even.

Proof We have

ECf (X) = 2jn − 2
j∑

i=1

(n − i) = j (j + 1).

Case 1 (n odd): Clearly, ECf (Yi) = ECf (Yn−i ) for 1 ≤ i ≤ (n − 1)/2.
Therefore,

n−1∑

i=1

ECf (Yi) = 2
(n−1)/2∑

i=1

ECf (Yi)

= 2

{
4j − 2

min{j,1}∑

i=1

(2 − i) + 8j − 2
min{j,3}∑

i=1

(4 − i)

+ · · · + 2j (n − 1) − 2
min{j,n−2}∑

i=1

(n − 1 − i)

}

= j (n2 − 1) − 4
(n−1)/2∑

m=1

min{j,2m−1}∑

i=1

(2m − i).

Thus,

WL(G(2n;±{1,2, . . . , j}),1 ≤ j < n,P2 × Pn)

= j (j + 1) + j (n2 − 1) − 4
(n−1)/2∑

m=1

min{j,2m−1}∑

i=1

(2m − i).
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Case 2 (n even): Clearly, ECf (Yi) = ECf (Yn−i ) for 1 ≤ i ≤ n/2 − 1.
Therefore,

n−1∑

i=1

ECf (Yi) =
n/2−1∑

i=1

ECf (Yi) + ECf (Yn/2) +
n−1∑

i=n/2+1

ECf (Yi)

= 2

{
4j − 2

min{j,1}∑

i=1

(2 − i) + 8j − 2
min{j,3}∑

i=1

(4 − i)

+ · · · + 2j (n − 2) − 2
min{j,n−3}∑

i=1

(n − 2 − i)

}

+ 2jn − 2
j∑

i=1

(n − i)

= 2

{
4j − 2

min{j,1}∑

i=1

(2 − i) + 8j − 2
min{j,3}∑

i=1

(4 − i)

+ · · · + 2jn − 2
min{j,n−1}∑

i=1

(n − i)

}

− 2jn + 2
j∑

i=1

(n − i)

= jn(n + 2) − 4
n/2∑

m=1

min{j,2m−1}∑

i=1

(2m − i) − j (j + 1).

Thus,

WL(G(2n;±{1,2, . . . , j}),1 ≤ j < n,P2 × Pn)

= jn(n + 2) − 4
n/2∑

m=1

min{j,2m−1}∑

i=1

(2m − i).
�

7 Conclusion

We obtain the exact wirelength of circulant networks into arbitrary trees, certain mul-
ticyclic graphs and ladders. All the embeddings constructed in this paper are simple,
elegant and produce exact wirelengths. It would be an interesting line of research to
solve the following problem.

Open Problem To find the exact wirelength of circulant networks into grids.
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