
J Comb Optim (2013) 25:123–134
DOI 10.1007/s10878-011-9423-1

Two-stage proportionate flexible flow shop to minimize
the makespan

Byung-Cheon Choi · Kangbok Lee

Published online: 30 November 2011
© Springer Science+Business Media, LLC 2011

Abstract We consider a two-stage flexible flow shop problem with a single machine
at one stage and m identical machines at the other stage, where the processing times
of each job at both stages are identical. The objective is to minimize the makespan.
We describe some optimality conditions and show that the problem is NP-hard when
m is fixed. Finally, we present an approximation algorithm that has a worst-case per-

formance ratio of 5
4 for m = 2 and

√
1+m2+1+m

2m
for m ≥ 3.

Keywords Scheduling · Proportionate flexible flow shop · Computational
complexity · Approximation algorithm

1 Introduction

We consider a two-stage proportionate flexible flow shop scheduling problem that
can be stated as follows. There are n jobs to be processed through two stages in
series such that one stage has one machine while the other has m identical parallel
machines. Jobs can be processed on any machine at the stage with multiple machines.
The processing times of each job at both stages are identical. The objective is to find a
schedule for n jobs that minimizes the overall completion time (makespan), denoted
by Cmax. Let our problem be referred to as Problem P.

B.-C. Choi
Department of Business Administration, Chungnam National University, 79 Daehangno,
Yuseong-gu, Daejeon 305-704, Korea
e-mail: polytime@cnu.ac.kr

K. Lee (�)
Department of Supply Chain Management & Marketing Sciences, Rutgers Business School,
The State University of New Jersey, 1 Washington Park, Newark, NJ 07102, USA
e-mail: kangblee@business.rutgers.edu

mailto:polytime@cnu.ac.kr
mailto:kangblee@business.rutgers.edu

124 J Comb Optim (2013) 25:123–134

Fig. 1 A computer network with alternative links

The proportionate flexible flow shop problem has a practical application in data
transmission in computer networks. We consider a computer network consisting of a
series of nodes, including the origination, destination, and several intermediate nodes
(see Fig. 1). The process of sending data from one node to the next is as follows.
After completely receiving the data from the previous node, the current node checks
its correctness and transmits it to the next node via one of alternative links. Most of the
processing time in sending data is mainly spent transmitting data, and here the time
to send data between two consecutive nodes is almost equal to the transmission time,
which is a function of the number of bytes of data and the link’s bandwidth. When
the bandwidths of all the links over the overall network are the same, the processing
times of each job at all stages are identical. Thus, this application can be modeled as
a proportionate flexible flow shop problem such that

• The set of parallel links between two consecutive nodes corresponds to one stage;
• Each link corresponds to one machine at the corresponding stage;
• Each unit of data corresponds to each job;
• The data transmission time between two consecutive nodes corresponds to the pro-

cessing time of the corresponding job.

We use the following notation throughout the paper. Let n denote the number
of jobs, and m the number of machines at the stage with multiple machines. Let
pj refer to the processing time of job j . Let σ = (σk,i) denote a schedule where
σk,i is the sequence of jobs processed on machine i at stage k. Let job σk,i(j) re-
fer to the job that is in the j th position on machine i at stage k under schedule σ .
Let Cmax(σ) denote the makespan of schedule σ . Let Si,j (σ) and Ci,j (σ) be the
starting and completion times, respectively, of job j at stage i under schedule σ ,
i = 1,2, j = 1, . . . , n. If stage 1 has one machine, σ = (σ1,1;σ2,1, . . . , σ2,m); oth-
erwise σ = (σ1,1, . . . , σ1,m;σ2,1). Using the classification scheme (Graham et al.
1979), we denote Problem P as FF(1,m) | pij = pj | Cmax for the first case and
FF(m,1) | pij = pj | Cmax for the second case, where pi,j denotes the processing
time of job j at stage i. Throughout the paper, we assume that p1 ≤ · · · ≤ pn.

The contributions of the paper are to provide a formal proof for the NP-com-
pleteness of Problem P with fixed m and present an approximation algorithm with
the worst-case analysis. Note that the NP-completeness of the problem of minimizing
the makespan on two identical parallel machines does not imply the NP-completeness

J Comb Optim (2013) 25:123–134 125

of Problem P, because in Problem P the processing times of each job in both stages
are the same. For the non-proportionate case (i.e., when the processing times of a
job at both stages are arbitrary), (2 − 1

m
) is the best-known worst-case performance

ratio (Lee and Vairaktarakis 1994). For Problem P, we present an approximation al-

gorithm whose worst-case performance ratio is 5/4 for m = 2 and
√

1+m2+1+m
2m

for
m ≥ 3.

The rest of the paper is organized as follows. Section 2 discusses the related liter-
ature. Section 3 presents some optimality conditions for Problem P. Section 4 shows
that Problem P is NP-hard. Section 5 provides an approximation algorithm and ana-
lyzes the worst-case performance ratio of the algorithm.

2 Literature review

In a proportionate flow shop environment, each stage has a single machine, and the
processing times of job j over all stages are equal to pj (Ow 1985; Pinedo 2008). Un-
der this environment, the optimal makespan is (

∑n
j=1 pj + (m−1)max{p1, . . . , pn})

and every sequence of the jobs is optimal (Pinedo 2008). Shakhlevich et al. (1998)
showed that the problem of minimizing the total weighted completion time in a pro-
portionate flow shop is solvable in time O(n2).

Linn and Zhang (1999), Ruiz et al. (2010) and Ribas et al. (2010) reviewed the
state of the art in a flexible flow shop. To minimize the makespan for the two-stage
case, Lee and Vairaktarakis (1994) developed an approximation algorithm with a
worst-case performance ratio of 2 − 1

max{m1,m2} , where m1 and m2 are the num-
bers of machines at stages 1 and 2, respectively. Hoogeveen et al. (1996) showed
that two-stage problems with and without preemption both are NP-hard in the strong
sense. Schuurman and Woeginger (2000) designed a polynomial time approximation
scheme (PTAS) for the two-stage problem such that the numbers of machines in both
stages are part of the input. Thornton and Hunsucker (2004) considered a two-stage
case with no intermediate storage and, from an experimental point of view, developed
a better heuristic than those known.

Minimizing the makespan for a case with more than two stages has also been
considered. Soewandi and Elmaghraby (2001) studied the problem with three stages
and devised an approximation algorithm whose worst-case performance ratio is
10
3 − 1

max{m1,m2} − 1
3m3

, where mi is the number of machines at stage i, i = 1,2,3.
Koulamas and Kyparisis (2007) considered a c-stage case such that c is an odd num-
ber, and developed an approximation algorithm with a worst-case performance ratio
of c − 1

max{m1,m2} − 1
max{m3,m4} − · · · − 1

max{mc−4,mc−3} − 1
max{mc−2,mc−1,mc} , where mi

is the number of machines at stage i, i = 1,2, . . . , c. Jansen and Sviridenko (2000)
developed a PTAS for the case with a fixed number of stages and a variable number
of machines, and Sevastyanov (2008) improved the running time. Riane et al. (1998)
considered the three-stage case with one machine in stages 1 and 3 and two machines
in stage 2, and presented two heuristics that can be applied to realistic problems.

Little research has been conducted on the proportionate flexible flow shop so far.
Pinedo (2008) considered the problem of minimizing the total completion time and
showed that the shortest processing time (SPT) rule is optimal if each stage has at

126 J Comb Optim (2013) 25:123–134

least as many machines as the preceding stage. Huang and Shiau (2008) and Shiau
et al. (2008) considered a problem in which the objective is to minimize the total
weighted completion time and proposed a column generation approach and a hybrid
constructive genetic algorithm, respectively.

3 Optimality conditions

This section presents some optimality conditions.

Theorem 1 Let σ ∗ be an optimal schedule. Then

(i) FF(1,m) | pij = pj | Cmax has an optimal schedule such that if S1,k(σ
∗) >

S1,l(σ
∗), then S2,k(σ

∗) ≥ S2,l(σ
∗);

(ii) FF(m,1) | pij = pj | Cmax has an optimal schedule such that if C1,k(σ
∗) ≥

C1,l(σ
∗), then C2,k(σ

∗) > C2,l(σ
∗).

Proof (i) Suppose that there exists an optimal schedule such that job l is started
immediately before job k at stage 1 and job k is started before job l at stage 2. Then,
since the stage 2 operation of job k can be started after the stage 1 operation of job k

is completed, the stage 2 operation of job l can be started after the stage 1 operation of
job k is completed. Thus, we can construct a new feasible schedule by interchanging
the positions of jobs k and l at stage 1 without increasing the makespan. By applying
this procedure repeatedly, Theorem 1 can be attained.

(ii) Suppose that there exists an optimal schedule such that job l is completed
before job k at stage 1 and job k is completed before job l at stage 2. Note that jobs k

and l may be processed on different machines at stage 1.
Then, since the stage 2 operation of job k can be started after the stage 1 operation

of job k is completed, the stage 2 operation of job l can be started after the stage 1
operation of job k is completed. Thus, we can construct a new feasible schedule by
inserting job l immediately before k at stage 2 and shifting the jobs between jobs k

and l to the right by pl . Then, the new schedule is feasible and the makespan does
not increase. By applying this procedure repeatedly, Theorem 1 can be attained. �

Theorem 2 Let σ ∗
1,1 = (σ ∗

k,i) be an optimal schedule. Then,

(i) FF(m,1) | pi,j = pj | Cmax has an optimal schedule such that the jobs in σ ∗
1,i

are processed in the SPT order, i = 1,2, . . . ,m;
(ii) FF(1,m) | pi,j = pj | Cmax has an optimal schedule such that the jobs in σ ∗

2,i

are processed in the longest processing time (LPT) order, i = 1,2, . . . ,m.

Proof (i) Suppose that there exist jobs k and l such that pk < pl and job l is processed
before job k on the same machine at stage 1. By Theorem 1, job l is processed before
job k at stage 2. We can construct a new schedule by inserting job k immediately
before job l at both stages. Note that since pk < pl , the new schedule guarantees that
the stage 1 operation of job k is completed before the stage 2 operation of job k is
started. Also, the jobs between jobs k and l at stages 1 and 2 are shifted to the right

J Comb Optim (2013) 25:123–134 127

by pk . Thus, the new schedule is feasible and the makespan does not increase. By
applying this argument repeatedly, Theorem 2 can be obtained. The proof is complete.

(ii) By the reversibility property of flow shops, this immediately holds from (i). �

Henceforth, throughout the paper, we only consider schedules satisfying Theo-
rems 1 and 2.

4 Computational complexity of Problem P

This section shows that Problem P is NP-hard. The decision version of Problem P is
stated as follows: Given a threshold λ, is there a schedule σ such that Cmax(σ) ≤ λ?

To prove the NP-completeness of Problem P, we introduce the partition prob-
lem, which is stated as follows: Given a set of n integers {a1, a2, . . . , an} such that∑n

j=1 aj = A, is there a subset S ⊂ {1,2, . . . , n} such that
∑

j∈S aj = A
2 ?

Theorem 3 The decision version of Problem P is NP-complete when m is fixed.

Proof Consider FF(1,m) | pi,j = pj | Cmax. It is clear that the decision version is
in NP. Given an instance of the partition problem, we can construct an instance
of FF(1,m) | pi,j = pj | Cmax as follows. There is a set of (n + 2m − 2) jobs,
{1,2, . . . , n + 2m − 2} such that

pj =
⎧
⎨

⎩

aj for j = 1, . . . , n,

2n+m−jB for j = n + 1, . . . , n + m,
A
2 for j = n + m + 1, . . . , n + 2m − 2,

and λ = 2mB + A
2 , where let B = A

2 m. This reduction can be done in polynomial
time. Let the set of jobs be divided as follows:

• J 1 := {1, . . . , n};
• J 2 := {n + 1, . . . , n + m};
• J 3 := {n + m + 1, . . . , n + 2m − 2}.
Suppose that there is a subset S such that

∑
j∈S aj = A

2 . Then, we can construct a
schedule σ such that

• σ1,1 = (n + 1, n + 2, . . . , n + m,S, S̄, n + m + 1, . . . , n + 2m − 2);
• σ2,1 = (n + 1, S);
• σ2,2 = (n + 2, S̄);
• σ2,i = (n + i, n + m + i − 2), i = 3, . . . ,m;
• Jobs in S and S̄ are processed in an arbitrary order,

where S̄ = {1, . . . , n} \ S (see Fig. 2). Thus, Cmax(σ) = λ.

Suppose that there exists a schedule σ such that Cmax(σ) ≤ λ.

Claim 1 In schedule σ , job (n + i) is processed before jobs in {n + i + 1, n + i +
2, . . . , n + m} at stage 1 for i = 1, . . . ,m − 1.

128 J Comb Optim (2013) 25:123–134

Fig. 2 The makespan of schedule σ

Proof Suppose Claim 1 holds for i = 1, . . . , k − 1 and does not hold when i = k.
Then there exists a job (n + l) processed before job (n + k) at stage 1 such that
k < l ≤ m. Since pn+l ≥ B and the starting time of job (n + l) is larger than or equal
to

∑k−1
j=1 2m−jB ,

Cmax(σ) ≥ C2,n+k(σ) ≥
k−1∑

j=1

2m−jB + pn+l + 2pn+k

= (2m − 2m−k+1)B + pn+l + 2pn+k ≥ 2mB + B > λ.

This is a contradiction. The proof is complete. �

It is observed from Claim 1 that

C2,j (σ) ≥ 2mB for j ∈ J 2. (1)

Claim 2 In schedule σ , all jobs in J 2 are processed on different machines at stage 2.

Proof Suppose that there are jobs (n + k) and (n + l) that are processed on the same
machine at stage 2, where 1 ≤ k < l ≤ m. By inequality (1) and pn+l ≥ B ,

Cmax(σ) ≥ S2,n+l (σ) + pn+l ≥ C2,n+k(σ) + pn+l ≥ 2mB + B > λ.

This is a contradiction. The proof is complete. �

By Claim 2, without loss of generality, we can assume that job (n+ i) is processed
on machine i at stage 2 for each i = 1, . . . ,m.

Claim 3 In schedule σ , all jobs in J 1 ∪ J 3 are processed after job (n + m − 1) at
stage 1.

J Comb Optim (2013) 25:123–134 129

Proof Let J ′ be a set of jobs in J 1 ∪ J 3 that are processed before job (n + m − 1) at
stage 1. Let J ′′ be a set of jobs in J 1 ∪J 3 that are processed between jobs (n+m−1)

and (n + m) at stage 1. Suppose that J ′
= ∅. Then, it is observed that

• C2,n+j (σ) ≥ 2mB , j = 1, . . . ,m − 2;
• C2,n+m−1(σ) ≥ 2mB + ∑

j∈J ′ pj ;
• C2,n+m(σ) ≥ 2mB + ∑

j∈J ′∪J ′′ pj .

By the above inequalities, we have
m∑

j=1

(
λ − C2,n+j (σ)

) ≤ mA

2
− 2

∑

j∈J ′
pj −

∑

j∈J ′′
pj . (2)

Moreover, since Cmax(σ) ≤ λ, the total processing times of jobs in (J 1 ∪ J 3) \
(J ′ ∪ J ′′) should be less than or equal to

∑m
j=1(λ − C2,n+j (σ)); that is,

∑

j∈(J 1∪J 3)\(J ′∪J ′′)
pj ≤

m∑

j=1

(
λ − C2,n+j (σ)

)
. (3)

Since
∑

j∈(J 1∪J 3)\(J ′∪J ′′) pj = mA
2 − ∑

j∈J ′∪J ′′ pj and J ′
= ∅, inequalities (2) and
(3) cannot be satisfied simultaneously. Since this is a contradiction, J ′ = ∅. The proof
is complete. �

Claim 4 In schedule σ , the total processing time of jobs in J 1 ∪J 3 that are scheduled
on the same machine at stage 2 is at most A

2 .

Proof It is observed from Claims 1 and 3 that C2,n+j (σ) = 2mB for j = 1, . . . ,

m − 1. Thus, the total processing time of jobs in J 1 ∪ J 3 that are scheduled on
machine i at stage 2 should be at most A

2 for i = 1, . . . ,m − 1.
Henceforth, we focus on jobs that are scheduled on machine m at stage 2. Let J ′

(or J ′′) be the set of jobs in J 1 ∪J 3 that are scheduled before (or after) job (n+m) at
stage 1 and scheduled on machine m at stage 2. Let job l be the last job in J ′′. Then,

C2,l(σ) = C1,n+m−1(σ) +
∑

j∈J ′
pj + 2pn+m +

∑

j∈J ′′
pj = 2mB +

∑

j∈J ′∪J ′′
pj .

Since Cmax(σ) ≤ λ,
∑

j∈J ′∪J ′′ pj ≤ A
2 . The proof is complete. �

By Claim 4 and
∑

j∈J 1∪J 3 pj = A
2 m, the total processing time of jobs in J 1 ∪

J 3 that are scheduled on machine i at stage 2 is exactly A
2 for i = 1, . . . ,m. This

implies that there exists a subset S ⊂ {1,2, . . . , n} such that
∑

j∈S aj = A
2 . The proof

is complete. �

5 Approximation algorithm

This section only considers FF(1,m)|pi,j = pj |Cmax, because the results for
FF(1,m)|pi,j = pj |Cmax hold for FF(m,1)|pi,j = pj |Cmax by the reversibility
property of flow shops. Recall that p1 ≤ · · · ≤ pn. Consider the following algorithm.

130 J Comb Optim (2013) 25:123–134

Algorithm LPT

Step 1 Sequence jobs by order of decreasing pj at stage 1.
Step 2 Set i = 1 and j = n.

Step 2-1 Assign job j to machine i at stage 2. Set i = i + 1 and j = j − 1.
Step 2-2 If i = m + 1, then i = 1.
Step 2-3 If j = 0, then go to Step 3; otherwise go to Step 2-1.

Step 3 Shift the jobs to the left as much as possible at stage 2 while the completion
time of a job at stage 1 is less than or equal to the starting time of the job at
stage 2.

The time complexity of Algorithm LPT is O(n logn).

Numerical example Consider a 7-job two-stage flexible flow shop with one machine
at stage 1 and two machines at stage 2 as follows:

j 1 2 3 4 5 6 7

pj 1 2 3 4 8 9 10

Step 1: Set σLPT = (7,6,5,4,3,2,1).
Step 2: Sequence jobs belonging to {1,3,5,7} and {2,4,6} in LPT order on ma-

chines 1 and 2 at stage 2, respectively, that is, σLPT
2,1 = (7,5,3,1) and σLPT

2,2 =
(6,4,2).

Step 3: Jobs in {5,6,7} at stage 1 and jobs in {1,3,5} at stage 2 contribute the
makespan. The makespan is

Cmax(σ
LPT) = p1,7 + p1,6 + p1,5 + p2,5 + p2,3 + p2,1

= p7 + p6 + p5 + p5 + p3 + p1 = 39.

Let σ ∗ = (σ ∗
1,1;σ ∗

2,1, . . . , σ
∗
2,m) be the optimal schedule, and σLPT = (σLPT

1,1 ;
σLPT

2,1 , . . . , σLPT
2,m) be the schedule obtained by Algorithm LPT. Note that by Step

3 of Algorithm LPT, there must exist job l such that C1,l(σ
LPT) = S2,l(σ

LPT) that
is critical for the makespan. (In the above numerical example, job 5 is such a criti-
cal job.) Without loss of generality, assume that job l is processed on machine α at
stage 2. Then,

Cmax(σ
LPT) =

n∑

j=l

pj + pl +
∑

j∈Sα

pj , (4)

where Sα is the set of jobs that are processed after job l on machine α at stage 2.
Let Si be the set of jobs that are assigned to machine i at stage 2 by Algorithm
LPT after job l has been assigned to machine α for i ∈ {1, . . . ,m} \ {α}. Note that⋃m

i=1 Si = {1,2, . . . , l − 1}. Then, it is observed that
∑

j∈Si

pj ≥
∑

j∈Sα

pj for i = 1, . . . ,m. (5)

J Comb Optim (2013) 25:123–134 131

Inequality (5) implies

∑

j∈Sα

pj ≤ 1

m

l−1∑

j=1

pj . (6)

Theorem 4 For FF(1,m) | pij = pj | Cmax,

Cmax(σ
LPT)

Cmax(σ ∗)
≤

√
1 + m2 + 1 + m

2m
.

Proof By equation (4) and inequality (6),

Cmax(σ
LPT) ≤

n∑

j=l

pj + pl + 1

m

l−1∑

j=1

pj . (7)

Claim
∑n

j=l pj + pl ≤ Cmax(σ
∗).

Proof Let σ ∗
1,1(k) be the first job such that

{l, l + 1, . . . , n} ⊂ {σ ∗
1,1(1), σ ∗

1,1(2), . . . , σ ∗
1,1(k)}.

Note that job σ ∗
1,1(k) belongs to {l, l +1, . . . , n}. Since

∑k
j=1 pσ ∗

1,1(j) ≥ ∑n
j=l pj and

pσ ∗
1,1(k) ≥ pl ,

Cmax(σ
∗) ≥

k∑

j=1

pσ ∗
1,1(j) + pσ ∗

1,1(k) ≥
n∑

j=l

pj + pl.

The proof is complete. �

Let α = √
1 + m2 +1−m. We consider two cases on the ratio of pl and

∑l−1
j=1 pj .

Case 1. αpl ≥ ∑l−1
j=1 pj .

By the claim above, inequality (7), and 2pl ≤ Cmax(σ
∗),

Cmax(σ
LPT) − Cmax(σ

∗) ≤ 1

m

l−1∑

j=1

pj ≤ α

m
pl ≤ α

2m
Cmax(σ

∗).

Case 2. αpl <
∑l−1

j=1 pj .

By
∑n

j=1 pj ≤ Cmax(σ
∗) and inequality (7),

Cmax(σ
LPT) − Cmax(σ

∗) ≤ pl + 1

m

l−1∑

j=1

pj −
l−1∑

j=1

pj ≤
(

1

α
+ 1

m
− 1

) l−1∑

j=1

pj

≤
(

1

α
+ 1

m
− 1

)

Cmax(σ
∗).

132 J Comb Optim (2013) 25:123–134

By Cases 1 and 2,

Cmax(σ
LPT) ≤

(
1 + α

2m

)
Cmax(σ

∗) and Cmax(σ
LPT) ≤

(
1

α
+ 1

m

)

Cmax(σ
∗).

Since α = √
1 + m2 + 1 − m, we have

1 + α

2m
= 1

α
+ 1

m
=

√
1 + m2 + 1 + m

2m
.

Thus,

Cmax(σ
LPT)

Cmax(σ ∗)
≤

√
1 + m2 + 1 + m

2m
.

The proof is complete. �

Note that

1 + 1

2m
<

√
1 + m2 + 1 + m

2m
< 1 + 1

2m
+ 1

4m2
.

Consider an instance as follows: There is a set of (mx + 1) jobs consisting of a job
with processing time (mx + 1) and mx jobs with processing time 1 for integer x.
The optimal makespan Cmax(σ

∗) is 2(mx + 1), while the makespan of the schedule
by Algorithm LPT Cmax(σ

LPT) is (2(mx + 1) + x). When x goes to infinity, the
performance ratio approaches (1 + 1

2m
).

The performance ratio of Algorithm LPT for the above instance is (1 + 1
2m

), im-
plying that the worst-case performance ratio in Theorem 4 is almost tight if m is
sufficiently large.

In the case for m = 2, Algorithm LPT has a tight worst-case performance ratio of
1 + 1

4 .

Theorem 5 For FF(1,2) | pij = pj | Cmax,

Cmax(σ
LPT)

Cmax(σ ∗)
≤ 5

4
.

Proof By equation (4) and inequality (6),

Cmax(σ
LPT) ≤

n∑

j=l

pj + pl + 1

2

l−1∑

j=1

pj .

Since pl ≤ pn,

Cmax(σ
LPT) ≤

(
n∑

j=l

pj + 1

2

l∑

j=1

pj

)

+ 1

2
pn. (8)

Claim (
∑n

j=l pj + 1
2

∑l
j=1 pj) ≤ Cmax(σ

∗).

Proof Consider two cases.

J Comb Optim (2013) 25:123–134 133

Case 1: pl ≤ ∑l−1
j=1 pj

In this case,
n∑

j=1

pj −
(

n∑

j=l

pj + 1

2

l∑

j=1

pj

)

= 1

2

(
l−1∑

j=1

pj − pl

)

≥ 0.

Since Cmax(σ
∗) ≥ ∑n

j=1 pj , Cmax(σ
∗) ≥ (

∑n
j=l pj + 1

2

∑l
j=1 pj).

Case 2: pl >
∑l−1

j=1 pj

Since pl >
∑l−1

j=1 pj ,

n∑

j=l

pj + 1

2

l∑

j=1

pj <

n∑

j=l

pj + 1

2
pl + 1

2
pl =

n∑

j=l

pj + pl.

Recall that by the claim in the proof of Theorem 4,
∑n

j=l pj +pl ≤ Cmax(σ
∗). Thus,

n∑

j=l

pj + 1

2

l∑

j=1

pj < Cmax(σ
∗).

By Cases 1 and 2, the claim above holds. �

By the claim above and pn ≤ 1
2Cmax(σ

∗), (8) becomes

Cmax(σ
LPT) ≤ Cmax(σ

∗) + 1

4
Cmax(σ

∗) = 5

4
Cmax(σ

∗).

This completes the proof. �

Note: By applying the argument in proof of Theorem 5 to the case with m ≥ 3, we
have

Cmax(σ
LPT) ≤

(
n∑

j=l

pj + 1

m

l∑

j=1

pj

)

+ m − 1

m
pn and

n∑

j=l

pj + 1

m

l∑

j=1

pj ≤ Cmax(σ
∗).

By the above inequalities and 2pn ≤ Cmax(σ
∗), we have

Cmax(σ
LPT)

Cmax(σ ∗)
≤ 3m − 1

2m
.

Since
√

1 + m2 < 1 + m for m ≥ 3, however,

3m − 1

2m
−

√
1 + m2 + 1 + m

2m
= 2m − 2 − √

1 + m2

2m
>

2m − 2 − (1 + m)

2m

= m − 3

2m
≥ 0.

134 J Comb Optim (2013) 25:123–134

Thus, it is observed that for the case with m ≥ 3, the bound obtained by the argument
in proof of Theorem 5 is worse than the bound of Theorem 4.

References

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326

Hoogeveen JA, Lenstra JK, Veltman B (1996) Preemptive scheduling in a two-stage multiprocessor flow
shop is NP-hard. Eur J Oper Res 89:172–175

Huang YM, Shiau DF (2008) Combined column generation and constructive heuristic for a proportionate
flexible flow shop scheduling. Int J Adv Manuf Technol 38:691–704

Jansen K, Sviridenko MI (2000) Polynomial time approximation schemes for the multiprocessor open and
flow shop scheduling problem. Lect Notes Comput Sci 1770:455–565

Koulamas C, Kyparisis GJ (2007) A note on performance guarantees for sequencing three-stage flexible
flowshops with identical machines to minimize makespan. IIE Trans 39:559–563

Lee CY, Vairaktarakis GL (1994) Minimizing makespan in hybrid flowshop. Oper Res Lett 16:149–158
Linn R, Zhang W (1999) Hybrid flow shop scheduling: a survey. Comput Ind Eng 37:57–61
Ow PS (1985) Focused scheduling in proportionate flowshops. Manag Sci 31:852–869
Pinedo M (2008) Scheduling: theory, algorithms and systems, 3rd edn. Springer, Berlin
Riane F, Artiba A, Elmaghraby SE (1998) A hybrid three-stage flowshop problem: efficient heuristics to

minimize makespan. Eur J Oper Res 109:321–329
Ribas I, Leisten R, Framinan JM (2010) Review and classification of hybrid flow shop scheduling problems

from a production system and a solutions procedure perspective. Comput Oper Res 37(8):1439–1454
Ruiz R, Antonio J, Rodriguez V (2010) The hybrid flow shop scheduling problem. Eur J Oper Res

205:1–18
Schuurman P, Woeginger GJ (2000) A polynomial time approximation scheme for the two-stage multipro-

cessor flow shop problem. Theor Comput Sci 237:105–122
Sevastyanov SV (2008) An improved approximation scheme for the Johnson problem with parallel ma-

chines. J Appl Ind Math 2(3):406–420
Shakhlevich N, Hoogeveen H, Pinedo M (1998) Minimizing total weighted completion time in a propor-

tionate flow shop. J Sched 1:157–168
Shiau DF, Cheng SC, Huang YM (2008) Proportionate flexible flow shop scheduling via a hybrid con-

structive genetic algorithm. Expert Syst Appl 34:1133–1143
Soewandi H, Elmaghraby SE (2001) Sequencing three-stage flexible flowshops with identical machines to

minimize makespan. IIE Trans 33(11):985–994
Thornton HW, Hunsucker JL (2004) A new heuristic for minimal makespan in flow shops with multiple

processors and no intermediate storage. Eur J Oper Res 152:96–114

	Two-stage proportionate flexible flow shop to minimize the makespan
	Abstract
	Introduction
	Literature review
	Optimality conditions
	Computational complexity of Problem P
	Approximation algorithm
	Numerical example

	References

