
J Comb Optim (2012) 24:437–458
DOI 10.1007/s10878-011-9400-8

Self-organizing maps in population based metaheuristic
to the dynamic vehicle routing problem

Jean-Charles Créput · Amir Hajjam ·
Abderrafiaa Koukam · Olivier Kuhn

Published online: 18 May 2011
© Springer Science+Business Media, LLC 2011

Abstract We consider the dynamic vehicle routing problem (dynamic VRP). In this
problem, new customer demands are received along the day. Hence, they must be
serviced at their locations by a set of vehicles in real time. The approach to address the
problem is a hybrid method which manipulates the self-organizing map (SOM) neural
network into a population based evolutionary algorithm. The method, called memetic
SOM, illustrates how the concept of intermediate structure, also called elastic net or
adaptive mesh concept, provided by the original SOM can naturally be applied into a
dynamic setting. The experiments show that the heuristic outperforms the approaches
that were applied to the Kilby et al. 22 problems with up to 385 customers. It performs
better with respect to solution quality than the ant colony algorithm MACS-VRPTW,
a genetic algorithm, and a multi-agent oriented approach, with a computation time
used roughly 100 times lesser.

Keywords Dynamic vehicle routing problem · Neural network · Self-organizing
map · Elastic net · Evolutionary algorithm · Memetic algorithm

1 Introduction

The vehicle routing problem (VRP) is one of the most widely studied problems
in combinatorial optimization (Christofides et al. 1979; Gendreau et al. 2002;
Cordeau et al. 2005). In the standard VRP, a fleet of vehicles must be routed to visit
a set of customers at minimum cost, subject to vehicle capacity constraint and route

J.-C. Créput (�) · A. Hajjam · A. Koukam
Laboratoire Systèmes et Transports, U.T.B.M., 90010 Belfort cedex, France
e-mail: jean-charles.creput@utbm.fr

O. Kuhn
LIRIS, Bât. Nautibus, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

mailto:jean-charles.creput@utbm.fr

438 J Comb Optim (2012) 24:437–458

duration constraint. In the static version of the problem, it is assumed that all cus-
tomers are known in advance to the planning process. However, it may be the case
that customers, routing costs or service times become available in real-time once the
service has begun. Due to the recent advances in communication technologies and
positioning systems, it is now possible to address such dynamic problems. Many ver-
sions of real-time routing and dispatching problems are presented and studied in the
literature (Ghiani et al. 2003; Larsen et al. 2008). As observed in these surveys, most
versions incorporate time-windows and/or pick-up and delivery requests (Gendreau
et al. 1999).

The problem addressed in this paper is the dynamic VRP with capacity and time
duration constraints only (Bertsimas and Simchi-Levi 1996; Kilby et al. 1998; Larsen
2000). In this problem, the customers are the only elements that have a dependence
on time. Customers or demands are not known in advance but arrive as the day pro-
gresses, and the system has to incorporate them into the already designed routes in
real time. As explained by Bertsimas and Simchi-Levi (1996) who studied the prob-
lem analytically, problems fitting this model appear frequently in industry. Important
examples are found in finished goods distribution and freight consolidation or long-
distance courier mail services (Bent and Van Hentenryck 2003). Another example
would be the medical interventions of doctors that visit patients along a day. Orders
are dispatched to vehicles with the objective of minimizing some tradeoff between
the routing cost and the average wait for delivery. The approaches that address dy-
namic routing can be classified into three categories: simple policies, classical inser-
tion procedures and metaheuristics. As mentioned by Ghiani et al. (2003) and Larsen
et al. (2008), simple policies and insertion procedures do not always provide good
solutions on realistic applications. Then, using metaheuristic methods, such as tabu
search or evolutionary algorithms looks more and more customary in this context.

The approach presented in this paper is based on the concept of the self-organizing
map (SOM) (Kohonen 2001). The SOM can be seen as a (on-line) non parametric re-
gression that reflects topological information of some data distribution. It has been
used on many applications in data analysis, pattern recognition and classification (Oja
et al. 2003). This motivates its application to a dynamic and stochastic setting where
data are unknown beforehand but reflect some underlying distribution. In the context
of vehicle routing, a topological grid of cluster centers, called the network, repre-
sents transport routes that continuously distort and modify their shapes in the plane
according to the demand distribution. The network can be seen as an “elastic net”
(Durbin and Willshaw 1987) or “adaptive mesh” (Creput et al. 2007). Starting from
the SOM as a basic operator, we derive customer insertion and grid deformation oper-
ators that are applied to the network. The operators are combined inside a population
based metaheuristic similarly as in a memetic algorithm (Moscato and Cotta 2003).
A memetic algorithm is an evolutionary algorithm embedding a local search process.
Here, the SOM plays the role of a local search by adjusting the network shape to the
demand. It is combined with a mapping operator, responsible for the assignment of
customers to the network, a fitness evaluation and a selection operator. A last opera-
tor is dedicated to residual insertions according to the maximum duration constraint.
We already applied the approach called memetic SOM to the static VRP and to the
Traveling Salesman Problem (Creput and Koukam 2008, 2009) on instances with up
to 85900 cities.

J Comb Optim (2012) 24:437–458 439

A question is how the classical heuristics to the static VRP (Gendreau et al. 2002;
Cordeau et al. 2005) should be reused in a dynamic setting. Here, we exploit the “elas-
tic net” paradigm in this context. Most of the operations consist of network distortions
and elementary moves performed in the plane. The optimization process randomly
and continuously extracts a demand or customer. Then, it finds its nearest vertex in
the network and distorts its neighborhood to the direction of the customer location.
Nearest point findings in the plane are the basic operations that are massively and
repeatedly performed. They are implemented by a spiral search algorithm (Bentley et
al. 1980) which is known to operate in constant time for bounded distributions. The
spiral search operates on a cell decomposition of the plane. Since the network does
not necessarily modify its structure but only its shape, new arrivals may naturally be
incorporated in the network with a weak impact on the internal data structures. The
data structure sizes can be adjusted at a lower rate. As they arrive, new demands are
inserted in a buffer in constant time and hence participate to the repeated process of
demand extraction, nearest vertex search and network distortion.

In this paper, we present empirical evaluations of the method by real-time simu-
lation. A real-time simulator monitors the vehicle successive locations, simulates the
service at each demand location, and manages the new arrivals of customers. It is cou-
pled with an asynchronous optimization process continuously running in batch mode.
The optimization process solves an evolving VRP, with evolving vehicle capacities
and locations, and with an evolving set of available demands. We use the standard
benchmarks of Kilby et al. (1998) with 22 problems of sizes from 50 with up to 385
customers to study the method. We present a comparative evaluation against three
approaches from the literature. These approaches are an adaptation of the ant colony
algorithm MACS-VRPTW (Gambardella et al. 1999) by Montemanni et al. (2005),
a genetic algorithm proposed by Goncalves et al. (2007), and a multi-agent oriented
approach by Zeddini et al. (2008).

The paper is organized as follows. Section 2 states the dynamic VRP considered in
this paper with its constraints and objectives. The problem is presented as a straight-
forward extension of the static VRP. Section 3 presents the real-time simulator and
communication protocol. Section 4 illustrates the “philosophy” of the proposed ap-
proach. Section 5 details the memetic SOM algorithm. Section 6 reports the exper-
iments and comparative evaluations carried out. The last section is devoted to the
conclusion and further research.

2 The dynamic vehicle routing problem

The static VRP is defined on a set V = {v0, v1, . . . , vN } of vertices. Vertex v0 is
a depot at which are based m identical vehicles of capacity Q. The remaining N

vertices represent customers, also called requests, orders or demands. A non-negative
cost, or travel time, is defined for each edge (vi, vj) ∈ V × V . Each customer has
a non-negative load q(vi) and a non-negative service time s(vi). A vehicle route
is a circuit on vertices each starting and ending at the depot. The VRP consists of
designing a set of m vehicle routes of least total cost, such that each customer is
visited exactly once by a vehicle, the total demand of any route does not exceed Q,
and the total duration of any route does not exceed a preset bound T .

440 J Comb Optim (2012) 24:437–458

As it is the mostly done in practice (Cordeau et al. 2005), we address the Euclidean
VRP where each vertex vi has a location in the plane, and where the travel cost is
given by the Euclidean distance d(vi, vj) for each edge (vi, vj) ∈ V × V . Then, the
objective for the static problem is the total route length defined by

Length =
∑

i=1,...,m

(∑

j=1,...,ki−1

d(νi
j , ν

i
j+1) + d(ν0, ν

i
1) + d(νi

ki
, ν0)

)
, (1)

where νi
j ∈ V , 0 ≤ j ≤ ki , 0 ≤ ki ≤ N , are the ordered set of demands served by the

vehicle/route i, with 1 ≤ i ≤ m. The capacity constraint is defined by

∑

j=1,...,ki

q(νi
j) ≤ Q, i ∈ {1, . . . ,m}. (2)

Assuming without loss of generality that the vehicle speed has value 1 the time dura-
tion constraint is given by

∑

j=1,...,ki

s(νi
j)+

∑

j=1,...,ki−1

d(νi
j , ν

i
j+1)+d(ν0, ν

i
1)+d(νi

ki
, ν0) ≤ T , i ∈ {1, . . . ,m}.

(3)
The VRP is a NP-hard problem (Gendreau et al. 2002). Then, for large instances,

using heuristics is encouraged. In the static VRP, vehicles must be routed to visit a
set of customers at minimum cost, assuming that all orders are known in advance.
In the dynamic VRP however, new demands arrive randomly in time and must be
incorporated into the vehicle schedules and served as the day progresses. The opti-
mization task is a continuous process of collecting demands, forming and optimizing
tours, and dispatching demands to the vehicles that serve the demands. The tasks are
performed during a period of time that is called the working day or planning horizon
of length D.

In a real life situation, the objective function often consists of a trade-off between
travel costs and customer waiting time. The customer waiting time is the delay be-
tween the occurrence time of a demand and the instant the service of the demand be-
gins. It is often called “response time” or “system time” (Bertsimas and Simchi-Levi
1996). Hence, in addition to the classical objective and constraints defined above,
we add a supplementary criterion to be considered when evaluating solutions. This
criterion is the average customer waiting time (WT):

WT =
∑

i∈{1,...,N}
Wi/N, (4)

where Wi is the waiting time of demand i, defined by Wi = sti − ti where ti ∈ [0,D]
is the demand occurrence time, and sti is the time when the service starts for that
demand.

The criteria (1)–(3) reflect the structure of the schedules independently of the re-
quest arrival dates. They are stated in accordance to the static VRP and to the dy-
namic VRP’s applications considered in this paper. Only, the customer waiting time
(4) reflects the dynamicity and reactivity of the system and depends on a real-time

J Comb Optim (2012) 24:437–458 441

realization. We consider the customer waiting time as an important real-time criterion
to gauge effectiveness of algorithms on this problem.

3 Real time simulator and optimizer

This section presents the simulator developed in Java which allows simulating the
real-time optimization process. To make the things concrete, we assume that a trans-
port company centralizes the optimization procedure. The company receives the or-
ders from the environment, monitors the vehicle locations, and dispatches the plans
to the vehicles. Hence, we assume the existence of a communication system between
the company, the customers and the vehicles. Also, we assume that the communica-
tion times are negligible to the rest of the real-time activities. The simulator consists
of two main threads that communicate through an asynchronous protocol. The first
thread plays the role of a real-time scheduler which decomposes the working day
into many short time-slices based on a timer clock. The goal is to simulate the real-
time vehicle activities, which are modeled as synchronous simple state machines. The
second thread plays the role of a background task that encapsulates the optimization
process. This optimization procedure runs in a continuous way as long as possible.
It continuously optimizes the solution according to the current requests. Hence, the
computation time includes the synchronous state-machines as well as the optimiza-
tion process.

The working day is decomposed into many time-slices. The optimization process
solves a continuously evolving static VRP. Two parameters denoted ToR and To re-
spectively define the time-slice length and computation time allowed. The ToR value
represents the real time fraction of the working day which corresponds to a given
time-slice. It is expressed in real-time units. The To value represents the computa-
tion time allowed to simulate a given time-slice. In the experiments presented in this
paper, the ToR value is set to the smallest integer greater than 0.1 × D/N , with D

the working day duration expressed in minutes, and N the total number of demands.
Such time-slice decomposition is chosen for practical purposes. It allows adjusting
the computation time with the demand rate. In the experiments, the To parameter is
set to To = 30 ms, or To = 200 ms, depending on the computation time, fast or long,
allowed. As an example, a working day of length D = 351 minutes with a request set
of size N = 50 yield a basic time-slice of length ToR = 1 minute, simulated within a
computation time of To ms. Hence, if we take To = 30 ms, a working day of 10 hours
is compressed into a computation time period of 18 seconds.

On the one hand, the company receives new orders from the environment and com-
municates with the vehicles. On the other hand, the company communicates with the
optimizer, using mailboxes to exchange information. The company sends to the vehi-
cles the updated route plans. At the same time, it sends to the optimizer the currently
available requests removing the ones already served. The optimizer sends back to the
company the built vehicle routes. The communication protocol is illustrated in Fig. 1.
The optimization time step Topt defines the time elapsed between two consecutive
route updates (“optimize()” procedure). Each time a route update is received by the
optimizer at time t , this one anticipates the vehicle locations at time t + Topt. This is

442 J Comb Optim (2012) 24:437–458

Fig. 1 Asynchronous communication protocol

the future moment when the company will get back the new plan (“getPlan()” pro-
cedure). The demands that have to be serviced before this future time are definitely
assigned to vehicles and will be serviced during this time interval. All other demands
participate to the optimization process and can be reallocated to other vehicles con-
tinuously. The optimizer regularly returns the new plan generated (“setPlan()” proce-
dure). The mailbox encapsulates a set of vehicle routes (SoV parameter) and a set of
requests (SoR parameter). New demands that arrive at the company are retransmitted
as new orders to the optimizer (“request()” procedure) whenever they arrive on the
basis of the basic time slice of ToR time units. In the experiments, the optimization
time step Topt is set to 10 × ToR, allowing roughly a single request occurrence on
average at each optimization step.

4 The self-organizing map approach to vehicle routing

The self-organizing map (SOM) (Kohonen 2001) which belongs to the class of “in-
termediate structure” or “elastic net” algorithms has been applied to the traveling
salesman problem (TSP) from a long time (Angeniol et al. 1988). The SOM can be
seen as a center-based clustering algorithm that preserves density and topology of the
data distribution. The data is mapped to a topological grid of cluster centers, called
the network. To illustrate the “philosophy” of the SOM behavior when applied to the
TSP, an example of a tour construction is illustrated in Fig. 2. The topological grid
is a ring network. It is shown in the figure at different steps of a long simulation run.
The procedure is applied to the bier127 instance from the TSPLIB (Reinelt 1991).
The ring network is a graph that deploys its vertices in the plane to match the cities
and to constitute a tour. At the beginning, local moves are large in order to let the ring
deploy from scratch (a). Then, the amplitude of the moves slightly decreases in order
to progressively freeze the vertices near cities (b–c). At a final step, cities have just to
be mapped to their nearest vertex in the ring in order to generate a final tour ordering.

To extend the SOM to the VRP, the SOM can be used as an operator into an evo-
lutionary algorithm. The SOM is now a long run process applied to a population of
solutions. This process is interrupted at each cycle, called a generation, by the appli-
cation of several evolutionary operators. The optimization process alternates network
distortion and network projection at each generation. The network distortion refers to
the application of a SOM operator. The projection refers to the mapping or matching
of customers to network vertices. Here, no recombination, nor crossover, operator is

J Comb Optim (2012) 24:437–458 443

Fig. 2 Tour construction by SOM using the bier127 instance

Fig. 3 Static VRP with a SOM based algorithm. (a–d) Deployment phase. (e–f) Improvement phase

considered. Once operators have been individually applied to each solution, a selec-
tion procedure modifies the overall population according to a fitness evaluation. The
optimization process is divided within two phases, that are, a deployment phase fol-
lowed by an improvement phase. Figure 3 illustrates the optimization process on a
static VRP test case with 240 customers of the Golden et al. (1999) benchmarks. The
network represents routes starting and ending at the depot. The deployment phase is
illustrated in (a–d). Two consecutive pictures show the network as distorted by the
SOM operator as in (a), followed by the projection which generates an admissible
solution as in (b), at a given generation. During the deployment phase, the moves are
large to let the routes deploy from scratch. Figures (a–b) present the network at the
beginning of deployment and (c–d) several generations later, the amplitude of moves
vanishing. In (e–f), the network is shown at different steps of the improvement phase,
illustrating how local perturbations randomly affect some parts of the network at each
generation.

The application to a dynamic setting mainly consists of considering an evolving
static VRP. The Fig. 4 shows an example of a network shape at a given step of a dy-
namic simulation. The test case is the instance c50 of the Kilby et al. (1998) bench-
marks. Routes are modeled as paths starting from the current vehicle location and

444 J Comb Optim (2012) 24:437–458

Fig. 4 Dynamic VRP

ending at a common depot. The figure shows five vehicle routes represented by lines
that pass by their assigned customers (small black squares) and end at the common
depot. The locations of the vehicles, represented by the five filled circles in the figure,
evolve step by step as the vehicles travel and perform their services along the work-
ing day. Once a vehicle arrives to a customer location, it performs the service (black
circle) and then continues to follow its route (gray circle). New customers may arrive
in real-time as represented by isolated small squares in the figure. Then, such new
customers participate to the optimization process and the vehicle routes will distort
themselves to incorporate them in their schedules, exactly the same way as in a static
VRP. There is no need to introduce a new insertion procedure to deal with the arrival
of new demands. The approach is already based on repeated insertions to the network
representing the routes. Once a vehicle has no more customers to be serviced, it re-
turns to the depot following its route. Routes may continuously modify their shapes
according to the arrival of new demands. A vehicle can change its direction at any
moment to deal with new demands or to follow a better schedule returned by the
optimizer.

5 The evolutionary algorithm embedding self-organizing map

5.1 The Kohonen’s self-organizing map

The self-organizing map algorithm operates on a non directed graph G = (A,E),
called the network, where each vertex n ∈ A is a neuron having a location wn =
(x, y) in the plane. The set of neurons A is provided with the dG induced canonical
metric dG(n,n′) = 1 if and only if (n,n′) ∈ E, and with the usual Euclidean distance
d(n,n′).

J Comb Optim (2012) 24:437–458 445

Fig. 5 A single SOM iteration with learning rate α and radius σ . (a) Initial configuration. (b) α = 0.9,
σ = 4. (c) α = 0.9, σ = 1. (d) α = 0.5, σ = 4

The training/optimization procedure applies a given number of iterations niter to
a network. The vertex coordinates are randomly initialized into an area delimiting
the data set. Here, the data set is the set of demands, or customers. The network is a
set of routes, each one represented by a path of vertices starting and ending at some
locations. Each iteration follows four basic steps. At each iteration t , a point p(t) ∈
R2 is randomly extracted from the data set (extraction step). Then, a competition
between neurons against the input point p(t) is performed to select the winner neuron
n∗ (competition step). Usually, it is the nearest neuron to p(t). Then, the learning law

wn(t + 1) = wn(t) + α(t) · ht (n
∗, n) · (p(t) − wn(t)), (5)

is applied to n∗ and to all neurons within a finite neighborhood of n∗ of radius σt ,
in the sense of the topological distance dG, using learning rate α(t) and function
profile ht (triggering step). The function profile is given by the Gaussian

ht (n
∗, n) = exp(−dG(n∗, n)2/σ 2

t). (6)

Finally, the learning rate α(t) and radius σt decrease as geometric functions of the
time (decreasing step). To perform a decreasing run within tmax iterations, at each
iteration t , coefficients α(t) and σt are multiplied by exp(ln(xfinal/xinit)/tmax), with
respectively x = α and x = σ,xinit and xfinal being respectively the values at the start-
ing and final iterations. Examples of a basic iteration with different learning rates and
neighborhood sizes are shown in Fig. 5. In the population based metaheuristic pre-
sented in this paper, a SOM simulation becomes an operator specified by its running
parameters (αinit, αfinal, σinit, σfinal, tmax).

5.2 Memetic SOM

In order to address the VRP, the SOM has been extended to become an operator em-
bedded into an evolutionary algorithm. The structure of the algorithm is similar to the
memetic algorithm, which is an evolutionary algorithm incorporating a local search.
The SOM is a long run process interrupted at each evolutionary iteration, called a
generation, by the application of problem dependent operators. The SOM process is
performed within Gen generations, Gen being proportional to the problem size N .
A deployment (or construction) loop as well as an improvement loop are instanti-
ated. The memetic loop applies a set of operators to a population of Pop individuals
at each generation. One individual encapsulates exactly one solution. A solution is a
network where each vehicle/route is represented by an independent path which starts
at the vehicle current location and ends at the depot. A path has 5Nt/mt vertices,

446 J Comb Optim (2012) 24:437–458

Nt being the number of demands and mt the number of vehicles at the optimization
time-slice t . The number of vertices defines the maximum number of customers a
route can handle at a given optimization time-slice. It has been adjusted empirically.
The memetic loop has the following structure:

Memetic loop:
0. Initialize population with Pop individuals with routes randomly generated.
1. Initialize individuals and the SOM parameters for the deployment phase.
2. g = 0
While not (a stop order is received from the company)
3. Look at the received messages from the company. When an “update” order is

received, update the vehicles locations at future time t + Topt, the path lengths,
and the demand set by removing the ones that are serviced before t + Topt.
When a “request” order is received, add the new demands into the demand
buffer.

4. Update the best solution by applying MAPPING followed by FITNESS opera-
tors

5. To each individual in population do
a. In deployment phase only, apply operator SOM1.
b. In improvement phase only, apply SOM2 followed by SOM3.
c. Apply mapping operator MAPPING to the solution network to assign each

demand to its nearest vertex in the network.
d. Apply fitness evaluation operator FITNESS to the solution.
e. Apply insertion operator SOMDVRP.

6. Save the best solution, and send it back to the company.
7. Apply selection operator SELECT to the population.
8. Apply elitist selection operator SELECT_ELIT.
9. g = g + 1
10. If g = Gen, activate the improvement phase.
11. If g = 2 × Gen, re-initialize parameters and activate the deployment phase.

End while

The deployment phase starts its execution with solutions having vertex coordinates
randomly generated into a rectangle area containing the demands. The improvement
phase follows the deployment phase. Once the improvement phase has finished, the
algorithm restarts from the beginning. Each phase uses one or more SOM operators
to dispatch the vertices around customers while preserving the network topology.
A particular implementation point is that all the nearest point findings of the SOM
operators are based on spiral search (see below). The main difference between the
deployment and improvement phases is that the former is responsible for creating an
initial ordering from scratch. The SOM process embedded in the deployment loop
has a large neighborhood proportional to Nt . The improvement loop simply performs
local improvements. The SOM processes have smaller neighborhoods and perform
less iterations.

Three operators are based on the SOM algorithm. They are the three operators
SOM1, SOM2, SOM3 with their respective parameters given in Table 1. The param-
eter values are set according to Creput and Koukam (2008). Parameter tmax is the

J Comb Optim (2012) 24:437–458 447

Table 1 SOM parameters

Operator αinit αfinal σinit σfinal tmax niter Applied to Phase

1 SOM1 0.5 0.5 2 × Nt/mt 4 Gen × niter Nt/4 Network Deployment

2 SOM2 0.5 0.5 10 4 Gen × niter Nt/mt Single vehicle Improvement

3 SOM3 0.9 0.5 2 × Nt/mt (2 × Nt/mt)/2 Gen × niter 1 Network Improvement

maximum number of basic SOM iterations performed during a long decreasing run
of Gen generations. At each generation, niter basic SOM iterations are performed
and applied to a given individual. The initial and final intensities and neighborhood
sizes for the learning law are respectively given by parameters αinit, αfinal and σinit,
σfinal. In a dynamic setting, niter and other parameters may depend on the available
demands Nt and vehicles mt at a given optimization time-slice. The SOM1 operator
is used to deploy the network from scratch in the deployment phase. The two other
operators are applied during the improvement phase. The SOM2 operator is applied
to a single vehicle to help eliminate the remaining crossing edges from the tour. The
SOM3 operator introduces punctual moves in the network to help exit from local
minima.

The long SOM decreasing run is interrupted and combined with the application of
other operators. Such operators are the followings:

• Mapping/assignment operator. This operator, denoted MAPPING, generates a VRP
solution by inserting customers into routes and modifying the shape of the network
accordingly, at each generation. The operator greedily maps customers to their
nearest vertex by spiral search. The corresponding vehicle capacity constraint must
be satisfied. Then, the operator moves vertices to the location of their assigned
customer (if exist). It also regularly dispatches (by translation) other vertices along
edges formed by two consecutive customers in a route.

• Fitness operator, denoted FITNESS. Once the assignment of customers to routes
has been performed, this operator evaluates a scalar fitness value for each solution.
The value returned is fitness = sat − 10−5 × Length, where sat is the number of
customers successfully assigned to the routes, and Length is the length of the routes
defined by the ordering of such customers. The value sat is considered as the first
objective whereas Length is the secondary objective. Note that the customer wait-
ing time is not introduced in the fitness function. Here, it is an external criterion in
order to gauge dynamicity. It is indirectly addressed by the whole algorithm.

• Insertion operator, denoted SOMDVRP. It deals specifically with the time duration
constraint. It performs few greedy insertions to the routes at each generation. Given
a customer not yet inserted, the operator selects a nearest vertex which satisfies the
time duration constraint and which produces minimum route time increase.

• Selection operators. At each generation, the operator SELECT replaces Pop/5 in-
dividuals that have the lowest fitness in the population by Pop/5 individuals with
the highest fitness. An elitist version SELECT_ELIT replaces Pop/10 individuals
which have the lowest fitness by the single best individual encountered during the
run.

448 J Comb Optim (2012) 24:437–458

5.3 Spiral search algorithm

By the evolutionary dynamics, the goal is to make the nearest point assignments coin-
cide to the right assignment, which minimizes the objective and satisfies constraints.
The algorithm can be seen as a massive and parallel insertion method to the nearest
points. To perform closest point findings, we have implemented the spiral search al-
gorithm of Bentley et al. (1980) based on a cell partitioning of the area. It performs
an optimal nearest point search with expected O(1) time complexity for uniform or
bounded distributions, and O(N) space complexity with N the number of points in
the plane. A cell based decomposition of the area within O(N1/2 × N1/2) cells is
performed during the initialization phase of the memetic algorithm. Each cell has a
(non null) memory capacity large enough to contain the demands at that location.
The memory is allocated once. The contents of the memory cells are updated each
time a given operator (SOM or mapping) has to be applied. The network vertices are
introduced into the cells and the subsequent at most O(N) closest point findings are
based on their content. Once a customer has been randomly selected, the process first
consists in finding its cell location using its coordinates in the plane. Then, this cell
and its surrounding cells contents are examined in a spiral way. If a network vertex is
found in a cell, this vertex will be the closest one unless a nearest vertex is found in
the immediate next stage of surrounding cells. In that case, the last vertex will be the
closest one.

6 Experimental results

6.1 Experiments overview

We study the impact of the main algorithm parameters on length minimization and
customer waiting time. Also, we report a comparative evaluation against other algo-
rithms on a common benchmark set. The benchmarks are the 22 test problems origi-
nally proposed by Kilby et al. (1998). Few approaches addressed the dynamic VRP.
The benchmarks were reused by Montemanni et al. (2005), Goncalves et al. (2007)
and Zeddini et al. (2008) which report detailed numeric results. Kilby et al. (1998)
do not report numeric results that could be reused for comparison. We should men-
tion that the approach presented by Bent and Hentenryck (2003) addresses a slightly
different version of the dynamic VRP. In this version, some stochastic information is
available before the start of the system, and maximizing the number of serviced cus-
tomers is the real-time criterion rather than minimizing the customer waiting time. In
our version of the problem, the question is how to service all the customers as soon as
possible, rather than how to service a maximum of customers before some real-time
deadline. We will discuss this point in the next section. Here, a route time duration
constraint is set relative to its schedule as stated by (3). No real-time bound is defined
for the latest time a vehicle can return to the depot. Our version is intended to be very
close to the static VRP. All demands necessarily have to be serviced. Furthermore,
we assume no a priori knowledge about the stochastic distribution. The only way to
anticipate future requests is by sampling the already received demands, rather than
by sampling a known distribution of the stochastic variables.

J Comb Optim (2012) 24:437–458 449

The Kilby et al. (1998) benchmarks are derived from some very popular static
VRP benchmark datasets, namely 13 problems are taken from Taillard (1994), 7
problems are from Christofides et al. (1979), and 2 problems are from Fisher et al.
(1981). These problems range from 50 to 385 customers. The available times of the
demands are generated with uniform random distribution and are spread throughout
the working day. The number of customers can be inferred from the name of each in-
stance. The maximum number of vehicles available is set to 50 for each problem. This
setting guarantees that it is possible to serve all the demands for the problems con-
sidered. The original static problems are available at VRP Web http://neo.lcc.uma.es/
radi-aeb/WebVRP/. In the site are reported the optimal solution values for the static
case. The extended test cases to the dynamic VRP are available at the APES web
page http://www.cs.st-andrews.ac.uk/~apes/apedata.html along with a description of
the datafile format or at http://www.feu.de/WINF/inhalte/benchmark_data.htm.

The proposed memetic SOM was programmed in Java and has been run on a
AMD Athlon 2 GHz computer. All the tests performed with the memetic SOM are
done on a basis of 10 runs per instance. For each test case is evaluated the percentage
deviation, denoted “%Length”, to the best known route length, of the mean solution
value obtained, i.e.

%Length = (mean Length − Length∗) ×100/ Length∗ (7)

where Length∗ is the best known value taken from the VRP Web, and “mean Length”
is the sample mean based on 10 runs. The average computation times are reported in
seconds. The average customer waiting time (see (4)) is expressed as a fraction of the
working day by

%WT = mean WT ×100/D (8)

with “mean WT” being the average waiting time based on 10 runs.

6.2 Influence of the main parameters

In this section, we study the influence of three important parameters and their impact
to the length objective and waiting time tradeoffs. We also study correlation with the
maximal vehicles arrival time to the depot, also called makespan, which represents
the latest time a vehicle returns to the depot once all demands have been serviced. The
parameters studied are the population size Pop of the metaheuristic, the computation
time allowed by the choice of the basic temporization To, or timer-clock, and the de-
lay imposed to the vehicle starts in order to simulate different degrees of dynamism.
To implement a high degree of dynamism, vehicles immediately start at time 0. They
try to service customers as soon as possible. To implement a medium degree of dy-
namism, a very simple waiting strategy is adopted. Vehicles start their service at the
half of the working day, i.e. at time D/2. In that way, half of the demands in av-
erage are received before the vehicles start. The computation times are fast or long
depending on the choices To = 30 ms or To = 200 ms to simulate a given time slice
of a working day. Three population sizes are considered: Pop = 1, Pop = 10, and
Pop = 50.

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://www.cs.st-andrews.ac.uk/~apes/apedata.html
http://www.feu.de/WINF/inhalte/benchmark_data.htm

450 J Comb Optim (2012) 24:437–458

Fig. 6 Influence of population size, delay start-time, and computation time

The experiments were done with the 22 dynamic instances of Kilby et al. (1998)
performing 10 runs by instance and reporting the average lengths and average cus-
tomer waiting times. The results are presented in Fig. 6. Figure 6(a) presents the
impact of the population size Pop parameter to the length objective. The results are
presented with error bars representing 95% confidence intervals for the sample mean.
Confidence intervals were computed on the basis of standard deviations over the 10
runs and the 22 instances. The way of computing confidence intervals is detailed
in Creput and Koukam (2008). In Fig. 6(b) are shown the length and waiting time
tradeoffs. They are represented by dots in the figure. They correspond to the twelve
algorithm configurations executed on the benchmarks and presented in (a).

The results presented in Fig. 6(a–b) show that each parameter may have a sig-
nificant impact on the length objective. Results can be grouped within two classes
depending on the vehicle delay starts. The customer waiting time clearly depends on
the time the vehicles start. It is near 20% and 35% of a working day for respectively
high and medium dynamism. As seen in (a), an augmentation of the computation time
and of the population size lead to a significant improvement on length minimization.
As seen in (b), the population size or the computation times allowed have no impact
on the customer waiting time. On the one hand, these experiments illustrate the im-
portance of a diversification mechanism implemented by a population search and the
significant impact of the computation time to length minimization. On the other hand,
the customer waiting time mainly depends on the delay start time strategy.

Considering a long run with To = 200 ms and a population size of 50 solutions,
Fig. 7(a) illustrates the tradeoff between length and waiting time as a function of the
vehicle delay start time. With a delay start time from 0 to D/2, and hence to D, the
(linear) decrease of the route length corresponds to an augmentation of the waiting
time. It varies from 21% to 35%, and hence to 74%, of a working day respectively.
With a delay start of D, all the demands are available when the vehicles start. Aug-
menting the delay start time from D to 2D simulates an augmentation of the com-
putation time allowed for optimization before the vehicles start. The large 7.51%
deviation observed over the known optima for the 2D start case may be explained
by the large number of vehicles specified in the Kilby et al. (1998) benchmarks. The
number of vehicles was set to 50 vehicles by Kilby et al. for all the benchmarks in

J Comb Optim (2012) 24:437–458 451

Fig. 7 Routes length, waiting times, and maximum arrival time as a function of the system dynamism

Fig. 8 Trace analysis on the c50 test case. (a) High dynamism. (b) Medium dynamism

order to ensure feasibility of solutions in a dynamic context. The original benchmarks
from the VRP web that were adapted by Kilby et al. specify a smaller number of vehi-
cles. A better performance is reported by Creput and Koukam (2008) on such original
VRP Web static problems. In the Fig. 7(b), the maximum vehicles arrival time %MT
is reported instead of the waiting time. It defines the moment when the last vehicle
arrives back to the depot once all demands have been serviced. The maximum ar-
rival time, or makespan, is expressed as an excess deviation to the working day by
%MT = (mean MT − D) × 100/D, where MT is the latest time a vehicle arrives to
the depot. We can observe on the Fig. 7(b) that with a delay start time of 0 or D/2,
the makespan remains constant at 39% behind a working day. This illustrates the im-
portance of reporting the customer waiting time in order to discriminate systems with
different degrees of dynamism. A system can be more or less dynamic depending on
the internal waiting strategy that is adopted. Compressing the route length by using a
waiting strategy allows more customers to be serviced within a given deadline. Here,
a time-duration deadline exists by the constraint in (3) but it is relative to the vehicle
schedule and not to the absolute arrival time.

The execution traces presented in Fig. 8(a–b) illustrate how the service of demands
behaves as the time goes on for the two cases of dynamism. Immediate vehicle start
simulates a high dynamism in (a), and half of the day start simulates a medium dy-
namism in (b). The problem considered is the c50 test case with a working day of
D = 351 time units. In (a–b) are shown, as a function of time the cumulative num-
ber of demands, the number of served demands, and the number of demands already

452 J Comb Optim (2012) 24:437–458

scheduled in routes, called “nb of satisfied”. We can see that vehicles perform their
services in a shorter period of time in (b). They finish at time 530 in (b) whereas at
time 550 in (a). Drivers start their work later but finish their service earlier. At time
351, the immediate start strategy has serviced more customers than the delay start
strategy. At time 450 it is the opposite. The delay start strategy has serviced more
customers. But this should not hide the increase of the customer waiting time. Here,
the customer waiting time is the important criterion in order to gauge the real-time
effectiveness of algorithms. It defines the extension of the standard VRP to a dynamic
setting.

6.3 Comparative evaluations

We report detailed results of the experiments performed on the Kilby et al. (1998)
benchmarks in Table 2 and Table 3. The first column “Name” indicates the name and
size of the instance. The second column “D” is the working day length, and the third
column is the best known length value obtained for the static problem. Results are
given within three columns. The columns “%Length” and “%WT” are respectively
defined by (7) and (8). The column “Sec” reports the computation times in seconds.
The working day is compressed into a small period of computation time specified by
the To parameter. Two algorithm configurations are respectively considered with fast
(To = 30 ms) and long (To = 200 ms) computation times. The metaheuristic popula-
tion size was set to Pop = 50. Some authors (Bent and Van Hentenryck 2004; Kilby
et al. 1998) discard computation time in a dynamic setting because they consider
the working day as relatively long. They assume the availability of a large amount
of computation resources. On the contrary, we consider the computation time as an
essential resource to gauge effectiveness of algorithms, as usual in complexity anal-
ysis of algorithms. In a dynamic setting, the amount of computation time spent may
illustrate the “anytime” nature of the algorithm. Furthermore, we could imagine fu-
ture situations where computation resources become critical, may be with embedded
systems where energy consumption must be minimized, for example in specific hos-
tile environments where the central station would have to deal with many processes
running simultaneously, or simply because of an increase of the problem size.

In Table 2, the memetic SOM is compared with the ant colony approach of Mon-
temanni et al. (2005) and to the genetic algorithm of Goncalves et al. (2007). The
authors have used the same benchmark set without the largest test case named tai385,
and using a medium degree of dynamism. As explained by the authors, they imple-
ment a medium degree of dynamism by considering half of the demands as known in
advance. It is worth noting that the authors do not report the customer waiting time.
Hence, we have tried to closely follow their experimental setting in order to assume,
without the possibility of proving it, a similar customer waiting time for the different
approaches. Here, a medium degree of dynamism is achieved by delaying the vehicle
starts to the half of the working day. Since the time distribution is uniform, half of
the demands are then expected to be known beforehand. As shown in Table 2, the
memetic SOM outperforms both the ant colony approach and the genetic algorithm.
It improves the solution quality using lesser computation time. Computation time can
be roughly a hundred times lesser. In Table 3 are given the results obtained using a

J Comb Optim (2012) 24:437–458 453

Ta
bl

e
2

C
om

pa
ra

tiv
e

ev
al

ua
tio

n
on

th
e

22
in

st
an

ce
s

of
K

ilb
y

et
al

.(
19

98
)

w
ith

m
ed

iu
m

dy
na

m
is

m

N
am

e
D

B
es

t
M

em
et

ic
SO

M
M

em
et

ic
SO

M
M

on
te

m
an

ni
et

al
.

G
on

ca
lv

es
et

al
.

(f
as

ts
ta

rt
tim

e
D

/
2,

Po
p

=
50

)
(l

on
g,

st
ar

tt
im

e
D

/
2,

Po
p

=
50

)
(2

00
5)

(2
00

7)

%
L

en
gt

h
Se

ca
%

W
T

%
L

en
gt

h
Se

ca
%

W
T

%
L

en
gt

h
Se

cb
%

L
en

gt
h

Se
cc

c5
0

35
1

52
4.

61
18

.8
9

17
47

18
.2

9
11

1
47

30
.0

0
13

.9
9

c7
5

34
6

83
5.

26
21

.2
4

17
40

19
.9

9
10

6
40

24
.7

5
15

.8
9

c1
00

39
9

82
6.

14
14

.2
4

18
43

13
.1

3
11

8
43

29
.0

3
24

.0
7

c1
00

b
46

8
81

9.
56

9.
61

20
35

10
.3

2
12

9
35

24
.9

5
13

.6
0

c1
20

79
4

10
42

.1
1

7.
00

30
30

7.
73

19
6

30
46

.3
4

37
.2

2
c1

50
39

9
10

28
.4

2
34

.8
0

18
38

29
.5

7
11

9
38

41
.5

8
30

.5
9

c1
99

39
9

12
91

.2
9

30
.1

6
18

37
29

.4
0

11
2

36
42

.8
8

30
.1

8
f7

1
21

1
23

7
31

.7
8

10
51

27
.9

9
64

52
47

.2
6

19
.4

1
f1

34
11

74
1

11
62

0
47

.2
1

49
21

43
.5

5
31

6
19

38
.4

2
35

.2
9

ta
i7

5a
76

9
16

18
.3

6
16

.8
7

17
32

16
.7

8
11

2
33

20
.1

8
15

.1
8

ta
i7

5b
90

5
13

44
.6

2
25

.5
3

19
31

22
.5

1
12

9
32

26
.7

3
13

.8
6

ta
i7

5c
78

2
12

91
.0

1
18

.9
8

17
37

17
.9

5
11

2
37

28
.1

2
25

.6
4

ta
i7

5d
78

9
13

65
.4

2
16

.7
7

18
34

13
.8

3
11

5
35

11
.9

8
10

.2
2

ta
i1

00
a

89
7

20
41

.3
4

15
.8

1
41

38
10

.9
9

26
3

38
18

.9
4

18
.6

5
ta

i1
00

b
79

9
19

40
.6

1
15

.3
6

37
40

13
.8

9
24

7
40

20
.9

9
15

.4
8

ta
i1

00
c

90
5

14
06

.2
22

.6
0

35
27

21
.7

6
22

4
27

17
.7

6
24

.0
2

ta
i1

00
d

78
2

15
81

.2
5

24
.1

9
34

33
21

.8
5

22
8

34
30

.3
4

20
.6

6
ta

i1
50

a
10

62
30

55
.2

3
19

.0
2

46
36

15
.6

2
29

8
36

25
.6

9
20

.5
1

ta
i1

50
b

98
8

26
56

.4
7

20
.4

3
40

33
17

.9
8

25
9

34
25

.2
4

24
.4

9
ta

i1
50

c
10

81
23

41
.8

4
22

.6
8

43
28

18
.6

7
28

1
29

28
.7

9
24

.4
3

ta
i1

50
d

10
25

26
45

.3
9

18
.8

9
43

37
17

.3
7

28
3

36
21

.1
2

20
.5

5
ta

38
5

48
16

24
43

1.
44

29
.4

5
14

2
31

27
.3

7
62

9
30

–
–

A
ve

ra
ge

w
ith

ou
tt

ai
38

5
21

.5
3

28
36

19
.8

4
18

2
35

28
.6

2
15

00
21

.6
2

15
00

A
ve

ra
ge

al
l

21
.8

9
33

35
19

.4
8

20
2

35

a
T

im
e

pe
r

ru
n

in
A

M
D

A
th

lo
n

(2
G

H
z)

se
co

nd
s,

Ja
va

pr
og

ra
m

b
T

im
e

pe
r

ru
n

in
Pe

nt
iu

m
IV

(1
.5

G
H

z)
se

co
nd

s,
C

pr
og

ra
m

c
T

im
e

pe
r

ru
n

in
Pe

nt
iu

m
IV

(2
.4

G
H

z)
se

co
nd

s,
Ja

va
pr

og
ra

m

454 J Comb Optim (2012) 24:437–458

Ta
bl

e
3

E
va

lu
at

io
n

on
th

e
22

in
st

an
ce

s
of

K
ilb

y
et

al
.(

19
98

)
w

ith
hi

gh
dy

na
m

is
m

N
am

e
D

B
es

t
M

em
et

ic
SO

M
M

em
et

ic
SO

M
Z

ed
di

ni
et

al
.

(f
as

t,
im

m
ed

ia
te

st
ar

t,
Po

p
=

50
)

(l
on

g,
im

m
ed

ia
te

st
ar

t,
Po

p
=

50
)

(2
00

8)

%
L

en
gt

h
Se

ca
%

W
T

%
L

en
gt

h
Se

ca
%

W
T

%
L

en
gt

h

c5
0

35
1

52
4.

61
47

.4
1

18
30

46
.9

1
12

1
31

49
.0

6
c7

5
34

6
83

5.
26

35
.9

3
17

26
32

.6
2

11
2

26
32

.7
7

c1
00

39
9

82
6.

14
29

.3
5

18
31

24
.4

4
12

0
32

60
.0

2
c1

00
b

46
8

81
9.

56
22

.6
1

20
19

17
.3

9
12

8
20

–
c1

20
79

4
10

42
.1

1
13

.1
1

30
16

12
.5

4
19

5
16

57
.7

6
c1

50
39

9
10

28
.4

2
49

.6
7

19
28

45
.9

9
12

2
28

–
c1

99
39

9
12

91
.2

9
47

.9
2

18
26

43
.7

1
11

3
25

–
f7

1
21

1
23

7
30

.2
5

10
30

43
.0

4
61

27
67

.0
9

f1
34

11
74

1
11

62
0

67
.7

9
48

5
62

.0
9

31
6

5
49

.6
3

ta
i7

5a
76

9
16

18
.3

6
24

.4
5

17
21

20
.9

1
11

1
22

24
.9

4
ta

i7
5b

90
5

13
44

.6
2

26
.4

9
20

13
23

.0
6

12
9

14
33

.2
7

ta
i7

5c
78

2
12

91
.0

1
29

.1
5

17
20

27
.3

3
10

7
21

–
ta

i7
5d

78
9

13
65

.4
2

16
.8

6
18

20
20

.2
7

11
1

19
–

ta
i1

00
a

89
7

20
41

.3
4

24
.3

9
41

21
20

.7
0

26
2

21
23

.5
0

ta
i1

00
b

79
9

19
40

.6
1

16
.7

8
36

23
16

.7
7

23
5

23
24

.9
1

ta
i1

00
c

90
5

14
06

.2
37

.4
4

36
12

27
.8

8
23

4
13

–
ta

i1
00

d
78

2
15

81
.2

5
40

.7
8

35
20

35
.7

3
21

9
21

–
ta

i1
50

a
10

62
30

55
.2

3
27

.9
5

45
19

23
.6

2
30

0
19

30
.4

6
ta

i1
50

b
98

8
26

56
.4

7
26

.4
4

40
19

21
.5

5
25

6
19

34
.0

9
ta

i1
50

c
10

81
23

41
.8

4
35

.4
5

43
13

30
.4

6
28

3
14

–
ta

i1
50

d
10

25
26

45
.3

9
24

.2
7

43
22

22
.2

6
27

7
22

–
ta

i3
85

48
16

24
43

1.
44

34
.3

3
10

1
16

33
.6

5
64

9
15

–

A
vg

.Z
ed

di
ni

et
al

.(
20

08
)

30
.8

6
28

21
29

.0
2

18
5

21
40

.6
3

A
ve

ra
ge

al
l

32
.2

2
31

20
29

.6
8

20
3

21

a
T

im
e

pe
r

ru
n

in
A

M
D

A
th

lo
n

(2
G

H
z)

se
co

nd
s,

Ja
va

pr
og

ra
m

J Comb Optim (2012) 24:437–458 455

high degree of dynamism, which is implemented by vehicles immediate start. For this
degree of dynamism, we only found the multi-agent approach of Zeddini et al. (2008)
to which we can compare our method. In Zeddini et al., the benchmarks are used as
they are stated with arrival dates along the day, with no hypothesis about the degree
of dynamism or about requests known in advance. Vehicles are supposed to start as
soon as possible as the day begins. This approach looks not competitive. Their aver-
age results on a subset of the benchmarks are reported at line named “Avg. Zeddini et
al. (2008)” in the table and can be compared with our results. The authors do report
neither the computation time nor the customer waiting time. This illustrates the need
of a standard definition of the VRP when considered in a dynamic setting. Results on
the last line of Table 3 are given to allow future comparisons with further approaches
on the complete benchmark set.

6.4 Discussion

This section is intended to highlight some characteristics of our SOM based approach
that must explain its better performances with regards to the other approaches con-
sidered in the paper. First, we need to consider the performances in relation to a static
context, since finding good solutions quickly looks important in a dynamic setting.
Then, we will discuss internal characteristics of the different approaches. It is gener-
ally admitted (Helsgaun 2000) that performances of heuristics often depend on many
implementation tricks specifically designed to the problem in consideration. As stated
in the survey of Cordeau et al. (2005), this is true for the static VRP. For example, the
Active Guided Evolution Strategy (AGES) of Mester and Bräysy (2005) seems to be
the overall winner heuristic considering both solution quality and computation time.
But it is considered as very complicated. At the opposite, the Unified Tabu Search
Algorithm (UTSA) of Cordeau et al. (2001) is considered as very simple and flexible
but less performing. We have shown in Creput and Koukam (2008) that our memetic
SOM looks competitive with UTSA on the static VRP. Furthermore, it was designed
to naturally operate in a dynamic setting, with slight modifications. Then, a ques-
tion is how the most powerful heuristics of operations research for the static VRP
would behave in a dynamic setting and how they should be adapted. We have not the
response yet on concrete realizations.

We think that the few algorithms already applied to the dynamic VRP and consid-
ered in this paper are not state-of-the-art approaches to the static problem. Only the
ant colony algorithm by Montemanni et al. (2005) adapted from the MACS-VRPTW
(Gambardella et al. 1999) was previously applied to the more complex vehicle rout-
ing problem with time-widows (VRPTW). It is often presented as one of the most
powerful heuristics to the static VRPTW but it was not previously applied to the sim-
plest and classical static VRP. When we look at its logical structure, the algorithm
consists in a construction phase performed by ants, followed by a local search proce-
dure. The working day is divided into many time-slices. Each corresponds to a static
VRP. We should note that the algorithm operates on a complete graphs of demands
with a pheromone matrix of size O(N2), with N the number of demands. Arrival of
a new demand, as well as removal of a serviced customer, imply to update these data
structures with a computation time in O(N). An ant also needs O(N2) time steps to

456 J Comb Optim (2012) 24:437–458

build a solution sequentially and hence to insert a new demand in a route. The local
search procedure is very simple. It iteratively selects a customer and tries to move it
into another position within its route or within another route. Similar remarks hold
for the genetic algorithm of Goncalves et al. (2007) and the multi-agent approach of
Zeddini et al. (2008). We think that these approaches are implemented in a naïve way
and not customized to be efficient methods on the VRP in a Euclidean setting.

By contrast, our SOM based method operates in the plane. Data structures are
of size O(N), as it is the cellular partition of the plane. When a new demand ar-
rives, it is introduced in the system in constant time. The build of a tour may only
takes O(N) computation time on average, since based on spiral searches in the plane.
In many cases, a single local deformation of a route would be sufficient to insert a
new demand in a route. Hence, the memetic SOM generates candidate solutions very
quickly. We think that these characteristics are the main reasons that explain its good
performances within short computation time.

7 Conclusion

We have presented the dynamic VRP as a straightforward extension of the classical
static VRP and a heuristic to address the problem. Based at the origin on the standard
self-organizing map algorithm, the memetic SOM applies the concept of an inde-
pendent graph representing routes, called the network, that adapts its shape to the
demand. Most of the operations are based on nearest point findings performed by a
spiral search algorithm, which works in constant time for bounded distributions. The
network modifies its shape rather than its structure. The algorithm adapts the net-
work size from time to time. Since the demands actually scheduled may reflect the
underlying data distribution, new demands can be incorporated into the network very
quickly. New insertions have a weak impact on the data structures. We think that the
concept is simple to understand and implement. Also, we think that the algorithm
may be a good candidate for parallel implementations. This should be the case, at the
level of the population based metaheuristic and at the level of the cellular partition of
the plane.

We have proposed a formulation of the dynamic VRP where length, customer
waiting time, and computation time are the main criteria to gauge effectiveness of
policies on this problem. This paper has reported evaluations to allow further com-
parisons on a standard test set. The results look encouraging in that the approach
outperforms the heuristics of the literature applied on the benchmarks. Actually, only
the available demands already in the system and not yet serviced participate to the
optimization and forecast process. Further research should focus on a better exploita-
tion of the past information received in order to sample the demand distribution and
predict future demands. Since there are many different versions of the dynamic VRP,
it would be of interest to better normalize the problem definitions and also the bench-
marks in order to favor empirical evaluations and comparisons of algorithms. We
hope that the reported results will serve as a basis for future evaluations and compar-
isons of methods on this standard dynamic vehicle routing problem.

J Comb Optim (2012) 24:437–458 457

References

Angeniol B, de La Croix Vaubois G, Le Texier JY (1988) Self-organizing feature maps and the travelling
salesman problem. Neural Netw 1:289–293

Bent R, Van Hentenryck P (2003) Dynamic vehicle routing with stochastic requests. In: Proceedings of
the 18th international joint conference on artificial intelligence, Acapulco, Mexico, pp 1362–1363

Bent R, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with
stochastic customers. Oper Res 52:977–987

Bentley JL, Weide BW, Yao AC (1980) Optimal expected time algorithms for closest point problems.
ACM Trans Math Softw 6:563–580

Bertsimas D, Simchi-Levi D (1996) A new generation of vehicle routing research: robust algorithms,
addressing uncertainty. Oper Res 4:286–304

Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N et al (eds)
Combinatorial optimization. Wiley, New York, pp 315–338

Cordeau JF, Gendreau M, Hertz A, Laporte G, Sormany JS (2005) New heuristics for the vehicle routing
problem. In: Langevin A, Riopel D (eds) Logistics systems: design and optimization. Springer, New
York, pp 279–297

Cordeau JF, Laporte G, Mercier A (2001) A unified tabu search heuristic for vehicle routing problems with
time windows. J Oper Res Soc 52:928–936

Creput JC, Koukam A (2009) A memetic neural network for the Euclidean traveling salesman problem.
Neurocomputing 72:1250–1264

Creput JC, Koukam A (2008) The memetic self-organizing map approach to the vehicle routing problem.
Soft Comput 12:1125–1141

Creput JC, Koukam A, Hajjam A (2007) Self-organizing maps in evolutionary approach meant for di-
mensioning routes to the demand. In: Proceedings of the 21th international conference on computer,
electrical, and systems science, and engineering, Vienna, Austria, May 25–27, pp 444–551

Durbin R, Willshaw DJ (1987) An analogue approach to the traveling salesman problem using an elastic
net method. Nature 326:689–691

Fisher M, Jakumar R, van Wassenhove L (1981) A generalized assignment heuristic for vehicle routing.
Networks 11:109–124

Gambardella LM, Taillard E, Agazzi G (1999) MACS-VRPTW: a multiple ant colony system for vehicle
routing problems with time windows. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimiza-
tion. McGraw-Hill, New York, pp 63–76

Gendreau M, Guertin F, Potvin JY, Taillard E (1999) Parallel tabu search for real-time vehicle routing and
dispatching. Transp Sci 33:381–390

Gendreau M, Laporte G, Potvin J-Y (2002) Metaheuristics for the capacitated VRP. In: Toth P, Vigo D
(eds) The vehicle routing problem. SIAM, Philadelphia, pp 129–154

Ghiani G, Guerriero F, Laporte G, Musmanno R (2003) Real-time vehicle routing: Solution concepts,
algorithms and parallel computing strategies. Eur J Oper Res 151:1–11

Golden BL, Wasil EA, Kelly JP, Chao IM (1999) Metaheuristics in vehicle routing. In: Crainic TG, Laporte
G (eds) Fleet management and logistics. Kluwer, Boston, pp 33–56

Goncalves G, Hsu T, Dupas R, Housroum H (2007) Plateforme de simulation pour la gestion dynamique
de tournées des véhicules. J Eur Des Syst Autom 41:515–539

Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J
Oper Res 126:106–130

Kilby P, Prosser P, Shaw P (1998) Dynamic VRPs: a study of scenarios. Technical Report APES-06-1998,
University of Strathclyde, UK

Kohonen T (2001) Self-organization maps and associative memory, 3rd edn. Springer, Berlin
Larsen A (2000) The dynamic vehicle routing problem. PhD thesis, Technical University of Denmark,

Lyngby, Denmark
Larsen A, Madsen OBG, Solomon M (2008) Recent developments in dynamic vehicle routing systems.

In: The vehicle routing problem: latest advances and new challenges. Springer, Berlin, pp 199–218
Mester D, Bräysy O (2005) Active guided evolution strategies for large scale vehicle routing problems

with time windows. Comput Oper Res 32:1593–1614
Montemanni R, Gambardella LM, Rizzoli AE, Donati AV (2005) Ant colony system for a dynamic vehicle

routing problem. J Comb Optim 10:327–343
Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover F, Kochenberger G

(eds) Handbook of metaheuristics. Kluwer Academic, Boston, pp 105–144

458 J Comb Optim (2012) 24:437–458

Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM) papers: 1998–2001 ad-
dendum. Neural Comput Surv 3:1–156

Reinelt G (1991) TSPLIB-A traveling salesman problem library. ORSA J Comput 3:376–384
Taillard E (1994) Parallel iterative search methods for vehicle-routing problems. Networks 23:661–673
Zeddini B, Temani M, Yassine A, Ghedira K (2008) An agent-oriented approach for the dynamic vehicle

routing problem. In: International workshop on advanced information systems for enterprises. IEEE
Comput Soc, Los Alamitos. doi:10.1109/IWAISE

http://dx.doi.org/10.1109/IWAISE

	Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem
	Abstract
	Introduction
	The dynamic vehicle routing problem
	Real time simulator and optimizer
	The self-organizing map approach to vehicle routing
	The evolutionary algorithm embedding self-organizing map
	The Kohonen's self-organizing map
	Memetic SOM
	Spiral search algorithm

	Experimental results
	Experiments overview
	Influence of the main parameters
	Comparative evaluations
	Discussion

	Conclusion
	References

