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Abstract In this paper, we deal with the problem of finding quasi-independent sets
in graphs. This problem is formally defined in three versions, which are shown to be
polynomially equivalent. The one that looks most general, namely, f -MAX QUASI-
INDEPENDENT SET, consists of, given a graph and a non-decreasing function f , find-
ing a maximum size subset Q of the vertices of the graph, such that the number of
edges in the induced subgraph is less than or equal to f (|Q|). For this problem,

we show an exact solution method that runs within time O∗(2
d−27/23

d+1 n) on graphs
of average degree bounded by d . For the most specifically defined γ -MAX QUASI-
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INDEPENDENT SET and k-MAX QUASI-INDEPENDENT SET problems, several results
on complexity and approximation are shown, and greedy algorithms are proposed,
analyzed and tested.

Keywords Quasi independent set · Exact algorithms · Approximation algorithms

1 Introduction and preliminaries

The problem of finding in a graph a maximum size subgraph whose density differs
(being smaller or larger) from that of the whole graph, arises often in various applica-
tion contexts. For example, inputs may represent graphs, wherein dense (with respect
to the input) subgraphs are sought, as it is the case for call details database mining
(Abello et al. 2002), or protein-protein interaction networks analysis (Hartwell et al.
1999). In other cases, inputs may represent graphs from which one wants to extract
maximum size, sparser than the input graphs, as for example in visualization tools
for stock market interaction graphs (Boginski et al. 2005).

In this paper we address the problem of finding in a graph a maximum size sub-
graph whose sparsity is less than or equal to a value specified with the input. In the
case that appears as most general, the sparsity of a graph is measured by means of
a function bounding the number of edges in the sought subgraph and depending on
its size; we also study some special forms of this function, namely, when it has the
form of the ratio of the number of edges of the solution to the number of edges in a
complete graph of equal size, and also when it is a numeric parameter of the input.

We denote by G a simple finite graph without loops, by V and E(G) its vertex set
and its edge set, respectively, and by n and m their respective sizes. Let A,B be two
subsets of V . The induced subgraph by A in G is denoted by G[A] and its edge set
by E[A], respectively. The edge set with one extremity in A and the other in B \ A

will be denoted as E[A,B]. Clearly, if A and B are disjoint then E[A,B] = E[B,A]
and E[A,A] = ∅. The degree of A towards B is equal to |E[A,B]| and is denoted
by δB(A); when A is reduced to a singleton {v}, we denote its degree in B by δB(v),
or simply by δ(v) whenever B = V . The maximum vertex degree in a graph G is
denoted by �G or simply by � if there is no risk of confusion. We also set dB(A) =
1/|A|∑v∈A δB(v), and d = 1/n

∑
v∈V δ(v).

We tackle the following variants of the quasi-independent set problem.

f -MAX QUASI-INDEPENDENT SET (the general quasi-independent set problem)
Given a graph G and a polynomially computable non-decreasing real function
f : N → R, find the largest possible Q ⊆ V such that |E[Q]| ≤ f (|Q|).

In the above definition, f is used as a sparsity specification for the induced sub-
graph of the sought solution. We study in particular two variants of f -MAX QUASI-
INDEPENDENT SET, denoted by γ -MAX QUASI-INDEPENDENT SET and k-MAX

QUASI-INDEPENDENT SET, respectively, formally defined in what follows.
In the first one, sparsity specification is given in the special form of the ratio of

the number of edges in the subgraph induced by the quasi-independent set over the
number of edges induced by a complete graph of the same size:
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γ -MAX QUASI-INDEPENDENT SET Given a graph G and a real γ, 0 ≤ γ ≤ 1, find
the largest possible Q ⊆ V such that |E[Q]| ≤ γ

(|Q|
2

)
.

It is easy to see that γ -MAX QUASI-INDEPENDENT SET is not hereditary (a
problem is said hereditary if its solutions satisfy some non-trivial hereditary prop-
erty1). Indeed, given a feasible solution for γ -MAX QUASI-INDEPENDENT SET, the
induced subgraph G[Q′] of a subset Q′ of Q may violate the sparsity condition
|E(Q′)| � γ |Q′|(|Q′| − 1)/2.

In the second restricted variant of the problem considered in the paper, we simply
seek for a maximum vertex subset of the graph with no more than a constant number
of edges having both extremities in it:

k-MAX QUASI-INDEPENDENT SET Given a graph G and a positive integer k, find
the largest possible Q ⊆ V such that |E[Q]| ≤ k.

Clearly, k-MAX QUASI-INDEPENDENT SET is hereditary. In fact, it is easy to see
that k-MAX QUASI-INDEPENDENT SET belongs to the family of node-deletion prob-
lems, first defined in Krishnamoorthy and Deo (1979) and further studied in Yan-
nakakis and Lewis (1980). Formally, a node-deletion problem consists of finding,
given a graph G and a non-trivial hereditary property P , the minimum number of ver-
tices of G that one has to delete from G, in order to have P satisfied in the remaining
graph. In Yannakakis and Lewis (1980), it is proved that the decision version of such
problems is NP-complete even for planar graphs.

For f = 0 (resp., γ = 0 and k = 0), Q is simply a maximum independent set in
G, while for f : f (|Q|) ≥ m (resp., for γ ≥ 2m/n(n − 1) and k ≥ m), Q = V is
a trivial solution; being a direct generalization of MAX INDEPENDENT SET, the f -,
γ - and k-MAX QUASI-INDEPENDENT SET problems are obviously inapproximable
within better than O(n1−ε), unless P = NP (Zuckerman 2006).

In Abello et al. (2002) essentially the same problem as γ -MAX QUASI-INDEPEND-
ENT SET is addressed, formulated as the research, given a graph and 0 ≤ γ ≤ 1, of a
maximum subgraph of sparsity (defined as the ratio of the number of its edges over
the number of edges of the complete graph of the same size) at least γ ; any solution
to this problem can be obtained as the complementary of a quasi-independent set of
sparsity at most 1 − γ in the complement of the input graph. The authors present
an algorithm equivalent to the greedy algorithm for γ -MAX QUASI-INDEPENDENT

SET, analyzed later in this paper; however, they focus in implementation issues on
very large instances and they don’t attempt to analyze its performance. In Jagota et
al. (2001) an alternative generalization of independent sets, namely k-insulated sets,
is given. These are subsets of the vertex set of the graph such that any vertex in a
k-insulated set is adjacent to at most k vertices in it, while any external vertex is
adjacent to at least k + 1 vertices of the k-insulated set.

To our knowledge, the k-MAX QUASI-INDEPENDENT SET problem has been
specifically formulated for the first time in Hochbaum and Goldschmidt (1997). The
authors call it the k-edge-in subgraph problem. Nevertheless, in this paper the prob-

1A graph G is said to satisfy a hereditary property π if every subgraph of G satisfies π whenever G

satisfies π . Furthermore, π is non-trivial if it is satisfied for infinitely many graphs and it is false for
infinitely many graphs; for instance, properties “independent set”, “clique”, “planar graph”, “k-colorable
graph”, etc., are non-trivial hereditary properties.



J Comb Optim (2012) 23:94–117 97

lem is not addressed, but simply mentioned as related to other subgraph problems on
which it focuses.

A kind of dual of the maximum quasi-independent set problem is to search, given
a graph and a positive integer k, for the sparsest—or densest—(maximal) subgraph
with exactly k vertices. This kind of problems have been extensively studied during
the last years under the names of “k-sparsest” or “k-densest subgraph” problem (see,
for example, Asahiro et al. 2000; Feige et al. 2001; Hochbaum and Goldschmidt
1997). Similar problems have been studied in previous works in Goldberg (1984),
Picard and Queyranne (1982). However, these papers define sparsity as the ratio of a
positive power of the size of a graph over the number of its induced edges.

The remainder of the paper is organized as follows. Section 2 gives several bounds
to the optimal solutions for γ -MAX QUASI-INDEPENDENT SET. Section 3 tackles a
specific polynomial case for the three variants of MAX QUASI-INDEPENDENT SET

and proves their NP-hardness in bipartite graphs. Interestingly enough, the three vari-
ants of MAX QUASI-INDEPENDENT SET handled in the paper are shown to be poly-
nomially equivalent (with respect to their exact solution) though only one of them is
hereditary. In Sect. 4 an exact solution method with non-trivial worst-case running
time for the general f -MAX QUASI-INDEPENDENT SET problem is presented and
analyzed. As we discuss here this method applies also to other combinatorial opti-
mization problems. Finally, in Sect. 5 approximation results are proved for both γ -
MAX QUASI-INDEPENDENT SET (Subsect. 5.1) and k-MAX QUASI-INDEPENDENT

SET (Subsect. 5.2).
In what follows, when we indifferently refer to either one of the quasi-independent

set versions defined above, we use the term MAX QUASI-INPENDENT SET instead.

2 Solution properties and bounds

As it is already mentioned, in general, γ -MAX QUASI-INDEPENDENT SET is not a
hereditary problem; just consider an instance where the graph is an edge plus some
isolated vertices, and γ is the smallest possible for having the whole graph as a trivial
solution. Obviously, the sparsity condition will be violated for any strict part of the
solution containing the edge. However, γ -MAX QUASI-INDEPENDENT SET is still a
weakly hereditary problem, in the sense given by the following lemma that will be
used later.

Lemma 1 Let Q be a γ -quasi-independent set in G, of size q ≥ 2. Then, for any
k ≤ q , there exists in G some γ -quasi-independent set R(k) ⊆ Q, of size k.

Proof Let v be a vertex in argmaxu∈Q{δQ(u)}. By removing v from Q we get Q′ =
Q \ {v} of size q − 1 where

|E(Q′)| = |E(Q)| − δQ(v) ≤ |E[Q]| − 2|E[Q]|
|Q|

≤ γ |Q|(|Q| − 1) − 2γ (|Q| − 1)

2
= γ (|Q| − 1)(|Q| − 2)

2

Therefore, Q′ is a γ -quasi-independent set in G of size q − 1. �
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Next lemma gives some bounds for the solutions of the γ -MAX QUASI-INDEPEN-
DENT SET.

Lemma 2 Let Q be any non-trivial γ -quasi-independent set (0 < γ < m/
(
n
2

)
),

with size q , not contained in any γ -quasi-independent set of size q + 1. Consider
ϑ(Q) = minv∈V \Q{δQ(v)} and let Q∗ 
= Q be an optimal solution for γ -MAX

QUASI-INDEPENDENT SET, q∗ be its size, and for any vertex-subset P , let d(P ) be
the average degree of the subgraph induced by P (recall that we denote d(V ) by d).
Finally, let αmin be the size of a smallest maximal independent set (minimum indepen-
dent dominating set) in G. Then: (1) q∗ ≤ αmin(�+1); (2) q∗

q
≤ �

ϑ(Q)
; (3) q ≥ n− �

γ
;

(4) q∗ ≤ �
γ

; (5) q∗ ≤
√

dn
γ

; (6) q∗ ≤ d(Q∗)+2
γ

− 1.

Proof Let S be a smallest maximal independent set in G, i.e. αmin = |S|, denote by
Q∗ a quasi-independent set of maximum size, and set S′ = Q∗∩S. By the maximality
of S, q∗ − |S′| ≤ δS(Q∗ \ S′) ≤ |S|�; hence q∗ ≤ |S|� + |S′| ≤ αmin(� + 1) and
item (1) is proved.

We now prove item (2). By the definition of Q, it is ϑ(Q) > 0 and:

ϑ(Q)(n − q) ≤ δV (Q) =
∑

v∈Q

δ(v) − 2|E[Q]| ≤ �q (1)

By a similar argument, it holds that ϑ(Q)(q∗ − |Q∗ ∩ Q|) ≤ δQ\(Q∗∩Q)(Q
∗ \ (Q∗ ∩

Q)) ≤ �(q − |Q∗ ∩ Q|), and hence:

q∗

q
≤ q∗ − |Q∗ ∩ Q|

q − |Q∗ ∩ Q| ≤ �

ϑ(Q)
(2)

By the definition of Q, we have also that:

γ
q(q + 1)

2
< |E[Q]| + ϑ(Q) ≤ γ

q(q − 1)

2
+ ϑ(Q) ⇒ ϑ(Q) > γq (3)

Combining (1) and (3) we get γ q(n − q) ≤ �q ⇒ q ≥ n − �
γ

, that proves item (3),

while combining (2) and (3) we get immediately q∗ ≤ �
γ

, proving so item (4).
Assuming that Q∗ is non-trivial, we get:

γ q(q + 1)

2
< m = dn

2
⇒ γ q2

2
<

dn

2
⇔ q∗ ≤

√
dn

γ

that proves item (5), and also that:

γ q(q + 1)

2
< |E[Q ∪ v]| ≤ |E[Q]| + q = d(Q)q

2
+ q

⇔ γ (q + 1) < d(Q) + 2 ⇒ q∗ <
d(Q∗) + 2

γ
− 1

that proves item (6) and completes the proof of the lemma. �
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By item (4) of Lemma 2 the following easy corollary holds.

Corollary 1 If γ is bounded below by some positive constant, then γ -MAX QUASI-
INDEPENDENT SET is polynomial for graphs with bounded degree.

3 Complexity results for max quasi-independent problems in various
graph-classes

3.1 Relations between f -, γ - and k-MAX QUASI-INDEPENDENT SET problems

The following proposition claims that all three variants of MAX QUASI-INPENDENT

SET dealt in this paper are closely interrelated.

Proposition 1 f -, γ - and k-MAX QUASI-INDEPENDENT SET are polynomially
equivalent with respect to their exact solution.

Proof (i) We first show that γ -MAX QUASI-INDEPENDENT SET � f -MAX QUASI-
INDEPENDENT SET. This is trivial since the condition for sparsity formed as expres-
sion of γ is, as noted before, just one particular case of a sparsity specification defined
by f (q) = γ q(q − 1)/2.

(ii) We now show that f -MAX QUASI-INDEPENDENT SET � k-MAX QUASI-
INDEPENDENT SET: indeed, consider an instance I = (G,f ) of the f -MAX QUASI-
INDEPENDENT SET problem, and let Q∗(I ) be any of its optimal solutions; denote
its size by q∗(I ). Let |E[Q∗(I )]| = k′ ≤ f (q∗(I )) be the number of the edges in this
optimal; clearly, Q∗(I ) should be also an optimal solution for the instance (G, k′)
of the k-MAX QUASI-INDEPENDENT SET problem, i.e., some instance (G, i) with
0 ≤ i ≤ m. Thus, q∗(I ) has to be the size of one of the optimal solutions Q∗(G, i)

of the family of instances {(G, i) : 0 ≤ i ≤ m}, and more specifically of such an opti-
mal Q∗(G, i) that satisfies argmaxi{q∗(G, i) : |E[Q∗(G, i)]| ≤ f (q∗(G, i))}. Since
there are at most m of k-MAX QUASI-INDEPENDENT SET instances to solve, the
claim follows.

(iii) Now it remains to show that k-MAX QUASI-INDEPENDENT SET� γ -MAX

QUASI-INDEPENDENT SET. In a similar manner as before, consider some instance
I = (G, k) of the k-MAX QUASI-INDEPENDENT SET, and let Q∗(I ) be any of
its optimal solutions; denote its size by q∗(I ). Let |E[Q∗(I )]| = k′ ≤ k be the
number of edges in this optimal; clearly, Q∗(I ) must also be an optimal solution
for some instance (G,γ (q∗(I ), k′)) with γ (q∗(I ), k′) = 2k′

q∗(I )(q∗(I )−1)
of the γ -

MAX QUASI-INDEPENDENT SET problem; notice that 0 ≤ k′ ≤ k ≤ m and, w.l.o.g.,
2 ≤ q∗(I ) ≤ n. Thus, q∗(I ) has to be the size of one of the optimal solutions
Q∗(G,γ (i, j)) of the family of instances of γ -MAX QUASI-INDEPENDENT SET,
{(G,γ (i, j)) : γ (i, j) = 2i

j (j−1)
,0 ≤ i ≤ k,2 ≤ j ≤ n}, and more specifically of

such an optimal Q∗(G,γ (i, j)) that satisfies argmax0≤i≤m,2≤j≤n{q∗(G,γ (i, j)) :
|E[Q∗(G,γ (i, j))]| ≤ k}. Since there are at most nm instances of the γ -MAX QUASI-
INDEPENDENT SET to solve, the claim follows. �
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3.2 Bipartite graphs

We now tackle MAX QUASI-INDEPENDENT SET in bipartite graphs. The following
result characterizes its complexity.

Theorem 1 MAX QUASI-INDEPENDENT SET is NP-hard on bipartite graphs.

Proof We first prove that k-MAX QUASI-INDEPENDENT SET is NP-hard. Our re-
duction goes from the r -SPARSEST SUBGRAPH problem, which consists of seeking,
given a graph G(V,E) and an integer 1 < r < n, a subset H ⊂ V of size r such that
G[H ] has a minimum number of edges, among all induced subgraphs of size r . In the
decision version of r -SPARSEST SUBGRAPH, we are given G(V,E) and two positive
integers r and l and we ask if there a subset H ⊂ V of size r such that G[H ] has
at most l edges. The r -SPARSEST SUBGRAPH problem is NP-complete for bipartite
graphs by a reduction from the r -DENSEST SUBGRAPH problem. The decision ver-
sion of this later problem asks for a subset H ⊂ V of size r such that G[H ] has at
least l edges, and it is known to be NP-complete for bipartite graphs (Corneil and
Perl 1984).

Consider the decision version of k-MAX QUASI-INDEPENDENT SET: given G and
two positive integers t and k, is there Q ⊆ V such that |Q| ≥ t and G[Q] has at
most k edges? It is straightforward to see that given an instance I = (G, r, l) of (the
decision version of) r -SPARSEST SUBGRAPH, the instance I ′ = (G, t = r, k = l) of
k-MAX QUASI-INDEPENDENT SET is a “yes”-instance if I is a “yes”-instance too.
On the other hand, if I ′ has a solution, say Q∗ with |Q∗| > r , one can easily get a
solution for I , just by eliminating any |Q∗| − r vertices from Q∗ (recall that k-MAX

QUASI-INDEPENDENT SET is hereditary).
Putting together Proposition 1 and the above result, the NP-hardness of γ - and

f -MAX QUASI-INDEPENDENT SET is directly derived. �

There are several hereditary graph classes the definitions of which imply direct
conditions on their sparsity, independently of the measure used; take for instance
complete graphs or split graphs. Such proprieties, together with heredity, can be ex-
ploited in order to polynomially solve the k-MAX QUASI-INDEPENDENT SET (in fact,
by Proposition 1, any of the three variants of MAX QUASI-INDEPENDENT SET). In the
sequel, we present a polynomial algorithm for k-MAX QUASI-INDEPENDENT SET,
that works on split graphs.

3.3 Split graphs

Let S = (I,C,E) be a split graph, where I is an independent set, C is a clique, and
E is the set of edges between I and C plus the edges of the clique C. The following
lemma holds.

Lemma 3 There is an optimal k-quasi-independent set on a split graph S =
(I,C,E) such that it contains the independent set I .
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Proof Let I ′ ∪ C′, I ′ ⊂ I , C′ ⊆ C, be the set of vertices selected by an optimal
solution. If we remove a vertex c ∈ C′ from this optimal we remove at least |C′| − 1
edges. If we add a vertex i ∈ I \ I ′ we add at most |C′| − 1 edges. Hence, the number
of edges in S[(C′ \ {c}) ∪ (I ′ ∪ {i})] is reduced and the new solution is again feasible
and optimal. Thus, we can create an optimal solution that includes the set I . �

Based upon Lemma 3, the following theorem holds:

Theorem 2 MAX QUASI-INDEPENDENT SET is polynomial on split graphs.

The optimal solution Q∗ to k-MAX QUASI-INDEPENDENT SET on a split graph
S = (I,C,E) can be found in polynomial time. Indeed, by Lemma 3, Q∗ can be
initialized to I . Next, we consider the vertices of the clique C in increasing order
with respect to their degree, that is in increasing order with respect to the number
of edges between any vertex c ∈ C to its neighbors in I . Using this order, we add
vertices to Q∗ until the number of edges of S[Q∗] becomes greater than k. The proof
for this greedy selection is straightforward.

4 Exact solution of MAX QUASI-INDEPENDENT SET problem

In this section we give an exact algorithm for f -MAX QUASI-INDEPENDENT SET

with non-trivial worst-case running time. Let us note that to our knowledge, no algo-
rithm that optimally solves MAX QUASI-INDEPENDENT SET with running time better
than O∗(2n) is known, where in O∗(·) notation polynomial terms are ignored. Also,
as we will see in the sequel, the scope of the results of this section is even larger
than the MAX QUASI-INDEPENDENT SET case. Indeed, the method described in what
follows concerns a broad class of optimization problems, those that “match vertex
branching”, defined in Definition 1, below.

4.1 Problems that match vertex branching

The intuition behind the exact solution method for MAX QUASI-INDEPENDENT SET,
lies in the possibility of organizing the solution space of the problem in a tree-like
manner. So we need first to formally characterize the class of optimization graph-
problems for which such an organization is possible. This is done in Definition 1.

Definition 1 We say that a graph problem 	 matches vertex branching, if for any
graph instance G(V,E), for any v ∈ V , there exist some sets of parameters Si , some
subsets v ∈ Hi ⊂ V and two functions f1, f2 bounded above by some polynomial
of n, such that:

opt	(G, S3) ≤ max
{
f1(opt	(G[V \ H1], S1)), f2(opt	(G[V \ H2], S2))

}

where opt	(G, S) denotes the value of the optimal solution of 	 for G with parame-
ter set S .
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Notice that, with appropriate choice for f1, f2, it is possible to replace max by
min, or to make a single reduction.

Several problems that aim at finding a specific subset in a given graph may be
generalized as problems that match vertex branching. For example, for the MAXI-
MUM WEIGHTED INDEPENDENT SET: Given a graph G(V,E) and a weight func-
tion w : V → R, we search for an independent set S maximizing

∑
v∈S w(v), we

have opt(G,w) ≤ max {opt(G[V \ v],w),opt(G[V \ N [v]],w) + w(v)}. Obviously,
this remains true for the non-weighted version, i.e., whenever w = 1.

Also the f -MAX QUASI-INDEPENDENT SET can be reformulated as a problem
that matches vertex branching, in the following manner: Given a graph G(V,E),
two constants w0, q0 and a weight function w : V → R, we search for a maximal
size vertex subset Q ⊆ V whose induced graph G[Q] = (Q,R) verifies |R| + w0 +∑

v∈Q w(v) ≤ f (|Q| + q0). Let w+ ≡ w + 1 on N(v) = {u : {u,v} ∈ E} and w+ ≡
w elsewhere. Then, it is opt(G,w0, q0,w) ≤ max{opt(G[V \ v],w0, q0,w),1 +
opt(G[V \ v],w0 + w(v), q0 + 1,w+)}, and the formulation is completed by setting
initially q0 = w0 = 0,w ≡ 0.

Informally, w0 and q0 stand, respectively, for the number of edges and of vertices
that are already in the solution, while w(v) represents the number of edges that will
be added, if one decides to keep v.

Notice that, as it can be shown by straightforward recurrence, any problem that
matches vertex branching can be solved within time O∗(2n). This time-bound already
holds for problems where feasible solutions are vertices inducing subgraphs of the
input graph satisfying some specific property, since they can be solved in O∗(2n).

However, an exact algorithm for f -MAX QUASI-INDEPENDENT SET based upon
vertex branching would be interesting if its running time T (n) could be shown to be
in 2φ(�)n with φ some increasing function bounded above by 1 for any �. Intuitively,
a possibility for such an improvement lies on finding an efficient vertex branching rule
for fast reduction of the remaining graph’s degree, and showing fast (polynomial)
algorithms for solving a maximum f -MAX QUASI-INDEPENDENT SET problem in
bounded degree graphs.

4.2 Bottom-up algorithms

4.2.1 General scheme

We give below a general scheme, using vertex branching for finding a maximum
f -quasi-independent set in a graph G. Recall that by Proposition 1 such a method
can be used for computing an optimal solution for any of the three variants of the
MAX QUASI-INDEPENDENT SET problem, with a polynomial overhead. This scheme,
parameterized by a graph G, some integer function f , two integers q0 and w0, and
some vertex weight function w, can be written as follows:

procedure exactrec(G(V,E), f , q0, w0, w)
in, not_in: integer;

if (V = ∅) then
if (w0 ≤ f (q0)) then

return q0
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else
return −∞

endif;
endif;
pick v ∈ V (G) such that δV (v) = max;
not_in ← exactrec(G[V \ v], f , q0, w0, w);
for all u neighbors of v

w(u) ← w(u) + 1
endfor;
in ← exactrec(G[V \ v], f , q0 + 1, w0 + w(v), w);
return max{in, not_in};

end exactrec;
procedure f _QIS(G(V,E): graph, f : integer function)

return exactrec(G, f , 0, 0, 0);
endf _QIS

As noted at the end of the previous subsection, the running time for an exact method
based upon the above scheme can be improved if the f -MAX QUASI-INDEPENDENT

SET problem is shown polynomial on graphs of bounded small degree.

Lemma 4 Assume that some problem that matches vertex branching can be com-
puted on graphs whose average degree is at most d − 1, d ∈ N, within time O∗(2αdn)

for a given αd ≥ 1/2. Then, it can be computed on graphs whose average degree is at

least d − 1 within time O∗(2αdn+ (1−αd )(2m−(d−1)n)

d+1 ).

Proof Let T (m,n) be the running time of the algorithm on graphs of order n with
m edges. We first need to prove that T increases with m (this is trivial) and with n.
Indeed:

∂(αdn + (1−αd)(2m−(d−1)n)
d+1

∂n
= αd − (1 − αd)(d − 1)

d + 1

= 2dαd − d + 1

d + 1
≥ 1

d + 1
> 0

We now proceed by induction on m,n. Trivially, the hypothesis of the statement holds
for m0 = (d − 1)n/2. Suppose that it is true for any pair n′ < n,m′ < m. Since the
graph has average degree greater than d − 1, there exists some vertex of degree d or
more. When branching on it, we get:

T (m,n) ≤ 2T (m − d,n − 1) ≤ 21+αd(n−1)+ (1−αd )(2(m−d)−(d−1)(n−1))

d+1

= 2αdn+ (1−αd )(d+1)+(1−αd )(2(m−d)−(d−1)(n−1))

d+1

= 2αdn+ (1−αd )(2(m−d)−(d−1)(n−1)+(d+1))

d+1

= 2αdn+ (1−αd )(2m−(d−1)n)

d+1

that completes the proof. �
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As a straightforward consequence of the above lemma, the following proposition
holds:

Proposition 2 Assume that some problem that matches vertex branching can be com-
puted on graphs with average degree at most d − 1, d ∈ N, in time O∗(2αdn) for a
given αd ≥ 0.5. Then, it may be computed on graphs whose average degree is at most
d within time O∗(2αd+1n), where αd+1 = dαd+1

d+1 .

Using Turán’s Theorem which states that “for a graph of average degree d the
size α∗ of a maximum independent set verifies α∗ ≥ n

d+1 ” the following theorem can
be proved.

Theorem 3 Any problem that is polynomial on totally disconnected graphs and
matches vertex branching can be solved on graphs of average degree at most d with
running time O∗(2dn/(d+1)).

Proof One can run some exact algorithm for MAX INDEPENDENT SET (for instance,
the one in Fomin and Hoie (2006), that has complexity bounded by O∗(20.288n)). Let
S∗ be the computed solution. Branch on any vertex belonging to its complementary,
V \S∗; the remaining graph is totally disconnected, so it can be solved in polynomial

time. Thus, the total running time will be in O∗(20.288n + 2n−α(G)) ⊂ O∗(2
d

d+1 n). �

Notice that the bound given by Turán’s Theorem is tight for some problems that
fit Definition 1. If the problem has the worst possible recurrence, then:

opt(G,w) = max {f1(opt(G \ {v},w1)), f2(opt(G \ {v},w2))}
For instance, this is the case of maximum quasi-independent set. If we either make
a greedy choice for the branching, i.e., if we always branch on a vertex of maximal
degree, or we select an independent set of maximal size, then there exists an instance

where the running time is at least 2
d

d+1 n. To see this, consider for any δ ≤ d the
graph Gδ that is composed of n/(d + 1) cliques of size δ + 1 (see Fig. 1). T (G1) =
2n/(d+1). The algorithm removes one vertex in each connected component; we so
have T (Gδ) = 2n/(d+1)T (Gδ−1) and finally T (Gd) = 2dn/(d+1). On the other hand,
α(Gd) = n/(d + 1) (one vertex per clique).

Unfortunately, there is little hope for generalizing this corollary, since, unless
P = NP no problem is polynomial on graphs of average degree bounded above by
some d > 0, unless it belongs to P (just add some independent set to decrease d).
Furthermore, restricting the instance set to graphs without isolated vertices, or even
to connected graphs, does not help much, since the greedy branching may discon-
nect the graph as well. On the other hand, some improved results can be obtained for
graphs of bounded maximum degree.

4.2.2 Using polynomial solution on graphs of maximum degree 2

Many problems that match vertex branching are in fact well-known to be polynomial
on graphs of maximum degree 2, for instance MAX INDEPENDENT SET (or equiv-
alently MAX CLIQUE and MIN VERTEX COVER). For some difficult problems like
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Fig. 1 K
n/(d+1)
δ+1 becomes

K
n/(d+1)
δ after n/d + 1

iterations

MAX QUASI-INDEPENDENT SET this remains true, but it is not straightforward. The
corresponding result is stated in Subsect. 4.3 (Proposition 8).

Proposition 3 Any problem that is polynomial on graphs of maximum degree 2 and
matches vertex branching can be solved on graphs of average degree d with running
time O∗(2dn/6). This bound is tight for d = 3 and a greedy choice of the branching.

Proof If there is no vertex of degree 3 or more, the problem can be solved in poly-
nomial time. Otherwise, when branching on some vertex of maximum degree, we
remove at least 3 edges from the graph, that means T (m) ≤ 2T (m − 3), and leads to
T (m) = O∗(2m/3) = O∗(2dn/6).

To show the tightness, consider a graph composed of n/6 copies of K3,3. In
any connected component, the algorithm greedily branches on three vertices, so
T (n) = 2n/2. �

Proposition 4 Any problem that is polynomial on graphs of maximum degree 2 and
matches vertex branching can be solved on graphs of average degree that rounds up
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Fig. 2 Tightness example for � = 4

to d ≤ 2 with running time O∗(2
d−1
d+1 n). If the average degree is d , this bound is tight

for a greedy choice of the branching.

Proof In a notation like the one introduced in Proposition 2, this means that we claim
αd+1 = (d − 1)/(d + 1). As a consequence of Proposition 3 with d ∈ {2,3}, we see
that any problem which is polynomial on graphs of maximum degree 2 and matches
vertex branching can be solved on graphs of average degree 2 (resp., 3) within time
O∗(2n/3) (resp., O∗(2n/2)). Thus, our hypothesis is verified for d = 2 and 3.

Now assume that the statement holds for d − 1. Then, according to Proposition 2,

αd+1 = d d−2
d

+1
d+1 = d−1

d+1 , and the result yields by recurrence.
In order to prove tightness, we form the graph G′

δ in the following way (Fig. 2):

• G′
3 is composed of 2n

3(d+1)
copies of K3,3. T (G′

3) = 22n(d+1).
• Partition each pair of copies of K3,3 into three subsets of size 4, namely

A1,A2,A3. For any i add a vertex ai,4 adjacent to all the vertices in Ai . That
is G′

4.
• For any δ ≤ d − 1, form G′

δ+1 by adding a vertex ai,d+1 adjacent to all the vertices
in Ai ∪ {ai,4, . . . , ai,d}.

The algorithm removes three vertices from each connected component, so we have
T (G′

δ) = 2n/(d+1)T (G′
δ−1) and finally T (G′

d) = 2(d−1)n/(d+1). �

4.2.3 Performance of bottom-up for problems that match vertex branching, on
graphs of bounded maximum degree

We now study the performance of bottom-up algorithms for problems that match
vertex branching, on graphs of bounded maximum degree. We first deal with the case
of graphs of maximum degree 3, followed by the general case of graphs with bounded
maximum degree.

Proposition 5 Any problem that matches vertex branching and is polynomial on
graphs of maximum degree 2 can be solved on graphs of maximum degree 3 within
time O∗(23n/8).

Proof Notice that the bound claimed is lower than the O∗(
√

2
n
) on graphs of aver-

age degree 3 or less from Proposition 4. In our analysis, we use the following result,
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Fig. 3

established by Reed (1996): On graphs of minimum degree 3, the size of MIN DOMI-
NATING SET is not greater than 3n/8.

We consider the vertices of the input graph of degree 2 or less which appear in
connected components that contain at least a vertex of degree 3. We complete the
graph by adding fictive edges between them until they all have degree at least 3.
Notice that in the following cases this completion will be not successfully finished:

(i) A vertex v of degree 1 remains. In this case we add the gadget shown in Fig. 3(a)
and the edges (v,u1) and (v,u2). Thus, the number of the vertices of the graph
becomes n′ = n + 4.

(ii) A vertex v of degree 2 remains. In this case we add the gadget shown in Fig. 3(b),
where v coincides with u. Thus, the number of the vertices of the graph becomes
n′ = n + 5.

(iii) Two adjacent vertices, v1 and v2, both of degree 2 remain. In this case we add the
gadget shown in Fig. 3(b) and the edges (v1, u) and (v2, u). Thus, the number
of the vertices of the graph becomes n′ = n + 6.

(iv) Two adjacent vertices, v1 and v2, of degree 1 and 2, respectively, remain. In this
case we add the gadget shown in Fig. 3(b), where v1 coincides with u. Moreover,
we add the gadget shown in Fig. 3(b) and the edges (v1, u) and (v2, u) Thus, the
number of the vertices of the graph becomes n′ = n + 11.

Note that no vertex that was already at the beginning of the process of degree 3
shall receive a new neighbor this way. Furthermore, the number of vertices n′ of the
new graph is at most n + 11.

Then, we run an exact algorithm to find a MIN DOMINATING SET on the modified
graph. This subset, namely D, has a size at most 3n′/8 ≤ 3n/8 + o(1). D is perhaps
not a dominating set in G, but it is adjacent to all vertices of degree 3. In other words,
once we have branched on any v ∈ D, the remaining graph contains only vertices of
degree 2 or less.

Of course there is an additive factor to our running time, that is the complexity of
solving MIN DOMINATING SET on a graph where any vertex except a finite number
of them have degree 3. Using the algorithm by Fomin and Hoie (2006), we see that
such a set can be found in O∗(20.265n) ⊂ O∗(23n/8). �

A rather immediate corollary is that any problem that matches vertex branching
and is polynomial on graphs of maximum degree 2 can be solved on graphs of max-
imum degree � with running time O∗(2n(1−(5/8)�−2)). Nevertheless, for � ≥ 4, the
result from Proposition 4 overlaps this one.

In the case where we can only make the weaker hypothesis that the problem is
polynomial on totally disconnected graphs (in fact, we need a somewhat stronger
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hypothesis, namely, polynomiality on collection of bounded cliques), it is still possi-
ble to improve the O∗(23n/4) result from Theorem 3, if we know that our graph has
maximum degree 3 instead of average degree 3 or less:

Proposition 6 Any problem that matches vertex branching and is polynomial on col-
lections of cliques of bounded cardinality can be solved on graphs of maximum degree
3 within time O∗(22n/3).

Proof If G(V,E) contains a collection of 4-cliques, namely K , we first consider
G′(V ′,E′) = G[V \ K]. We can find in polynomial time a 3-coloring of G′. One of
the three colors is an independent set S of size at least |V ′|/3. Any possible subset of
V ′ \ S can be tested within time O∗(22|V ′|/3) ⊂ O∗(22n/3), and the remaining graph
is a collection of cliques of size 1 or 4. �

Proposition 7 Any problem that matches vertex branching and is polynomial on
graphs of maximum degree 2 can be solved on graphs of average degree d ≤ 3 with
running time O∗(221n/46).

Proof If � ≤ 3, the proposition is a consequence of Proposition 5. Otherwise we
perform a sequence of branchings, at each time choosing a vertex of maximal degree,
until our graph have maximum degree 3. Then, we consider the size of the remaining
graph:

(i) If n′ < 20n/23, we greedily branch on vertices of degree 3 until the graph has
maximum degree 2.

(ii) Otherwise, we compute a MIN DOMINATING SET as described on Proposition 5
and branch on any vertex of it.

We form the finite sequence {n�,n�−1, . . . , n4}, where ni is the number of vertices
of degree i we branch on during first step of our algorithm. Fix σ = ∑

i≥4 ni . Since
i is the degree at the time we branch, not in the initial graph, the number of deleted
edges is

∑
i≥4 ini ≥ 4σ .

If hypothesis (i) holds, our algorithm is within time O∗(2x), where x ≤ σ +
m−4σ

3 ≤ n
2 − 1

3 × 3n
23 = 21n

46 .
On the other hand, if hypothesis (ii) is true, the time of the algorithm is within

O∗(2x′
), and x′ ≤ σ + 3(n−σ)

8 ≤ 3n
8 + 5

8 × 3n
23 = 21n

46 , that completes the proof. �

Thus, the following theorem holds:

Theorem 4 Any problem that matches vertex branching and is polynomial on graphs
of maximum degree 2 can be solved on graphs of average degree bounded above by

d within time O∗(2
d−27/23

d+1 n), for any d ≥ 3.

Proof The case d = 3 is nothing but Proposition 7. Assume that it is true for all
values of average degree less than or equal to d − 1. Then, thanks to Proposition 2,
we can compute a solution when the average degree is less than or equal to d , within

time O∗(2αd+1n), where αd+1 = dαd+1
d+1 = d

d−1−27/23
d

+1
d+1 = d−27/23

d+1 . By induction, this
is true for any d . �
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4.3 Applying the bottom-up scheme for exact solution of the f -MAX

QUASI-INDEPENDENT SET

Next proposition establishes the possibility to use a vertex branching method directly
derived from the bottom-up scheme, for finding an optimal f -quasi-independent set
within the time stated in Theorem 4.

Proposition 8 MAX QUASI-INDEPENDENT SET is polynomial on graphs of maxi-
mum degree 2 or less.

Proof Let � be the maximum degree of the graph we consider. If � = 0, we add ver-
tices with minimum weight in a greedy manner, until condition w0 + ∑

v∈Q w(v) ≤
f (|Q| + q0) gets violated, and find the optimal. If some vertex v has degree 1, let u

be its only neighbor.

• If δ(u) = 1, and, say, w(u) ≥ w(v), we can assume u belongs to the solution only
if v does. Thus, we may remove edge {u,v} and increase w(u) by one. Of course
this is symmetric between v and u.

• If δ(u) = 2 and w(u) ≥ w(v), we can a fortiori remove the edge and increase w(u)

by 1.
• Otherwise, δ(u) = 2 and w(u) ≤ w(v)−1. Since w(u) might increase by at most 1

(if the second neighbor of u belongs to the sought optimal), we can safely remove
{u,v} and increase w(v) by 1.

One can also consider the case where no vertex has degree 1, meaning that G is a
set of cycles (at least one) and isolated vertices. Let {ai}i≤k be one of these cycles. If
there exists some i where w(ai) ≤ w(ai+1) − 1, then we can remove {ai, ai+1} and
add 1 to w(ai+1). On the other hand, if for any i holds that w(ai) = w(ai+1), then
all vertices in the cycle are identical, therefore we can decide arbitrarily to remove
{a1, a2} and increase w(a1) by 1. In any case, the cycle will become a path, and
thus we can remove all its edges by successively disconnecting leaves, as explained
above. �

From the discussion made in this Section, the following result is immediate.

Theorem 5 Optimal MAX QUASI-INDEPENDENT SET-solutions in graphs of average

degree ≤ d can be found in time O∗(2
d−27/23

d+1 n).

For instance, MAX QUASI-INDEPENDENT SET on graphs of average degree 3 can

be solved in time O∗(2 21
46 n), while in graphs of average degree 4, the corresponding

time is O∗(2 13
23 n).

5 Approximation algorithms

Let us first do a preliminary remark: MAX QUASI-INDEPENDENT SET problems be-
ing generalizations of MAX INDEPENDENT SET, the inapproximability results of the
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latter are immediately transferred to the former. In what follows, in this section, we
study the approximation performance of several approximation algorithms for γ - and
k-MAX QUASI-INDEPENDENT SET problems.

5.1 Approximation of γ -MAX QUASI-INDEPENDENT SET

5.1.1 When γ is bounded from below by a fixed constant

In this case, things are rather optimistic, since the following result holds.

Theorem 6 Consider the γ -MAX QUASI-INDEPENDENT SET problem when γ is
bounded below by a positive constant c. For any fixed k ≤ �, a solution of size at
least k/� times the optimal can be computed in polynomial time.

Proof Assume, w.l.o.g., that � > 2 and the graph of the instance is not a collection
of cliques (otherwise, the optimum can be found in polynomial time).

Under these assumptions, there is always a �-coloring of the graph and it can
be found in polynomial time. Let S be a color class of the greatest size s; recall
that s ≥ n/�. If s ≥ k/c, then S will be a γ -quasi-independent set with the desired
property, since by Lemma 2 we get q∗

s
≤ �/γ

k/c
≤ �/c

k/c
= �

k
, where q∗ is the size of the

optimal Q∗.
Otherwise, we can enumerate all subsets of size ks or less within polynomial time,

since S has bounded finite size and k is fixed by definition. If q∗ < ks, we come with
the optimal; else, by Lemma 1 we know that there exists a γ -quasi-independent set
Q ⊂ Q∗ of size q = ks. For that set, we have q∗

q
≤ n

ks
≤ n

k(n/�)
= �

k
, and the result

yields. �

5.1.2 A greedy algorithm

In this subsection, a greedy algorithm for computing a γ -quasi-independent set is
discussed; the solution is initialized to some independent set S, and at each step a
vertex of minimum degree to the current solution is being inserted; the insertions
keep on, until the largest solution, respecting the sparsity specification, is reached.

procedure γ_QIS (G(V,E): graph, 0 ≤ γ ≤ 1: real, S ⊆ V : some independent set)
Q ← S;
Q′ ← S;
while (|Q′| ≤ |V |)

pick v ∈ V \ Q′ such that δQ′(v) = min (break ties arbitrarily)
Q′ ← Q′ ∪ {v};
if (|E[Q′]| ≤ γ

(|Q′|
2

)
)

Q ← Q′;
endif;

endwhile;
return(Q);

end γ_QIS
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Obviously, γ_QIS always returns a solution, if S is set to some γ -quasi-independent
set (any independent set in G, for instance the empty set, would do).

As it has already been mentioned, the non-hereditary character of γ -MAX QUASI-
INDEPENDENT SET is reflected to the algorithm by the fact that some Q′ produced
during the execution of the algorithm may be infeasible while after some later vertex-
insertions it may become feasible. This non-hereditary character of the problem is a
major difficulty for a more refined analysis of algorithm γ_QIS. The following lemma
gives a lower bound on the size of the solutions returned by this algorithm.

Lemma 5 Let q be the size of the γ -quasi-independent set returned by the algorithm,
where S has been initialized to some independent vertex set. It holds that q > α−1√

1−γ

where α is the size of Q during the last step of the algorithm’s execution before the
first edges insertion.

Proof Let |E[Q]| be the number of edges in the solution Q. Denote by Qi the state
of Q at the moment vi has been inserted in Q. By the definition of algorithm γ_QIS,
if S is initialized to an independent set, the first α vertices inserted into the solution
form a maximal independent set. Then q = α + κ , for some κ, 0 ≤ κ ≤ n − α, i.e.,
after the insertion into the solution of the first α vertices which are independent of
each other, v1, . . . , vκ have been inserted. Let δQi

(vi) be the degree of vi to Qi . Then,
|E[Q]| = ∑κ

i=1 δQi
(vi).

Notice that δQ1(v1) ≤ α and ∀i,2 ≤ i ≤ κ, δQi
(vi) ≤ α + i − 1; hence, it holds

that |E[Q]| ≤ ∑κ
i=1[α + (i − 1)] = κα + κ(κ−1)

2 .
Assume, w.l.o.g., that the solution computed is not the whole graph (in which case

it is trivially optimal). Then, by the definition of the algorithm γ_QIS, for any other
candidate solution Q′ containing Q and having size α + κ + l for some l ≥ 1, we
have:

γ
(α + κ + l)(α + κ + l − 1)

2
< |E[Q′]| =

κ+l∑

i=1

δQi
(vi)

≤
κ+l∑

i=1

[α + (i − 1)] = (κ + l)α + (κ + l)(κ + l − 1)

2

⇒ γ
(α − 1 + κ + l)(α + κ + l)

2
< (κ + l)α + (κ + l)(κ + l − 1)

2
(4)

Setting a = α − 1, k = κ + l, inequality (4) is written:

γ (a + k)(a + k + 1) < 2k(a + 1) + k(k − 1)

⇔ (1 − γ )k2 + [2(1 − γ )a + 1 − γ ]k − γ a(a + 1) > 0

⇔ (1 − γ )k2 + (1 − γ )(2a + 1)k − γ a(a + 1) > 0 (5)
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Solving inequality (5) with respect to k, we get, after some easy algebra:

k > −a − 1

2
+

√
(1 − γ )2(2a + 1)2 + 4(1 − γ )γ a(a + 1)

2(1 − γ )

= −a − 1

2
+

√
4a2 + 4a + 1 − γ

2
√

1 − γ

> −a − 1

2
+

√
4a2 + 4a

√
1 − γ + 1 − γ

2
√

1 − γ

= −a − 1

2
+ (2a + √

1 − γ )

2
√

1 − γ
= −a + a√

1 − γ
(6)

Righthand-side inequality in (6) yields finally

κ + l + α > α − (α − 1) + α − 1√
1 − γ

⇔ q = κ + α > 1 − l + α − 1√
1 − γ

(7)

with the last inequality in (7) holding also for l = 1; hence, q > α−1√
1−γ

⇒ q ≥
� α−1√

1−γ
�, that completes the proof. �

Combining Lemma 5 and item (1) of Lemma 2, we finally get:

Theorem 7 For the γ -MAX QUASI-INDEPENDENT SET problem it is possible to
find in polynomial time a solution of size q achieving approximation ratio q∗

q
≤

(�+1)αmin
α−1

√
1 − γ where q∗ is the size of an optimal quasi-independent set and αmin

the size of a minimum independent dominating set of the input graph. This ratio tends
to (� + 1)

√
1 − γ .

5.1.3 Moderately exponential approximation for γ -QUASI-INDEPENDENT SET

We complete the approximation section for γ -MAX QUASI-INDEPENDENT SET by
showing how it can be approximated within any constant ratio by exponential algo-
rithms with running time better than that of an exact computation.

Theorem 8 For any k ≥ 1, it is possible to compute a γ -quasi-independent set of
size at least 1/k of the optimal, within time O∗(2(log2(k+1)−k/(k+1) log2 k)n).

Proof We enumerate every subset of size at most n/(k + 1) or at least kn/(k + 1),
within time:

∑

i≤n/(k+1)

[(
n

i

)

+
(

n

n − i

)]

≤ n

(
n

n/(k + 1)

)

≤ n2 nn

(
kn

k+1

)kn/(k+1)( n
k+1

)n/(k+1)

≤ n2
(

k + 1

kk/(k+1)

)n
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We return the minimal one which is a γ -quasi-independent set. If for the size of the
optimal q∗ it holds that q∗ ≥ kn/(k+1) or q∗ ≤ n/(k+1), we come with the optimal.
Otherwise, by Lemma 1, we find a quasi-independent set Q of size q ≥ n/(k + 1),
that means q∗

q
≤ kn/(k+1)

n/(k+1)
≤ k, and the proof is completed. �

The following result exhibits a further link between γ -QUASI-INDEPENDENT SET

and MAX INDEPENDENT SET.

Theorem 9 Given some algorithm that computes an exact solution for MAX INDE-
PENDENT SET on G within time O∗(cn), for some constant c, a γ -quasi-independent
set of size at least 1 + γ n/2 can be computed within time O∗(cn).

Proof Suppose, w.l.o.g., that γ /2 < 1, (otherwise the optimal is trivial). Consider an
optimal γ -quasi-independent set Q∗ of size q∗. We denote by α∗(G) the size of a
maximum independent set in G. Applying Turán’s Theorem (see, for example Berge
1973) to G[Q∗], we get:

α∗(G[Q∗]) ≥ (q∗)2

|E[Q∗]| + q∗ ≥ q∗

γ (q∗ − 1)/2 + 1
≥ 2

γ + (2 − γ )/q∗ (8)

Hence, by (8), using the optimal solution returned by the algorithm as a γ -quasi-
independent set, guarantees the ratio q∗

α∗(G)
≤ q∗

α∗(G[Q∗]) ≤ γ q∗+2−γ
2 ≤ γ n

2 + 1, that
completes the proof. �

5.2 Approximation of k-MAX QUASI-INDEPENDENT SET

In this section we deal with polynomial approximation of k-QUASI-INDEPENDENT

SET. We propose a greedy algorithm for that purpose, based upon the same idea as
γ _QIS presented above; however, k-MAX QUASI-INDEPENDENT SET being a hered-
itary problem, the algorithm stops as soon as it finds the first vertex whose insertion
violates the condition on the number of edges allowed in the solution.

Procedure k_QIS(G(V,E): Graph, k: integer≥ 0, S: some independent set)
Q ← S;
while (|E(Q)| ≤ k)

pick v ∈ V \ Q such that δQ(v) = min (break ties arbitrarily)
Q ← Q ∪ {v};

endwhile
return(Q \ {v});

end k_QIS

In what follows, for a vertex set S, we define θ(S) = maxv∈V \S{δS(v)}.

Theorem 10 For the k-MAX QUASI-INDEPENDENT SET problem it is possible to
find in polynomial time a solution of size q achieving approximation ratio:

q∗

q
≤ α∗θ(S) + kθ(Q)

αθ(Q) + k
≤ max

{
α∗

α
, θ(Q)

}
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where q∗ is the size of the optimal, α∗ is the size of a maximum independent set in G

and α the size of some independent set.

Proof Let Q be the solution computed by the algorithm; as in the proof of Lemma 5,
we note by q its size, and write q = α + x, with α the size of Q at the last step before
the first edge insertions performed by the algorithm; we can suppose, w.l.o.g., that
this set is already computed before starting the algorithm. Clearly, for each of the
remaining x vertices, at most θ(S) edges are inserted into the quasi-independent set;
thus, with Qi be the solution after the i-th from the x vertices insertions that brought
some edges in, we have:

k =
x∑

i=1

δQi
(vi) ≤ θ(S)x ⇒ k ≤ θ(S)(q − α) ⇔ q ≥ k

θ(S)
+ α (9)

Let Q∗ be an optimal solution with |Q∗| = q∗ and consider the graph G[Q∗] =
(Q∗,E′). Obviously, |E′| ≤ k. The set Q∗ can be seen as the union of two sets S∗
and T , where S∗ is a maximum independent set of G[Q∗] and T = Q∗ \ S∗. On
the other hand, E′ is the union of the set E′

T of edges within the set T and of the
set E′

S∗,T of edges between S∗ and T . Obviously, |E′
S∗,T | ≤ k. Moreover, since the

graph (Q∗,E′
S∗,T ) is bipartite and connected (the set S∗ is maximal for inclusion

in both G[Q∗] and (Q∗,E′
S∗,T )), the fact that |E′

S∗,T | ≤ k implies |T | ≤ k. So, q∗ ≤
|S∗|+k ≤ α∗ +k, where α∗ is the size of a maximum independent set in the graph G.
Combining this bound with (9), we finally get the result. �

Recall that the best approximation ratio (as function of �) known for MAX INDE-
PENDENT SET is (� + 2)/3 and is guaranteed by the natural greedy MAX INDEPEN-
DENT SET-algorithm (Halldórsson and Radhakrishnan 1994).

Suppose first that θ(Q) ≥ 3. Then, by item (2) of Lemma 2, the approximation
ratio of algorithm k_QIS is bounded from above by �/3. Assume now that θ(Q) ≤ 3.
Then, by Theorem 10, the approximation ratio of the algorithm is bounded above by
max{α∗

α
,6} ≤ α∗

α
≤ �+2

3 , and the following holds.

Corollary 2 k-MAX QUASI-INDEPENDENT SET is approximable in polynomial time
within ratio (� + 2)/3.

6 Some experimental results

6.1 Algorithm γ _QIS

Algorithm γ _QIS, presented in Sect. 5.1.2 has been run on 20 randomly generated
graphs of each size (10, 20 and 30 vertices; edges in an instance have been generated
with a probability p, 0.1 < p < 0.5). Optimal solutions have been computed with
the exact method of Sect. 4. Table 1 gives a summary of the experimental results
obtained. It contains for every value of γ , the worst, best and average ratios and the
percentage of optima returned by the algorithm.

One may remark that the more the density of the sought subgraph comes close to
the density of the instance, the best the quality of the returned solution is.
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Table 1 Experimental performance of algorithm γ_QIS

γ Worst ratio Best ratio Average ratio % optimal solutions

0.2d(G) 0.667 1 0.947 66.667%

0.4d(G) 0.7 1 0.969 75%

0.6d(G) 0.75 1 0.983 83.333%

0.8d(G) 0.905 1 0.996 93.333%

1/n 0.667 1 0.96 75%

1/
√

n 0.778 1 0.98 85%

log(n)/n 0.778 1 0.973 76.667%

Table 2 Experimental performance of algorithm k_QIS

k Worst ratio Best ratio Average ratio % optimal solutions

2
√

m 0.93 1 0.99 90%√
n 0.83 1 0.98 80%

log(m) 0.83 1 0.98 80%

log(n) 0.83 1 0.97 75%

m/2 0.96 1 0.99 92.5%

m/3 0.96 1 0.99 95%

n/2 0.90 1 0.99 90%

n/3 0.90 1 0.99 87.5%

6.2 Algorithm k_QIS

Another set of tests have been implemented in order to experimentally observe the
behavior of performance of algorithm k_QIS (devised in Sect. 5.2) for several values
of k. As for the case of γ -MAX QUASI-INDEPENDENT SET, we have used the exact
method of Sect. 4 to compute optimal solutions of the test instances. Instances have
been generated randomly, following a probability p, 0.1 < p < 0.5, for an edge to be
present in the instance graph.

The tests indicate that the algorithm performs fairly well in small instances.
A summary of the obtained results is given in Table 2.

7 Conclusions

In this paper, we have presented the quasi-independent set problem that consists
of searching in a graph for a maximum size subgraph that satisfies a suitably de-
fined sparsity condition; according to the definition of the latter, this problem is for-
malized as the f -MAX QUASI-INDEPENDENT SET problem, or the γ -MAX QUASI-
INDEPENDENT SET, or finally k-MAX QUASI-INDEPENDENT SET problem. An ex-
act method for computing an optimal f -MAX QUASI-INDEPENDENT SET-solution

within time O∗(2
d−27/23

d+1 n) in graphs of average degree bounded above by d has
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been designed, together with polynomial algorithms for finding approximate γ -MAX

QUASI-INDEPENDENT SET- and k-MAX QUASI-INDEPENDENT SET-solutions, re-
spectively. It has been shown that MAX QUASI-INDEPENDENT SET is polynomial
in split graphs, while it is NP-hard in bipartite graphs. Determining its complexity
in other graph-classes, mainly those where MAX INDEPENDENT SET is polynomial,
is an interesting matter of ongoing research. The experimental results obtained sug-
gest that the greedy algorithms for γ -MAX QUASI-INDEPENDENT SET and k-MAX

QUASI-INDEPENDENT SET perform better than it can be shown by their theoreti-
cal analysis. However, we believe that in order to refine them, one has to develop
non-combinatorial arguments; such a task is another promising perspective for future
work.

Finally, other ideas of generalizing the approach of the greedy algorithms for
γ -MAX QUASI-INDEPENDENT SET and k-MAX QUASI-INDEPENDENT SET could be
tested. Indeed, these algorithms are based upon the fact that the (current) solution
Q can be merged with another (in our case, a selected single vertex v) to form a
new, larger one. As subtle point in algorithm γ _QIS is that it allows for “tempo-
rary” violations of the sparsity measure Q, if they can be repaired after a number of
greedy vertex insertions. However, this is rarely the case: although it is possible to
find such instances, none has been generated in experimental tests. A more general
algorithm could be based on merging of a current solution Q with another, disjoint
one Q′.
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