
J Comb Optim (2011) 22:873–881
DOI 10.1007/s10878-010-9335-5

A modified power spectral density test applied
to weighing matrices with small weight

Ilias S. Kotsireas · Christos Koukouvinos ·
Panos M. Pardalos

Published online: 17 June 2010
© Springer Science+Business Media, LLC 2010

Abstract The power spectral density test has been used for at least a decade in the
search for many kinds of combinatorial matrices, such as weighing matrices for in-
stance. In this paper we establish a modified power spectral density test that we
apply to the search for weighing matrices of small weights constructed from two
circulants. The main novelty of our approach is to define the Discrete Fourier Trans-
form on the support of the first rows of the two circulants, thus exploiting the in-
herent sparsity of the problem. This new formalism turns out to be very efficient for
small weights 9,18,36 and we find 10 new weighing matrices W(2 ·p,18) for prime
p ∈ {37,47,53,59,61,67,73,79,83,97}. These matrices are given here for the first
time. We also discuss briefly a connection with Combinatorial Optimization.

Keywords Weighing matrices · Algorithm · Sparsity · Support

1 Introduction

A weighing matrix W = W(n,w) is a square n × n matrix with entries 0,±1 hav-
ing w non-zero entries per row and column and inner product of distinct rows equal
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to zero. Therefore, W satisfies WWt = wIn. The number w is called the weight
of W . Weighing matrices have been studied extensively, see (Koukouvinos and Se-
berry 1999) and references therein.

There are numerous applications of weighing matrices in Statistics, Coding The-
ory and elsewhere, see (Koukouvinos and Seberry 1997) for more details.

A well-known necessary condition for the existence of W(2 ·n,w) matrices states
that if there exists a W(2 · n,w) matrix with n odd, then w < 2n and w is the sum of
two squares, see (Koukouvinos and Seberry 1999). The two circulants construction
for weighing matrices is described in the theorem below, taken from (Geramita and
Seberry 1979).

Theorem 1 If there exist two circulant matrices A, B of order n, with 0, ±1 elements,
satisfying AAt + BBt = wIn, then there exists a W(2 · n,w), given as

W(2 · n,w) =
(

A B

−Bt At

)
or W(2 · n,w) =

(
A BR

−BR A

)

where R is the square matrix of order n with rij = 1 if i + j − 1 = n and 0 otherwise.

Definition 1 The periodic autocorrelation function, PAF, of a sequence [a1, . . . , an]
of length n is defined as

PAFA(i) =
n∑

k=1

akak+i , i = 0, . . . , n − 1,

where k + i is taken modulo n, when k + i > n.

It is well-known, see (Koukouvinos and Seberry 1999), that W(2 · n,w) weighing
matrices constructed from two circulants come from sequences with PAF equal to 0,
i.e.

PAFA(i) + PAFB(i) = 0, i = 1, . . . , n − 1. (1)

In this paper we use property (1) to search for such weighing matrices, typically with
w = 18, even though our algorithm can be used efficiently with other small weights
as well.

We now define some notations that we use in the rest of this paper to specify
the first rows of two circulant matrices A and B that make up a weighing matrix
W(2 · n,w) constructed from two circulants, as per Theorem 1.

Definition 2 The following four sets are associated with a weighing matrix
W(2 · n,w) constructed from two circulants A, B:

posA = the list of locations of +1’s in the first row of A,

negA = the list of locations of −1’s in the first row of A,

posB = the list of locations of +1’s in the first row of B,

negB = the list of locations of −1’s in the first row of B.
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We also denote by pA, nA, pB , nB the cardinalities of the sets posA, negA, posB,
negB respectively.

Definition 3 The support of a weighing matrix W(2 · n,w) constructed from two
circulants A, B is the multiset:

SW(2·n,w) = posA ∪ negA ∪ posB ∪ negB.

Clearly, we have that |SW(2·n,w)| = w and we denote the elements of the support
(possibly with repetitions) by si :

SW(2·n,w) = {s1, . . . , sw}.

2 Two infinite classes of weighing matrices constructed from two circulants

We now describe some infinite classes of weighing matrices constructed from two
circulants, given in (Koukouvinos and Seberry 1999).

Lemma 1 If there exists a weighing matrix W(2 · n,w) constructed from two circu-
lants, then there exist:

• a weighing matrix W(2 · pn,w) constructed from two circulants, for every integer
p > 1,

• a weighing matrix W(2 ·pn,2w) constructed from two circulants, for every integer
p > 1.

Proof The proof of the first assertion in Lemma 1 is as follows: Let {x1, . . . , xn}
and {y1, . . . , yn} be the two first rows of the circulants that make up a W(2 · n,w).
Let 0p−1 denote the sequence of p − 1 zero elements. Then the sequences
{x1,0p−1, x2,0p−1, . . . , xn,0p−1} and {y1,0p−1, y2,0p−1, . . . , yn,0p−1} can be
used as the first rows of circulants that make up a W(2 · pn,w), for every integer
p > 1.

The proof of the second assertion is similar, see (Koukouvinos and Seberry
1999). �

Example 1 Consider a weighing matrix W(2 · 5,9) given by the first rows of the two
circulants as:

A = [−1,1,1,1,1], B = [1,1,−1,0,−1].
Then the sequences

C = [−1,0p−1,1,0p−1,1,0p−1,1,0p−1,1,0p−1],
D = [1,0p−1,1,0p−1,−1,0p−1,0,0p−1,−1,0p−1]

can be used as the first rows of circulants that make up a W(10 · p,9), for every
integer p > 1.
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In terms of the supports we have:

posA := [2,3,4,5],
negA := [1],
posB := [1,2],
negB := [3,5],
SW(2·5,9) := {1,1,2,2,3,3,4,5,5},

posC := [p + 1,2p + 1,3p + 1,4p + 1],
negC := [1],
posD := [1,p + 1],
negD := [2p + 1,4p + 1],
SW(10·p,9) := {1,1,p + 1,p + 1,2p + 1,2p + 1,3p + 1,4p + 1,4p + 1}.

Coming back to the proof of the first assertion in Lemma 1, we see that in general
the supports of W(2 · n,w) and W(2 · pn,w) are related by:

SW(2·n,w) = {s1, . . . , sw}, SW(2·pn,w) = {t1, . . . , tw},
ti = (si − 1)p + 1, for i = 1, . . . ,w. (2)

Remark 1 Another interpretation of the infinite class presented in Lemma 1 is that
one blows up the support of a W(2 ·n,w) into the support of a W(2 ·pn,w), for every
integer p > 1, exclusively using numbers that are ≡ 1 (modp) and more precisely as
specified in (2).

3 Description of the algorithm

The Discrete Fourier Transform (DFT) and the Power Spectral Density (PSD) crite-
rion have been traditionally used to devise algorithms to search for weighing matrices
and other similar combinatorial matrices. The main computational advantage of these
two concepts lies in the fact that they are used to decouple equations (1), so that the
algorithm operates on the candidate sequences for the first rows of the circulant ma-
trices A and B separately. Typically, sequences that have a value of an element of the
PSD vector > w, can safely be discarded from the search.

The main computational overhead of DFT/PSD-based algorithms to search for
weighing matrices constructed from two circulants is the computation of the DFT
and the PSD of candidate sequences. Even though the DFT/PSD computation is per-
formed incrementally, it is still a highly laborious computation, especially for large
values of n and small values of the weight. In this case, the sequences A and B , i.e.
the first rows of the two circulants, exhibit significant sparsity and so it would be
desirable to formulate the concepts of DFT/PSD not on the entire sequences, but on
the support of the two sequences, as per Definition 3. This would result in a drastic
reduction of the number of operations it takes to compute the DFT.
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3.1 A motivating example: weight 9

We present a generic motivating example, based on weighing matrices W(2 · n,9) of
weight 9, constructed from two circulants. Let

ω = cos

(
2π

n

)
+ I sin

(
2π

n

)
.

It can easily be seen (using the definition of the DFT) that the exponents of the powers
of ω in DFTA(1), DFTB(1) are specified by the locations of elements in the support,
i.e. we have:

DFTA(1) =
pA∑
i=1

ω(posA[i]−1) −
nA∑
i=1

ω(negA[i]−1), (3)

DFTB(1) =
pB∑
i=1

ω(posB[i]−1) −
nB∑
i=1

ω(negB[i]−1). (4)

Further, suppose that there exists a positive integer m, which is a (the smallest) com-
mon solution (modn) of the following system of w linear congruences (build on the
support):

x1(s1 − 1) ≡ 0 (modn),

...

xw(sw − 1) ≡ 0 (modn).

Note that there may actually be less than w different congruences, in case there are
repeated elements in the support.

Also note that if 1 ∈ SW(2·n,w) then the corresponding congruence can be omitted
from the system, since it is trivially satisfied.

Further, when the value of m is known, it is easy to see that

DFTA(m) = |posA| − |negA|,
DFTB(m) = |posB| − |negB|

and therefore

PSD(A,m) + PSD(B,m) = (|posA| − |negA|)2 + (|posB| − |negB|)2 = w

as one would expect.
Moreover, for every integer multiple of m, i.e. km with k > 1, which is smaller

than n we will also have

DFTA(km) = |posA| − |negA|,
DFTB(km) = |posB| − |negB|,
PSD(A, km) + PSD(B, km) = w
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which implies that the existence of m establishes a certain periodicity w.r.t. the values
of the DFT vector. More specifically, it suffices to compute the first m − 1 values of
the DFT vectors

DFTA(1), . . . ,DFTA(m − 1) and DFTB(1), . . . ,DFTB(m − 1),

since the remaining values will be repeated, with period m.

Example 2 We illustrate with a specific example of a W(2 · 350,9) taken from (Kot-
sireas et al. 2010a).

n := 350,

w := 9,

posA := [15,99,169,197],
negA := [1],
posB := [1,15],
negB := [43,85],
SW(2·350,9) := {1,1,15,15,43,85,99,169,197},

ω = cos

(
2π

350

)
+ I sin

(
2π

350

)
,

DFTA(1) = ω196 + ω168 + ω98 + ω14 − 1,

DFTB(1) = −ω84 − ω42 + ω14 + 1.

It turns out that the smallest common solution of the system of 6 linear congruences
build on the support SW(2·350,9)

14x1 ≡ 0 (mod 350),

42x2 ≡ 0 (mod 350),

84x3 ≡ 0 (mod 350),

98x4 ≡ 0 (mod 350),

168x5 ≡ 0 (mod 350),

196x6 ≡ 0 (mod 350),

is m = 25, which implies that

DFTA(25) = |posA| − |negA| = 4 − 1 = 3,

DFTB(25) = |posB| − |negB| = 2 − 2 = 0

and therefore

PSD(A,25) + PSD(B,25) = 32 + 02 = 9.
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We also have that

DFTA(25) = DFTA(50) = DFTA(75) = DFTA(100) = · · · = DFTA(350) = 3,

DFTB(25) = DFTB(50) = DFTB(75) = DFTB(100) = · · · = DFTB(350) = 0.

3.2 Algorithm

We describe the algorithm that incorporates the idea of defining the DFT on the
support of the first rows of the two circulants that make up the weighing matrix
W(2 · n,w) as per Theorem 1. In this context, a structural pattern (k1, k2) is a state-
ment of the form: there are k1 non-zero elements in the first row of A and k2 non-zero
elements in the first row of B . Clearly, we must have k1 + k2 = w.

This is a DFT/PSD & string sorting type of algorithm, see (Kotsireas et al. 2009,
2010a).
INPUT: integers n (order) and w (weight), such that the Diophantine equation x2 +
y2 = w is solvable
OUTPUT: two {0,±1} sequences a = [a1, . . . , an] and b = [b1, . . . , bn] of length
n each, described by their supports, that can be used as the first rows of circulant
matrices to construct a weighing matrix W(2 · n,w).

(1) Choose a structural pattern (k1, k2) for the distribution of the w non-zero el-
ements in the two sequences [a1, . . . , an] and [b1, . . . , bn]. If w is even, then a fre-
quently used structural pattern is (w

2 , w
2 ). If w is odd, then a frequently used structural

pattern is (w−1
2 , w+1

2 ).
(2) Generate the

(
n
k1

)
possible supports for posA ∪ negA (that pass the PSD test)

and their corresponding (see Kotsireas et al. 2009 for details) string encodings, using
the generalizations of formula (3):

DFTA(j) =
pA∑
i=1

ω(posA[i]−1)j modn −
nA∑
i=1

ω(negA[i]−1)j modn, j = 1, . . . , n − 1. (5)

(3) Generate the
(

n
k2

)
possible supports for posB ∪ negB (that pass the PSD test)

and their corresponding (see Kotsireas et al. 2009 for details) string encodings, using
the generalizations of formula (4):

DFTB(j) =
pB∑
i=1

ω(posB[i]−1)j modn −
nB∑
i=1

ω(negB[i]−1)j modn, j = 1, . . . , n − 1. (6)

(4) If any common strings (see Kotsireas et al. 2010a for details) are detected, then
return the corresponding support SW(2·n,w) = posA ∪ negA ∪ posB ∪ negB.

3.3 Practical considerations

Steps (2) and (3) of the algorithm can be prohibitively computationally expensive
when n is large. We take this opportunity to elaborate somewhat on some practical
considerations regarding our algorithm. What happens in practice is that only about
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1% of the entire space of combinations needs to be generated before a pair of match-
ing strings can be found. More specifically, steps (2) and (3) are independent and
are executed in parallel. Also, the combinatorial generation proceeds incrementally
and for each generated combination the corresponding string encoding is generated
immediately. In addition, step (4) is also independent of steps (2) and (3) and can be
executed periodically on the result files produced by steps (2) and (3). When a pair of
matching strings is found, the computationally expensive combinatorial generation
and string encoding generation of steps (2) and (3) is stopped.

Another important point to emphasize is that this algorithm works well for small
weights, e.g. w = 9, 18 for instance. The reason is that the idea of defining the DFT
on the support of the two sequences, carries an actual computational benefit only
when there are lots of zero elements in the two sequences, i.e. only when the weight
is small.

4 New results

In this section we mention a few results that we obtained using the ideas and the
algorithm in the previous sections. In particular we were able to compute 10 new
weighing matrices

W(2 · p,18) for prime p ∈ {37,47,53,59,61,67,73,79,83,97}
which are (computationally) way beyond the reach of almost any currently known
algorithm:

posA negA posB negB

W(2 · 37,18) [19,24,28,29,30,37] [18,21,33] [18,24,27,31,32,34] [19,25,37]
W(2 · 47,18) [21,22,28,32,34,44] [20,38,41] [20,22,33,34,39,42] [21,44,45]
W(2 · 53,18) [26,35,36,40,51,53] [25,34,44] [29,30,34,37,38,41] [25,27,33]
W(2 · 59,18) [24,25,43,45,51,58] [27,30,32] [25,28,39,41,56,57] [24,55,59]
W(2 · 61,18) [24,25,34,40,45,47] [38,46,50] [24,25,36,37,46,60] [45,47,48]
W(2 · 67,18) [24,25,28,38,47,53] [34,46,67] [25,43,45,46,51,65] [24,31,48]
W(2 · 73,18) [25,47,48,49,52,73] [24,27,43] [25,31,40,43,63,70] [24,28,66]
W(2 · 79,18) [24,36,38,43,46,52] [26,30,57] [26,36,38,49,55,75] [24,45,78]
W(2 · 83,18) [23,24,26,44,51,56] [31,69,77] [24,38,39,51,64,79] [23,36,52]
W(2 · 97,18) [23,47,56,60,73,90] [26,36,64] [26,37,45,48,51,53] [23,43,64]

Note that using Lemma 1 and our results, we obtain the following 20 infinite classes:

Proposition 1 For every integer N > 1 and every prime p ∈ {37,47,53,59,61,67,

73,79,83,97},
• There exists a weighing matrix W(2 · Np,18) constructed from two circulants,
• There exists a weighing matrix W(2 · Np,36) constructed from two circulants.

5 The connection with Combinatorial Optimization

The problem of searching for weighing matrices constructed from two circulant sub-
matrices can be phrased as a Combinatorial Optimization problem on ternary vari-
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ables. We note that in (Kotsireas et al. 2010b) we gave a Combinatorial Optimization
formalism for the periodic complementary binary sequences problem and used it to
solve all remaining open cases regarding periodic complementary binary sequences
in the Bömer and Antweiler diagram. We now describe how our formalism from
(Kotsireas et al. 2010b) readily extends to the case of weighing matrices constructed
from two circulant submatrices. Let m = [n

2 ], where [x] denotes the integer part of x.

Problem 1 Suppose that we are looking for two {−1,0,+1} sequences A and B of
lengths n, such that

PAFA(i) + PAFB(i) = 0, i = 1, . . . ,m.

Using Lemma 2 of (Kotsireas et al. 2010b) we can reformulate this problem as fol-
lows:

Problem 2 Find two ternary sequences a, b, (viewed as n × 1 column vectors) such
that

aT Mia + bT Mib = 0, i = 1, . . . ,m.

where a = [a1, . . . , an] and b = [b1, . . . , bn] and ai, bi ∈ {−1,0,+1}.

The matrices M1, . . . ,Mm are symmetric and are defined in (Kotsireas et al.
2010b). They basically correspond to the matrices associated to the periodic auto-
correlation function elements viewed as quadratic forms.

Evidently, Problem 1 is simply property (1) and its equivalent reformulation as
Problem 2 allows one to employ Combinatorial Optimization methods to solve it.
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