J Comb Optim (2012) 24:52-64
DOI 10.1007/s10878-010-9318-6

Online maximum directed cut

Amotz Bar-Noy - Michael Lampis

Published online: 2 April 2010
© Springer Science+Business Media, LLC 2010

Abstract We investigate a natural online version of the well-known MAXIMUM D1-
RECTED CUT problem on DAGs. We propose a deterministic algorithm and show

that it achieves a competitive ratio of # ~ 2.5981. We then give a lower bound

argument to show that no deterministic algorithm can achieve a ratio of ¥ — € for
any € > 0 thus showing that our algorithm is essentially optimal. Then, we extend
our technique to improve upon the analysis of an old result: we show that greedily
derandomizing the trivial randomized algorithm for MAXDICUT in general graphs
improves the competitive ratio from 4 to 3, and also provide a tight example.

Keywords MAXDICUT - Online algorithms - DAG

1 Introduction

The MAXIMUM CUT and MAXIMUM DIRECTED CUT problems are among the most
famous and widely studied problems in computer science and during the past few
decades countless papers have been devoted to them. Their objective is to partition
the vertices of an edge-weighted graph so that the weight of the edges going from
one side of the partition to the other is maximized. Both problems have attracted
considerable interest from the research community both because of their theoretical
importance but also because of their numerous applications in fields such as network
design, VLSI design and statistical physics (see for example Poljak and Tuza 1995).

A. Bar-Noy - M. Lampis ()

Doctoral Program in Computer Science, Graduate Center, City University of New York,
365 5th Avenue, New York, NY 10016, USA

e-mail: mlampis @gc.cuny.edu

A. Bar-Noy
e-mail: amotz@sci.brooklyn.cuny.edu

@ Springer

mailto:mlampis@gc.cuny.edu
mailto:amotz@sci.brooklyn.cuny.edu

J Comb Optim (2012) 24:52-64 53

MAXIMUM CUT was one of the 21 original problems shown to be NP-complete
in Karp’s seminal paper (Karp 1972). Since then, many results have appeared in the
literature dealing with restrictions of the problem; for example in Papadimitriou and
Yannakakis (1991) it is shown that the problem remains NP-hard for graphs of max-
imum degree 3, while in Hadlock (1975) it is shown that it is solvable in polynomial
time for planar graphs. The approximability of both problems has also been well-
studied. It has long been known that MAXCUT and MAXDICUT can be approximated
within factors of 2 and 4 respectively with a trivial randomized algorithm which ran-
domly places each vertex on either side of the partition with equal probability (see e.g.
Alon and Spencer 2004). The celebrated paper of Goemans and Williamson (1995)
achieves an approximation ratio of 1.1383 for MAXCUT using semi-definite pro-
gramming and improving on its results a ratio of 1.165 is achieved for MAXDI1CUT
in Feige and Goemans (1995). The ratio for MAXCUT is shown to be best possible
under the Unique Games Conjecture in Khot et al. (2004). In addition to these results,
several other results using combinatorial algorithms are known for special cases of
MAXCUT (see for example Bazgan and Tuza 2008).

MAXDICUT is the less studied of the two problems, especially from the point
of view of combinatorial algorithms. One exception is the paper by Halperin and
Zwick (2001) which takes a combinatorial approach to the problem and gives a 2-
approximation algorithm via a reduction to matching and a 2.22-approximation algo-
rithm which runs in linear time. Few other combinatorial results are known for this
problem. In fact, the restriction of MAXDICUT to DAGs was only recently shown to
be NP and APX-hard in Lampis et al. (2008).

To the best of our knowledge, neither problem has been studied before in an online
setting and the only algorithms applicable in this case are the folklore trivial random-
ized algorithms. In this paper we propose the study of MAXDICUT as an online
problem motivated by several reasons: first is the general observation that studying a
problem in an online setting can often lead us to discover some unknown combinato-
rial structure which we can then exploit, either in an online or an offline setting. This
is especially true in the case of MAXDICUT since the vast majority of known results
rely on complex tools such as semi-definite programming, while ignoring the more
combinatorial aspect of the problem.

Our main motivation though is that, for MAXDICUT in particular, a very natural
class of greedy heuristics is very likely to be used in practice: algorithms which make
a single pass over the input and decide on which side of the partition to place each
vertex relying on information from previous vertices and local considerations, such
as the total weight of incoming and outgoing edges. Thus, analyzing the performance
of such greedy heuristics is an interesting problem and one of our main aims in this
paper. Posing this as an online problem in an appropriate model will also allow us to
argue about lower bounds which apply to this class of algorithms.

It should be clarified at this point what we mean by an online setting, since one
could potentially define countless online variations of MAXDICUT. The model we
propose is one where the vertices are revealed one by one. Along with each vertex, all
edges incident to it whose other endpoint has already been revealed are also revealed.
This description is very natural. However, if this is all the information the adversary
has to reveal, it is easy to force any deterministic algorithm to have unbounded com-
petitive ratio thus making the problem uninteresting (more on this in Sect. 2). Also,

@ Springer

54 J Comb Optim (2012) 24:52-64

any reasonable (offline) greedy heuristic for the problem would take other informa-
tion into account as well, such as the total degree of the vertex, so this online setting
does not allow us to use the offline heuristics for which we want to prove upper and
lower bounds. This is why we add an extra restriction: we force the adversary to re-
veal along with each vertex the fotal weight of its incoming and its outgoing edges.
We believe that this model strikes a good balance: it only gives the algorithm a little
information about the future, just enough to make the problem reasonable. It also fits
well with our motivation from greedy single-pass algorithms, since in such cases one
would likely make decisions based on past decisions and local information, such as
the degree of a vertex.

Furthermore, motivated by the result of Lampis et al. (2008) mentioned above, we
investigate the problem restricted to DAGs. The problem’s own structure leads us to
impose one further restriction on the adversary: we require the vertices to be revealed
in an order consistent with the partial ordering implied by the DAG itself. This can be
an interresting restriction consistent with our above motivation since this is probably
the most natural order in which a single-pass greedy algorithm would examine the
vertices of the DAG.

Our main results regarding the problem on DAGs are an algorithm with competi-
33 o

tive ratio 2.5981 and an essentially matching lower bound, which also applies

in the case of general graphs. Thus, it follows from our results that % is the best
ratio achievable for this problem. What is also interesting is that the intuition gained
from our analysis on DAGs is then applied in the general case of the problem to give a
deterministic 3-competitive algorithm. In fact, this can be interpreted as an improve-
ment in the analysis of an old result: our algorithm can be seen as a derandomization
of the trivial randomized algorithm and we show that this derandomization improves
the competitive ratio from 4 to 3. To the best of our knowledge, this result was not
known before, even concerning the analysis of this derandomized algorithm in the
offline case (for example in Goemans and Williamson 1995 it is mentioned that the
best previously known algorithm for MAXDICUT has a ratio of 4), and it is interest-
ing to consider its contrast with the undirected case where derandomizing the trivial
algorithm does not improve its guarantee.

The rest of this paper is structured as follows: in Sect. 2 we give the precise de-
finition of the problem and the online setting we will consider. In Sect. 3 we give
the online algorithm for DAGs, while in Sect. 4 we give the lower bound. In Sect. 5
we give the 3-competitive algorithm for general graphs and finally in Sect. 6 we give
some discussion and directions to further work.

2 Definitions and preliminaries

In the remainder we consider only directed graphs, so we will use the terms graph
and digraph interchangeably. Let us give the definition of MAXDICUT.

Definition 1 Given a digraph G(V, E) and a weight function on the edges w : E —
N, MAXDICUT is the problem of finding a partition of V into two sets Vj and V; so
that the weight of the edge set C = {(u, v) | u € Vp, v € V1} is maximized. That is,
the objective is to maximize), - w(e).

@ Springer

J Comb Optim (2012) 24:52-64 55

The restriction of the problem where all edges have the same weight is often called
cardinality or unweighted MAXDICUT. In this paper we focus on the weighted ver-
sion. Because we focus on the weighted problem when we refer to the in-degree
(resp. out-degree) of a vertex, we mean the total weight of its incoming (resp. outgo-
ing) edges. Also when we refer to the size of a cut, we mean the total weight of the
edges in the cut.

When a vertex u is placed in Vj (resp. V1) we will often say that O (resp. 1) was
assigned to u. We denote by wj, (1) the total weight of incoming edges at vertex u# and
by wout () the total weight of outgoing edges. By w& (u) (resp. wiln(u)) we denote the
incoming edges of u whose other endpoint has been assigned 0 (resp. 1). Similarly
for wQ,(u) and wl («). In a context where the solution produced by an algorithm
is compared with another (optimal) solution, when we use this notation we refer to
the algorithm’s choices, unless otherwise specified. That is, w&(u) means the total
weight of edges coming to u from vertices to which the algorithm assigned 0. Some
extra shorthand notation relevant in the case of our algorithm for general graphs is
defined in Sect. 5.

The online model

Definition 2 In the online MAXDICUT problem, an adversary chooses a graph
G(V, E) and an ordering of the vertices of V. Then, for each vertex u in this or-
der the adversary reveals to the algorithm wi, (#), wou(#) and the weights of edges
connecting u to previously revealed vertices. The algorithm then makes an irrevoca-
ble decision to assign 0 or 1 to u and the process continues, until all of G has been
revealed.

Perhaps the detail of this definition which needs justification is why we demand
that the adversary reveal the total in-degree and out-degree each vertex will have
in the final graph G, thus revealing some information about the future. Aside from
practical considerations (it could be argued that this is a more realistic model for
some applications) the main reason is that not revealing any such information makes
the problem impossible. Consider for example the setting where the adversary does
not reveal such information. So, when the first vertex is given the algorithm must
assign a value. If it picks O the adversary is free to claim later that this vertex is a sink
in G with many heavy edges going into it, which are lost from the solution. Similarly,
the adversary can respond to a 1 by revealing that the vertex is a source. This simple
trick would be enough to make the competitive ratio of any deterministic algorithm
tend to oco. That is why revealing wj, (1) and wo, (1) are necessary.

In the case of DAGs we restrict the setting a little bit more. Recall that the edges
of a DAG imply a partial ordering on its vertices. We demand that the adversary must
reveal the vertices of G in a way consistent with this partial ordering. This eliminates
the need to reveal wj, (1), since when this restriction is followed the tails of all edges
incoming to # must be revealed before u, therefore the algorithm already has enough
information to calculate wj, ().

The motivation behind this restriction is once again single-pass algorithms. In the
case of DAGs it is quite likely that one would scan through the graph in the order

@ Springer

56 J Comb Optim (2012) 24:52-64

Algorithm 1 Weighted comparison online algorithm

When a vertex u is revealed, compare woy () to cwion(u).

— If wout(u) > ¢ - w&(u) then assign O to u.
— Otherwise, assign 1 to u.

dictated by the directed edges. Moreover, this restriction seems natural and may be
interesting in its own right. Of course it should also be noted that, as our results point
out, this restriction does not have a huge impact on the problem since we show a
lower bound for this special case which is not very far from the competitiveness of
our algorithm even in the general case.

3 An online algorithm for MAXDICUT on DAGs

In this section we describe an algorithm for MAXDICUT on DAGs which can be
applied in the online setting described in Sect. 2. Recall once again that in our setting
the vertices are revealed one by one in the ordering implied by the DAG and we are
also informed of the out-degree of each vertex.

We present an algorithm (Algorithm 1) based on a weighted comparisons idea,
leaving a parameter ¢ > 1 to be fixed later to a value that will achieve the best com-

petitive ratio. After this optimization we will show a ratio of %3 < 2.5981.

It is not hard to understand the motivation behind this algorithm, if one considers
the naive greedy algorithm which at every vertex compares w?n(u), which is the pay-
off that would be obtained by assigning 1, with wqy (), which is the potential payoff
of assigning 0. An adversary could easily fool this naive algorithm into assigning
a long string of consecutive Os in a path, making its competitive ratio tend to co.
However, in the algorithm we propose, we only choose to assign 0 to a vertex when
tempted by a payoff much larger (c times larger) than what could be obtained by as-
signing 1. Even though the adversary can still fool the algorithm into assigning a long
string of consecutive Os, it will have to offer exponentially increasing edge weights
to do so. Eventually, a vertex will be encountered where the algorithm assigns 1, and
the profit obtained by doing so will (at least partially) outweigh the loss of edges that
occured up to that point.

Let us now provide a formal analysis of the algorithm’s performance to establish
its competitive ratio. Suppose we are given a graph G(V, E), and let (Vp, V1) be the
partition of V decided by the algorithm. Let E;; = {(u,v) € E | u € V;,v € V;}.
Thus, the cut produced by the algorithm has weight SOL =) . Eo W(O).

Consider the two subgraphs of G, Go(Vo, Eoo) and G{(V, Eg1 U E1o U Eq1). Let
OPT be the size of an optimal cut of G and OPTj (resp. OPT}) the size of an optimal
cut of G (resp. G1).

Lemma 1 OPT < OPT, + OPT].

We will compare SOL independently to OPTy and OPT). First, let us compare it
to OPT].

@ Springer

J Comb Optim (2012) 24:52-64 57

Lemma 2 ¢SOL > OPT;.

Proof Suppose that the vertices in V are numbered 1, ..., n, in the order in which
they were revealed. Starting with the optimal solution, we will gradually apply
changes to make it equal to the solution produced by the algorithm, at each step
“bribing” the optimal solution to change its assignment. In the end we will bound the
amount we used in bribing to prove the lemma.

Consider a sequence of cuts OPT’I‘ of the graph G| where 0 < k < n, n being the
number of vertices. OPT’{ is defined as the assignment that is identical to SOL for
vertices 1, ...,k and identical to OPT; for the remaining vertices. Thus, OPT(I) =
OPT| and OPT] = SOL.

,,,,,

.....

OPT'I‘ < OPT'I<+l . But vertex k + 1 has no incoming edges from another vertex in Vj
(recall that we are talking about G1). Also, because OPT’{ agrees with SOL on the
first k vertices, any edge incoming to k 4+ 1 must have its other endpoint assigned 1
by OPT”I‘ , therefore, it can not be included in the cut. Thus, assigning O to vertex k 4 1
will not decrease the size of OPT’I‘ and the inequality follows. Now, if vertex k + 1 is
in V1, we need to prove that OPTIIH'1 + (c — l)wg1 k+1)> OPT’I‘. If OPT assigns
1to k4 1 then OPTIICJrl = OPT]f and the inequality follows trivially. If, on the other
hand, OPT; assigns O to k + 1, then changing this to 1 will contribute wion(k + 1)
but might remove up to woy(k + 1) from the cut. Thus, bribing the solution at this
point with an amount of wey(k + 1) — w& (k + 1) is enough to make it change its
assignment. But woy (kK + 1) — inrl k+1)<(c— l)wion (k + 1) because the algorithm
assigned 1 to k + 1 and the inequality follows.

Now observe that by using the above sequence of inequalities we have shown
that OPT(I) <OPT| + (c -1 ZueVl wgl (u), or equivalently OPT; < SOL +
(c — 1)SOL. 0

Now, we must compare OPT(and SOL. First we need to show an auxiliary lemma.

Lemma3 SOL> (c— 1)) w(e).

ecEy
Proof For every vertex u € Vy we have cw&(u) < Woyt(#). Summing over all vertices
in Vy we have ¢ ZEGEO() w(e) < ZEGEO() w(e) + ZeeEm w(e), from which the lemma
follows. Il

Lemma 4 OPT, < CZ%ISOL.

Proof Consider a vertex u € Vp to which OPTy assigns 1. Its outgoing edges are
lost from the cut. Since u was assigned O by the algorithm we know that wgy (1) >
cwgl(u) = wgut(u) > cw?n(u) — w(l)m(u). Recall that in Gg, the edges from Vj to
V) are not included, therefore w?, (u) is the amount lost. Now, OPT is upper
bounded by the total edge weight in Egp minus the total weight of outgoing edges

from vertices to which it assigned 1. If we denote the set of vertices to which 1

@ Springer

58 J Comb Optim (2012) 24:52-64

was assigned by OPTy as S we have OPTo < 3, g w(e) — 3,5, wd, () <

Y ecg WE) = €Y es, wd W)+, s, Wour (). But 3, ¢ w? () > OPTy. Also,
D ues; Wour) < > uevp wl, () = SOL. Therefore, we have that (¢ + 1)OPTy <

> ecEg W(e) + SOL. The result follows using Lemma 3. O
Proof Combining the results of Lemmata 1, 2 and 4. O
Taking the derivative of —=— + ¢ we find that a minimum is obtained for c = V3.

In that case the competitive ratio achieved is 3f

The fact that the above analysis is tight for ¢ = +/3 will be confirmed in Sect. 4
where it will be shown that this is in fact the best ratio achievable by any algorithm.
But before that, we could also give a simple example to show that our analysis is
tight for any c. First, let us point out that when looking for such an example we
may assume without loss of generality that in cases where wgl(u) = cwout(u) the
algorithm assigns to u an arbitrary value chosen by the adversary. This is because the
adversary could easily adjust woy(#) by *€ without affecting the size of the optimal
solution significantly.

Consider a directed path with 2n edges and the vertices labeled 0, 1, ...,2n. We
give the edges weights w((i, i + 1)) = ¢’. The algorithm assigns O to vertex 0 and
then without loss of generality assigns O to all vertices until 2n — 2. Then it as-
signs 1 to 2n — 1 and 2n. The produced solution has weight w((2n —2,2n — 1)) =

= (cz)” !, The optimal solution has weight ¢?*~1 4 ¢2#=3 4 27— 5 4+ 4=

2nl
(C) 2](C

2\n—1 _ _ ¢
c2—1)

2—-1"

4 A 34/3/2 — € lower bound

In this section we show that the competitive ratio of 3+/3/2 achieved by the algo-
rithm of Sect. 3 is essentially the best possible. We show this by giving a strategy
which the adversary can follow to force any deterministic algorithm’s competitive
ratio arbitrarily close to 3+/3/2.

The construction we use is very simple: it is a directed path, similar to the tight ex-
amples of the previous section. However, now the edge weights are picked so that any
algorithm can be defeated. The adversary’s strategy is still to fool the algorithm into
assigning a long string of Os thus worsening the competitive ratio. But now the edge
weights will eventually converge. We make use of the following simple observation:

Lemma 5 [f for some vertex wi?] (u) = wout (1) then it is optimal to assign 1 to that
vertex.

The proof is trivial: assigning 1 will immediately yield a payoff greater than the
potential payoff which could be obtained by assigning 0.

@ Springer

J Comb Optim (2012) 24:52-64 59

The adversary must find a sequence of edge weights for the path, call them
wp, W1, ..., such that assigning a long string of Os is inevitable for any algorithm
with a good competitive ratio. If the adversary can also make the sequence of weights
decrease at some point without violating this principle the previous observation will
complete the proof of a lower bound.

The above methodology is illustrated in the following lemma.

Lemma 6 For a given number) > 1, if for the sequence defined by wy =1, w1 =
hywy =22 — 1 and w; = Mw;_] — w;_3) there exists k such that Wik+1 < W, then
no deterministic online algorithm can achieve a ratio less than A for MAXDICUT on
DAGs.

Proof Suppose that for some i we have w; < w;_1. The adversary will follow this
strategy: the graph used is a directed path with edge weights wg, wy, While the
algorithm has not yet assigned a 1 keep revealing vertices and set edge weights ac-
cording to the sequence w;. When the algorithm assigns 1 or when the edge with
weight w; is revealed, terminate the instance, that is reveal only the other endpoint of
the single outstanding edge and inform the algorithm that this is the last vertex.

For this strategy to demonstrate a lower bound of A it is sufficient to have that for
all kK wr + wi—2 + - -+ > Awg—1. The left-hand side of this equation is the optimal
solution if we terminate after edge k (we will denote this by OPTy), while wy_1 is
the algorithm’s solution in that case (observe that we terminate on the algorithm’s
first 1 so the algorithm always picks exactly one edge in the cut). Therefore, if this
inequality holds for all k£ the competitive ratio will be at least A independent of the
point where the instance was terminated.

Clearly, OPT; = w1 = Awp and OPT, = wy + wo = Aw;. Now, we can use
induction and we have OPT; = wy + OPT;_p = A(wr—1 — wig—3) + OPT;_» >
A(wg—1 —wg—3) +Awg_3 = Awg_1. Therefore, if the instance terminates at any point,
the competitive ratio is at least A. Lemma 5 guarantees that the instance will be ter-
minated at i at the latest for any reasonable algorithm. g

The question is for which A the sequence w; decreases at some point and for
which it is always increasing. In order to answer this we would like to obtain a closed
form of w;. One way to obtain such a form is to solve the corresponding equation
x3 =)\()c2 — 1). If the roots of this equation are distinct, say ry, r2, r3 we get that
w; = Alri + Azré + A3r§ for some constants A1, A, A3 determined by wg, wi, w;.

Lemma 7 If A < % the equation x3 = A(x? — 1) has three distinct roots. One of
them is real and belongs in (—1, 0) and the other two are complex.

Proof Take the discriminant of the equation A = 4A* — 272 If A < # then A <0

and the equation has two complex and one real root. Take the function f(x) =x3 —
Ax2 4+ 1. We have f(0) = >0 and f(—1) = —1 < 0 therefore the real root of the
equation is in (—1, 0). O

@ Springer

60 J Comb Optim (2012) 24:52-64

Lemma 8 If 1 < % there exists an i such that for the sequence w defined in

Lemma 6 we have w; < w;_1.

Proof Letr be the real root and z1, z» the complex roots of the equation of Lemma 7.
z1 and z» must be conjugates, i.e. z1 + z2 is a real number. We can rewrite them as

71 = |zlel? and 7o = |z]e. Also note that, as A — # we have that 6 — 0, in
other words, as A approaches its critical value the two complex roots tend closer to
becoming one double root.

A closed form for the sequence w will be of the form w, = A1z} + Az + Azr".
To calculate the constants A, A, A3 we could use the known values of wq, w1, w.
However, since we only need to prove that w decreases at some point, this is not
necessary. It suffices to observe the following facts:

1. The term Asr” tends to O as n tends to infinity, because we know that |r| < 1.

2. Since Vn, wy, is a real number, it must be the case that A and A; are also conju-
gates. We can rewrite them as A; = |A|e!® and Ay = |Ale ™%,

3. Therefore, we have w, = |A| - |z|" (!"0+®) 4 ¢~100+8)) L (1),

Using the above we have w, = 2|A]| - |z]"*(cos(nf + ¢)) + o(1), which is not an
always increasing function. g

Using Lemmata 6 and 8 we have the following result.

Theorem 2 No deterministic algorithm can achieve a competitive ratio of % —€
for any € > 0 for the MAXDICUT problem on DAGs.

5 General graphs

In this section we show that a natural extension of the online algorithm for DAGs of
Sect. 3 results in a 3-competitive online algorithm for the case of general digraphs.

Before we go on, let us first introduce some additional notation, which will be
needed in this case. Recall that in Sect. 3 we used the notation wip (1), Wyt () to refer
to the total weight of edges incoming and outgoing from u respectively. However, the
online model we assumed in that case guaranteed that at the time when a vertex u
was revealed, the tails of its incoming edges had already been revealed (and therefore
assigned a value). Similarly, we knew that none of the heads of edges coming out of
u had been revealed yet at the time u was given.

In the online model for general graphs this is not necessarily the case. However,
we now make the assumption that whenever the adversary reveals a vertex, both its
total in-degree and its total out-degree are revealed. Therefore, we introduce a shorter
notation as follows: for a given vertex u and a specific assignment to all the vertices
revealed before u we will denote by C;(u) the certain payoff which can be achieved
by assigning 1 to this vertex. In other words, C1(u) is the total weight of edges in-
coming to u with their tails already revealed and assigned 0. Similarly, we denote by
Co(u) the certain payoff of assigning 0, which is the total weight of edges coming
out of u whose heads have already been assigned 1. We denote by Py(u), P;(u) the

@ Springer

J Comb Optim (2012) 24:52-64 61

Algorithm 2 Doubling online algorithm for general graphs
When u is revealed calculate Co(u), C1(u), Po(u), P1(u).

— If Co(u) + POT(“) >Ci1(u) + PIT(“) assign 0 to u.
— Otherwise, assign 1 to u.

maximum additional payoff which can be achieved by assigning 0 or 1 respectively
to u. That is, Py(u) is the total weight of edges outgoing from u to vertices not yet
revealed, and P;(u) is the total weight of edges incoming to u from such vertices.

Our proposed algorithm is Algorithm 2. It is clear that using this notation we
would have in the online model for DAGs of Sect. 3 that for all u, Po(u) = wout(u),
Pi(u) =0, Ci(u) = wg] (#), Co(u) = 0. This new notation will ease the analysis of
our algorithm for general graphs.

Following our previous remark that in the model for DAGs we have for all u«,
Co(u) = P1(u) =01t is easy to see that, if restricted to DAGs, Algorithm 2 is exactly
Algorithm 1 with ¢ =2 (which implies that it would have a ratio of 8/3 for that
special case). Moreover, the intuition is essentially the same: give twice as much
weight to a certain payoff as you give to an uncertain one. The question is, what is
this algorithm’s competitive ratio for general graphs?

First, let us point out that Algorithm 2 is at most 4-competitive. This can be seen
if we compare its performance to the trivial randomized algorithm.

Theorem 3 Let SOL be the solution produced by Algorithm 2 for a graph G(V, E).
Then SOL > 21,

Proof Consider the randomized algorithm which assigns O or 1 to every vertex of G
with probability 1/2. The expected size of the solution produced by this algorithm
is exactly %. Now, derandomize this algorithm using the method of conditional
expectations. As each vertex u is revealed pick the assignment that will maximize
the expected size of the produced solution if the remaining vertices were assigned at
random with probability 1/2. Obviously, only edges incident on u are affected, so
maximize the expected total weight of edges incident to u that will be included in the
cut. Assigning 0 includes a total weight of Cp with probability 1 and a weight of Py
with probability 1/2, while the rest of the edges incident on u are lost. Similarly for
assigning 1.

Therefore, Algorithm 2 picks for each vertex the assignment which would maxi-
mize the expected cut if we went on randomly for the remaining vertices. This implies
that the algorithm’s solution is lower bounded by the expected size of the solution

produced by the randomized algorithm, which is %. O

A competitive ratio of 4 immediately follows from Theorem 3. We will now show
that this can actually be improved to a ratio of 3.

Theorem 4 Algorithm 2 is 3-competitive.

@ Springer

62 J Comb Optim (2012) 24:52-64

Proof Let SOL be the cut produced by the algorithm and OPT an optimal cut. Once
again we will gradually change OPT to SOL by bribing the adversary to change the
assignment for vertices on which OPT and SOL disagree. Then we will bound the
amount of bribing needed.

Number the vertices 1,2,...,n in the order in which they were revealed. Let
OPTy, OPT4, ..., OPT, be a sequence of cuts defined as follows: OPT; gives the
same assignment as SOL to the first i vertices and the same assignment as OPT to
the others. Therefore, OPTy = OPT and OPT,, = SOL.

Suppose that OPT and SOL agree on the assignment of some vertex i. Then
OPT;_; = OPT;.

Suppose that for some vertex i the optimal cut assigns 0 while the algorithm as-
signed 1. Consider then the cut OPT;_;. From the edges incident on i the cut OPT;_;
gets at most Co(i) + Pp(i). The cut OPT; gets at least C1(i). The cuts OPT;_; and
OPT; differ only in vertex i therefore we have OPT;_1 < OPT; + Co(i) + Po(i) —
C1(i). But the algorithm assigned 1 to i therefore, Co(i) + POT(") <Ci(i)+ PIT(") =
Co(i) — C1(i) < POZPD "ysing this we get that OPT;_; < OPT; + @Q+AW0,

Using similar arguments we can prove that in the symmetric case where the op-
timal cut assigns 1 and the algorithm assigns O we again have OPT;_; < OPT; +
w. Therefore, we have OPT = OPT, < OPT, + >/, w.

However, for a vertex i we have that Py(i) + P;(i) is the total weight of edges
whose first endpoint to be revealed is i. Therefore, taking the sum of Py(i) + P;(i)
for all vertices gives us exactly | E|, since then every edge’s weight is counted exactly

once (on its endpoint which was revealed first). Using also Theorem 3 we have OPT <
soL + & <3s0L O

Even though it has been known for decades that the trivial randomized algorithm
is 4-competitive, to the best of our knowledge this is the first time that it has been
examined whether its greedy derandomization actually offers an improved compet-
itive ratio. We prove that it does, even in an online setting. What makes this result
more interesting is that the situation is different in the undirected case. There, the
trivial randomized algorithm is 2-competitive but the derandomized version is also
2-competitive and this is tight. (For example consider the unweighted graph K> ,, and
add an edge between the two vertices of the small part. Now, if the two vertices of
the small part are examined first they will be placed on different sides of the partition
and the solution will have n + 1 edges in the end while the optimal is 2n.)

It should also be clear that, even though Algorithm 2 is a derandomization of the
trivial algorithm, Theorem 4 does not imply that the randomized algorithm is also 3-
competitive (it can be seen that it is in fact tightly 4-competitive by taking a bipartite
graph G(V1, V2, E) with all edges oriented from Vj to V3, so that OPT = | E|). Quite
interestingly, this is a case where derandomizing really helps improve the guarantee
on the algorithm’s performance.

Finally, let us point out that there is a simple example which demonstrates that the
analysis of Algorithm 2 is tight.

Theorem 5 There exists a graph G(V, E) for which the results of Theorems 3 and 4
are tight.

@ Springer

J Comb Optim (2012) 24:52-64 63

Proof First, observe that without loss of generality we can assume that when for
some vertex Co(u) + POT(") =Ci(n) + % then the algorithm assigns to u some
arbitrary value chosen by the adversary. This is because simply by adding a small €
to Pp or P; the adversary can make the algorithm behave in either way.

Now, the graph G we will use is a directed path on four vertices Ps. We label
the vertices 1, 2, 3,4 and set w((1,2)) = w((2,3)) =1 and w((3, 4)) = 2. The order
in which the vertices are presented is 2, 1,3,4. When 2 is revealed, without loss
of generality, the algorithm assigns 0. So, the edge (1, 2) is lost independent of the
choice for 1. When 3 is revealed we have Co(3) = P1(3) =0 and C;(3) = POT(S) SO
again without loss of generality the algorithm assigns 1 and the edge (3, 4) is lost.
Now SOL =1 but OPT =3 and |E| =4. O

6 Conclusions and further work

In this paper we introduced a natural online setting for the study of MAXDICUT and
its restriction to DAGs. We completely solved the problem in DAGs for deterministic
algorithms by providing an algorithm and an essentially matching lower bound. In
addition, and perhaps more interestingly, we showed that the intuition gained from
this problem can help in the general case, by improving a folklore result concerning
the approximation ratio of the basic greedy algorithm for general graphs.

Many other topics are worth considering. For the specific problem on DAGS it
would be interesting to consider randomized algorithms against an oblivious adver-
sary. This would likely defeat our lower bound but it is not clear what would be
a better algorithm. For the general case, there is a small gap between the competi-
tiveness of our algorithm and the lower bound for DAGs. Could this gap be closed?
Finally, it would be interesting to see if and how any of the ideas of this paper can be
applied in the undirected case of the problem.

Acknowledgement We would like to thank Valia Mitsou for stimulating discussion and for proof-
reading an earlier draft of this paper.

References

Alon N, Spencer JH (2004) The probabilistic method. Wiley, New York

Bazgan C, Tuza Z (2008) Combinatorial 5/6-approximation of max cut in graphs of maximum degree 3.
J Discrete Algorithms 6(3):510-519

Feige U, Goemans M (1995) Approximating the value of two power proof systems, with applications
to MAX 2SAT and MAX DICUT. In: Proceedings of the third Israel symposium on the theory of
computing and systems, pp 182—-189

Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfia-
bility problems using semidefinite programming. J ACM 42(6):1115-1145

Hadlock F (1975) Finding a maximum cut of a planar graph in polynomial time. SIAM J Comput 4:221

Halperin E, Zwick U (2001) Combinatorial approximation algorithms for the maximum directed cut prob-
lem. In: Proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, pp 1-7

Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complex-
ity of computer computations. Plenum, New York, pp 85-103

@ Springer

64 J Comb Optim (2012) 24:52-64

Khot S, Kindler G, Mossel E, O’Donnell R (2004) Optimal inapproximability results for MAX-CUT and
other 2-variable CSPs? In: Foundations of computer science, 2004. Proceedings. 45th annual IEEE
symposium, pp 146-154

Lampis M, Kaouri G, Mitsou V (2008) On the algorithmic effectiveness of digraph decompositions and
complexity measures. In: Hong S-H, Nagamochi H, Fukunaga T (eds) ISAAC. Lecture notes in
computer science, vol 5369. Springer, Berlin, pp 220-231

Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and complexity classes.] Comput
Syst Sci 43(3):425-440

Poljak S, Tuza Z (1995) Maximum cuts and large bipartite subgraphs. In: Combinatorial optimization.
Papers from the DIMACS special year, pp 181-224

@ Springer

	Online maximum directed cut
	Abstract
	Introduction
	Definitions and preliminaries
	The online model

	An online algorithm for MaxDiCut on DAGs
	A 33/2-epsilon lower bound
	General graphs
	Conclusions and further work
	Acknowledgement
	References

