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Abstract Let γ (G) denote the domination number of a digraph G and let Pm�Pn

denote the Cartesian product of Pm and Pn, the directed paths of length m and n. In
this paper, we give a lower and upper bound for γ (Pm�Pn). Furthermore, we obtain
a necessary and sufficient condition for Pm�Pn to have efficient dominating set, and
determine the exact values: γ (P2�Pn) = n, γ (P3�Pn) = n + �n

4 �, γ (P4�Pn) =
n + � 2n

3 �, γ (P5�Pn) = 2n + 1 and γ (P6�Pn) = 2n + �n+2
3 �.
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1 Introduction

Throughout this article, a digraph G = (V (G),E(G)) always means a finite directed
graph without loops and multiple arcs, where V = V (G) is the vertex set and E =
E(G) is the arc set. Given two vertices u and v in G, we say u dominates v if u = v

or uv ∈ E. For a vertex v ∈ V , N+
G(v) and N−

G(v) denote the set of out-neighbors and
in-neighbors of v, d+

G(v) = |N+
G(v)| and d−

G(v) = |N−
G(v)| denote the out-degree and
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in-degree of v in G, respectively. Let N+
G [v] = N+

G(v) ∪ {v}. A vertex v dominates
all vertices in N+

G [v]. A set S ⊆ V is a dominating set of G if S dominates V (G).
The domination number of G, denoted by γ (G), is the minimum cardinality of a
dominating set of G. A dominating set S is called a γ (G)-set of G if |S| = γ (G).
Note that each dominating set of G contains all vertices with in-degree 0 in G. A set
S ⊆ V is efficient dominating set if each vertex of G is dominated by exactly one
vertex in S. Note that any efficient dominating set in a digraph must be of size γ (G).
Let Pn denote a directed path with n vertices.

Let G1 = (V1,E1) and G2 = (V2,E2) be two digraphs which have disjoint vertex
sets V1 = {x1, x2, . . . , xn1} and V2 = {y1, y2, . . . , yn2} and disjoint arc sets E1 and E2,
respectively. The Cartesian product G = G1�G2 has vertex set V = V1 × V2, and
(xi, yj )(xi′ , yj ′) ∈ E(G1�G2) if and only if either xixi′ ∈ E1 and yj = yj ′ , or xi =
xi′ and yjyj ′ ∈ E2. The subdigraph G

yi

1 of G1�G2 has vertex set V
yi

1 = {(xj , yi) :
for any xj ∈ V1, fixed yi ∈ V2} ∼= V1, and arc set E

yi

1 = {(xj , yi)(xj ′ , yi) : xjxj ′ ∈
E1} ∼= E1. It is clear that G

yi

1
∼= G1. Similarly, the subdigraph G

xi

2 of G1�G2 has
vertex set V

xi

2 = {(xi, yj ) : for any yj ∈ V2, fixed xi ∈ V1} ∼= V2, and arc set E
xi

2 =
{(xi, yj )(xi, yj ′) : yjyj ′ ∈ E2} ∼= E2. It is clear that G

xi

2
∼= G2. In 1983, Jacobson and

Kinch (1983) first discussed the domination number of the Cartesian product of two
undirected graphs, and they established the domination numbers of Pm�Pn(m ≤ 4).
Beyond k = 4 the problem becomes much more difficult. Hare (1986) developed
an algorithm to compute the domination number of Pm�Pn and using the output
of an implementation of her algorithm she found simple formulas for γ (Pm�Pn)

when 1 ≤ m ≤ 10 agreeing with her data. Chang and Clark (1993) proved that Hare’s
formulas for m = 5 and 6 and n ≥ 1. Note that Hare’s algorithm does not produce
a dominating set for Pm�Pn as it computers γ (Pm�Pn). In 1994, Chang and Clark
(1994) presented dominating set for 5 ≤ m ≤ 10. Other related works for Cartesian
product of undirected paths (see, for example El-Zahar and Pareek 1991; Faudree
and Schelp 1990; Gravie and Mollard 1997; Hartnell and Rall 2004). However, to
date no research has been done for Cartesian product of two directed paths, and the
methods and findings existing for undirected paths could not be applied to Cartesian
product of two directed paths with slight modifications. Thus, in this paper, we study
the Cartesian product Pm�Pn of Pm and Pn, the directed paths of length m and n. By
the definition, we know that Pm�Pn

∼= Pn�Pm. We give a lower and upper bound for
γ (Pm�Pn). Furthermore, we obtain a necessary and sufficient condition for Pm�Pn

to have efficient dominating set, and determine the exact values: γ (P2�Pn) = n,
γ (P3�Pn) = n+�n

4 �, γ (P4�Pn) = n+� 2n
3 �, γ (P5�Pn) = 2n+1 and γ (P6�Pn) =

2n + �n+2
3 �. And we present dominating sets for 2 ≤ m ≤ 6.

Terminologies not given here are referred to Chartrand and Lesniak (2005).

2 Main results

We emphasize that the vertices of a directed path Pn are always denoted by
{0,1, . . . , n − 1} throughout this paper. This notation turned out to be convenient to
formulate the proof of the following results. Note that if m = 1, then Pm�Pn = Pn,
and if n = 1, then Pm�Pn = Pm. We know that γ (Pn) = �n

2 � for the directed path Pn.
Thus, we discuss the cases that m,n ≥ 2 in this paper.
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Lemma 2.1 Let m ≥ 2. Then there exists a minimum dominating set S of Pm�Pn

such that 1 ≤ |P i
m ∩ S| ≤ m − 1 for every i ∈ V (Pn).

Proof Let S be a minimum dominating set of Pm�Pn. Suppose that |P it
m ∩ S| = m

holds for k subdigraphs P
it
m , 1 ≤ k ≤ n−1,1 ≤ t ≤ k. We now construct a dominating

set S′ with |S′| = |S| such that only k−1 subdigraphs P
it
m have m vertices in common

with S′.
If |P 0

m ∩ S| = m, then |P 1
m ∩ S| = 0 and S′ = (S \ {(1,0)}) ∪ {(1,1)} has required

properties. We find that |P n−1
m ∩ S| �= m since (j, n − 1) exactly dominates itself and

another vertex (j + 1, n − 1) for 0 ≤ j < m − 1. Assume now that |P i
m ∩ S| = m for

i ∈ V (Pn) \ {0, n − 1}. We have |P i+1
m ∩ S| = 0 and S′ = (S \ {(1, i)}) ∪ {(1, i + 1)}

has required properties. Thus, |P i
m ∩ S| ≤ m − 1 for every i ∈ V (Pn).

Let S be a minimum dominating set of Pm�Pn such that |P i
m ∩ S| ≤ m − 1 for

every i ∈ V (Pn). We now prove that |P i
m ∩ S| ≥ 1. Note that (0,0) ∈ (P 0

m ∩ S) and
thus |P 0

m ∩ S| ≥ 1. Suppose that there exists a vertex i ∈ V (Pn) \ {0} such that |P i
m ∩

S| = 0. (0, i) is exactly dominated by the vertex (0, i − 1), so (0, i − 1) ∈ S and, each
vertex (j, i) (1 ≤ j ≤ m − 1) could be dominated by (j − 1, i) and (j, i − 1). Since
(j − 1, i) /∈ S, we have (j, i − 1) ∈ S for all 0 ≤ j ≤ m − 1. Thus |P i−1

m ∩ S| = m.
A contradiction. Therefore, there exists a minimum dominating set S of Pm�Pn such
that 1 ≤ |P i

m ∩ S| ≤ m − 1 for every i ∈ V (Pn). �

Theorem 2.2 Let n ≥ 2. Then γ (P2�Pn) = n.

Proof By Lemma 2.1, we have γ (P2�Pn) ≥ n. Let S0 = {(0, i) : ∀i ∈ V (Pn)} ⊆
V (P2�Pn), then S0 is a dominating set of P2�Pn. Thus, γ (P2�Pn) = n. �

We now consider the Cartesian product P3�Pn and define a set S1 (see Fig. 1) as
follows: S1 consists of vertices (0, i) and (1, i), i ≡ 0 (mod 4); (2, i), i ≡ 1 (mod 4);
(0, i), i ≡ 2 (mod 4); (1, i), i ≡ 3 (mod 4). Note that |S1| = n + �n

4 �.

Theorem 2.3 Let n ≥ 2. Then γ (P3�Pn) = n + �n
4 �.

Proof Since the set S1 defined above is a dominating set of P3�Pn, we have
γ (P3�Pn) ≤ n + �n

4 �. We now prove that γ (P3�Pn) ≥ n + �n
4 �.

By Lemma 2.1, let S be a minimum dominating set of P3�Pn such that 1 ≤ |P i
3 ∩

S| ≤ 2 for every i ∈ V (Pn). Assume now that there are t vertices {i1, i2, . . . , it } such
that |P il

3 ∩S| = 2 (1 ≤ l ≤ t) and then |S| = n+ t . Note that |P 0
3 ∩S| = 2. If t < �n

4 �,
then there exist four consecutive vertices r, r + 1, r + 2, r + 3 ∈ V (Pn) such that

Fig. 1 The set S1
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Fig. 2 The set S2

|P r
3 ∩ S| = |P r+1

3 ∩ S| = |P r+2
3 ∩ S| = |P r+3

3 ∩ S| = 1, it is impossible. Therefore,
t ≥ �n

4 �. Thus, γ (P3�Pn) = n + �n
4 �. �

Next, we consider the Cartesian product P4�Pn and define a set S2 (see Fig. 2) as
follows: S2 consists of vertices (0, i) and (2, i), i ≡ 0 (mod 3); (0, i) and (3, i), i ≡ 1
(mod 3); (1, i), i ≡ 2 (mod 3). Note that |S2| = n + � 2n

3 �.

Lemma 2.4 Let n ≥ 2. Then there exists a minimum dominating set S of P4�Pn such
that 1 ≤ |P i

4 ∩ S| ≤ 2 for every i ∈ V (Pn).

Proof If n = 2 or 3, then S0 and S1 in proof of Theorems 2.2 and 2.3 have the prop-
erties that 1 ≤ |P i

4 ∩ S0| ≤ 2 for every i ∈ V (P2) and 1 ≤ |P i
4 ∩ S1| ≤ 2 for every

i ∈ V (P3). Now we consider that n ≥ 4. Let S be a minimum dominating set of
P4�Pn such that 1 ≤ |P i

4 ∩ S| ≤ 3 for every i ∈ V (Pn) by Lemma 2.1. Suppose that

|P it
4 ∩ S| = 3 holds for k subdigraphs P

it
4 , 1 ≤ k ≤ n − 1,1 ≤ t ≤ k. We now con-

struct a dominating set S′ with |S′| = |S| such that only k − 1 subdigraphs P
it
4 have

3 vertices in common with S′.
Let P i

4 be such a subdigraph with |P i
4 ∩ S| = 3 and such that |P l

4 ∩ S| ≤ 2 for all
l ∈ {i + 1, . . . , n − 1}. Since |P n−1

4 ∩ S| ≤ 2, we have i ≤ n − 2. We consider four
cases.

Case 1 (1, i), (2, i) and (3, i) are in S.
Since S is a minimum dominating set of P4�Pn, it is easy to see that (1, i +

1), (2, i + 1) and (3, i + 1) must be not in S and (0, i + 1) is in S. Thus, S′ = (S \
{(2, i)}) ∪ {(2, i + 1)} has required properties.

Case 2 (0, i), (1, i) and (2, i) are in S.
Note that (0, i + 1) and (1, i + 1) must be not in S in this case. If i = n − 2, then

there exists only one vertex of {(2, i + 1), (3, i + 1)} belongs to S. Thus,

S′ = (S \ {(1, i)}) ∪ {(1, i + 1)} (1)

has required properties.
Assume now that i ≤ n − 3. If only one vertex of {(2, i + 1), (3, i + 1)} belongs

to S, then we have done as (1). If both (2, i + 1) and (3, i + 1) are in S, then (1, i +
2), (2, i + 2) and (3, i + 2) must be not in S and (0, i + 2) is in S. Thus, S′ = (S \
{(1, i), (2, i + 1)}) ∪ {(1, i + 1), (2, i + 2)} has required properties.

Case 3 (0, i), (1, i) and (3, i) are in S.
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If at least one vertex of {(2, i + 1), (3, i + 1)} belongs to S, then we could discuss
on (S \ {(3, i)})∪{(2, i)} analogous to Case 2. If both (2, i + 1) and (3, i + 1) are not
in S, then (1, i + 1) must be in S. If i = n − 2, then (0, i + 1) is not in S. Thus,

S′ = (S \ {(1, i), (3, i)}) ∪ {(2, i), (3, i + 1)} (2)

has required properties.
Assume now that i ≤ n − 3. If (0, i + 1) is not in S, then we have done as (2). If

(0, i + 1) is in S, then we could discuss on (S \ {(1, i), (3, i)}) ∪ {(2, i), (2, i + 1)}
analogous to Case 2.

Case 4 (0, i), (2, i) and (3, i) are in S.
Note that (2, i + 1) and (3, i + 1) must be not in S in this case. If i = n − 2, then

there exists only one vertex of {(0, i + 1), (1, i + 1)} belongs to S. Thus,

S′ = (S \ {(3, i)}) ∪ {(3, i + 1)} (3)

has required properties.
Assume now that i ≤ n− 3. If only one vertex of {(0, i + 1), (1, i + 1)} belongs to

S, then we have done as (3). If both (0, i + 1) and (1, i + 1) are in S, then we could
discuss on (S \ {(3, i)}) ∪ {(2, i + 1)} analogous to Case 2.

Therefore, there exists a minimum dominating set S of Pm�Pn such that 1 ≤
|P i

4 ∩ S| ≤ 2 for every i ∈ V (Pn). �

Theorem 2.5 Let n ≥ 2. Then γ (P4�Pn) = n + � 2n
3 �.

Proof Since the set S2 defined above is a dominating set of P4�Pn, we have
γ (P4�Pn) ≤ n + � 2n

3 �. We now prove that γ (P4�Pn) ≥ n + � 2n
3 �.

By Lemma 2.4, let S be a minimum dominating set of P4�Pn such that 1 ≤ |P i
4 ∩

S| ≤ 2 for every i ∈ V (Pn). Assume now that there are t vertices {i1, i2, . . . , it } such
that |P il

4 ∩S| = 2 (1 ≤ l ≤ t), and then |S| = n+ t . Note that |P 0
4 ∩S| = |P 1

4 ∩S| = 2
and (0,0), (2,0) ∈ P 0

4 ∩S. It is easy to calculate that γ (P4�P2) = 4, γ (P4�P3) = 5,
γ (P4�P4) = 7 and γ (P4�P5) = 9. Thus, t = � 2n

3 � for n = 2,3,4,5. Let n ≥ 6, if
t = n−1 or t = n−2, then t ≥ � 2n

3 �. Assume now that t < n−2. Let p and q (p < q)

are two any vertices in V (Pn) such that |P p

4 ∩ S| = |P q

4 ∩ S| = 1. We consider three
cases.

Case 1 q = p + 1.
Since S is a minimum dominating set of P4�Pn, this case is impossible.
This case illustrates that there does not exist two consecutive vertices r and r + 1

in V (Pn) such that |P r
4 ∩ S| = |P r+1

4 ∩ S| = 1.
Case 2 q = p + 2.
We have |P p

4 ∩ S| = |P p+2
4 ∩ S| = 1 and |P p+1

4 ∩ S| = 2. Thus, there exists only
one the following situation: only four vertices (2,p), (0,p+1), (3,p+1) and (1,p+
2) belong to S in V (P

p

4 ∪P
p+1
4 ∪P

p+2
4 ). We find that (0,p − 1) and (1,p − 1) must

be in S. Thus |P p−2
4 ∩ S| = 2 ((3,p − 2) ∈ S and one vertex of {(0,p − 2), (1,p −

2), (2,p−2)} is in S) and |P p+3
4 ∩S| = 2 (see Fig. 3). Thus, there are six consecutive
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Fig. 3 An illustration for the
proof of Theorem 2.5 (Case 2)

Fig. 4 The set S3

vertices in V (Pn) such that there are at most two subdigraphs with |P i
4 ∩ S| = 1 and

at least four subdigraphs with |P l
4 ∩ S| = 2. Therefore, we have t ≥ � 2n

3 �.
Case 3 q ≥ p + 3.
Clearly, t ≥ � 2n

3 � in this case.
From above we have t ≥ � 2n

3 � for all cases. Thus, γ (P4�Pn) = |S| = n + t ≥
n + � 2n

3 �.
Therefore, γ (P4�Pn) = n + � 2n

3 �. �

Now we consider the Cartesian product P5�Pn and define a set S3 (see Fig. 4)
as follows: S3 consists of vertices (0,0), (2,0), (3,0); (0, i), (3, i), i ≡ 1 (mod 3);
(1, i), (4, i), i ≡ 2 (mod 3); (0, i), (2, i), i ≡ 0 (mod 3) for i ≥ 1. Note that |S3| =
2n + 1.

Theorem 2.6 Let n ≥ 2. Then γ (P5�Pn) = 2n + 1.

Proof By Lemma 2.1, let S be a minimum dominating set of P5�Pn such that |P i
5 ∩

S| ≥ 1 for 0 ≤ i ≤ n−1. Note that |P 0
5 ∩S| ≥ 3 and |(P 0

5 ∪P 1
5 )∩S| ≥ 5. If |P i

5 ∩S| =
1 for 2 ≤ i ≤ n − 1, then |P i−1

5 ∩ S| ≥ 3. Thus |S| ≥ 2n + 1. We know that the set S3
is a dominating set with 2n + 1 vertices. Hence, γ (P5�Pn) = 2n + 1. �

Now we consider the Cartesian product P6�Pn.

Lemma 2.7 Let n ≥ 6. Then there exists a minimum dominating set S of P6�Pn such
that 2 ≤ |P i

6 ∩ S| ≤ 3 for every i ∈ V (Pn).
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Proof Let S� be a minimum dominating set of P6�Pn such that 1 ≤ |P i
6 ∩ S�| ≤ 5

for every i ∈ V (Pn) by Lemma 2.1. Now we first prove that there exists a mini-
mum dominating set S� of P6�Pn such that |P i

6 ∩ S�| ≥ 2 for every i ∈ V (Pn).

Note that (0,0) ∈ (P 0
6 ∩ S�) and |P 0

6 ∩ S�| ≥ 3. Suppose that |P it
6 ∩ S�| = 1 holds

for k subdigraphs P
it
6 , 1 ≤ k ≤ n − 1,1 ≤ t ≤ k. We now construct a dominating

set S�′
with |S�′ | = |S�| such that only k − 1 subdigraphs P

it
6 have 1 vertices in

common with S�′
. Assume now that |P i

6 ∩ S�| = 1 for a vertex i ∈ (V (Pn) \ {0}).
If (0, i) ∈ (P i

6 ∩ S�), then (2, i − 1), (3, i − 1), (4, i − 1) and (5, i − 1) must be in

S�, thus, S�′ = (S� \ {(3, i − 1)}) ∪ {(3, i)} has required properties. Similarly, we can
construct required S�′

for (j, i) ∈ (P i
6 ∩ S�) when j ∈ {1,2, . . . ,5}. By a similar ar-

gument, we can prove that there exists a minimum dominating set S� of P6�Pn such
that |P i

6 ∩ S�| ≤ 4 for every i ∈ V (Pn).
Next, we will prove that there exists a minimum dominating set S of P6�Pn such

that |P i
6 ∩ S| ≤ 3 for every i ∈ V (Pn). Let S be a minimum dominating set of P6�Pn

such that 2 ≤ |P i
6 ∩ S| ≤ 4 for every i ∈ V (Pn) by above argument. Suppose that

|P it
6 ∩S| = 4 holds for k subdigraphs P

it
6 , 1 ≤ k ≤ n−1,1 ≤ t ≤ k. We now construct

a dominating set S′ with |S′| = |S| such that only k − 1 subdigraphs P
it
6 have 4

vertices in common with S′. Let P i
6 be such a subdigraph with |P i

6 ∩ S| = 4 and such
that |P l

6 ∩S| ≤ 3 for all l ∈ {i+1, . . . , n−1}. Since |P n−1
6 ∩S| ≤ 3, we have i ≤ n−2.

It is clear that there exists an integer r ∈ {i + 1, . . . , n− 1} such that |P r
6 ∩S| = 2 and

|P h
6 ∩S| = 3 for i < h < r (h is an integer) since S is a minimum dominating set. We

consider two cases.
Case 1 r = i + 1.

If |P i
6 ∩ S| = 4 and there exist three consecutive integers q, q + 1 and q + 2,

such that {(q, i), (q + 1, i), (q + 2, i)} ∈ (P i
6 ∩ S)(0 ≤ q ≤ 3), then S′ = (S \ {(q +

1, i)}) ∪ {(q + 1, i + 1)} has required properties. If {(4, i), (5, i)} ∈ (P i
6 ∩ S), then

S′ = (S \ {(5, i)}) ∪ {(5, i + 1)} has required properties. Now we consider the others
cases.

Subcase 1.1 (5, i) /∈ (P i
6 ∩ S) and (4, i) ∈ (P i

6 ∩ S).
In this case (2, i) must be not in S, otherwise, there will exist three consecutive

vertices in P i
6 ∩ S. Hence, there are at least one vertex of {(1, i + 1), (2, i + 1)}

in S. If (1, i + 1) ∈ S, then S′ = (S \ {(1, i), (3, i)}) ∪ {(2, i), (3, i + 1)} has required
properties. Similarly, if (2, i + 1) ∈ S, then S′ = (S \ {(1, i), (3, i)}) ∪ {(2, i), (1, i +
1)} has required properties.

Subcase 1.2 (5, i) ∈ (P i
6 ∩ S) and (4, i) /∈ (P i

6 ∩ S).
If (1, i) /∈ (P i

6 ∩ S), then there are at least one vertex of {(3, i + 1), (4, i + 1)}
in S. If (3, i + 1) ∈ S, then we consider the set (S \ {(3, i)}) ∪ {(4, i)} as the above
argument; If (4, i + 1) ∈ S, then we consider the set (S \ {(5, i)}) ∪ {(4, i)} as the
above argument.

If (2, i) /∈ (P i
6 ∩ S), then there are at least one vertex of {(1, i + 1), (2, i + 1)} in

S and at least one vertex of {(3, i + 1), (4, i + 1)} in S. If (1, i + 1) ∈ S, then we
consider the set (S \ {(1, i)}) ∪ {(2, i)} as the above argument; If (4, i + 1) ∈ S, then
we consider the set (S \ {(5, i)}) ∪ {(4, i)} as the above argument. Now we consider
that the vertices (2, i + 1) and (3, i + 1) are in S.
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Fig. 5 An illustration for the
proof of Lemma 2.7
(Subcase 1.2.2)

Fig. 6 An illustration for the proof of Lemma 2.7 (Subcase 1.2.2)

Subcase 1.2.1 1 ≤ i ≤ n − 2.
If (5, i − 1) ∈ (P i−1

6 ∩ S), then S′ = (S \ {(5, i)}) ∪ {(5, i + 1)} has required prop-
erties.

If (4, i − 1) ∈ (P i−1
6 ∩ S), then S′ = (S \ {(1, i), (3, i)}) ∪ {(2, i), (1, i + 1)} has

required properties.
If (3, i − 1) ∈ (P i−1

6 ∩ S), then S′ = (S \ {(3, i), (5, i)}) ∪ {(4, i), (5, i + 1)} has
required properties.

If (2, i − 1) ∈ (P i−1
6 ∩ S), then S′ = (S \ {(1, i)}) ∪ {(1, i + 1)} has required prop-

erties.
If (0, i − 1) ∈ (P i−1

6 ∩ S), then S′ = (S \ {(0, i)}) ∪ {(0, i + 1)} has required prop-
erties.

The case (1, i − 1) ∈ (P i−1
6 ∩ S) does not need discuss since |P i−1

6 ∩ S| ≥ 2.
Subcase 1.2.2 i = 0.
Since n ≥ 6, the vertices of P 0

6 ∩ S, P 1
6 ∩ S and P 2

6 ∩ S must be as Fig. 5. The
vertices in P 3

6 ∩ S may occur six cases (see Fig. 5 a, . . . , f in the closed dashed
curve). If we take one of the cases a, b, c and d , then we could obtain a required set
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Fig. 7 The set S4

as H1 in Fig. 6 by adjusting the vertices in P 0
6 ∩ S, P 1

6 ∩ S and P 2
6 ∩ S. If we take

the case e, then we could obtain a required set as H2 in Fig. 6. If we take the case f ,
then the vertex (0,4) must be in S, thus, the case (S \ {(1,3)}) ∪ {(0,3)} is the same
as the case e.

Case 2 r > i + 1.
In this case, we can obtain a set S such that |P q

6 ∩ S| = 3 (q = i, . . . , r − 2) and
|P r−1

6 ∩ S| = 4 by adjustment. Then the case is the same as Case 1.
From above all, we prove that there exists a minimum dominating set S of P6�Pn

such that 2 ≤ |P i
6 ∩ S| ≤ 3 for every i ∈ V (Pn) with n ≥ 6. �

Now we define a set S4 (see Fig. 7) as follows: S4 consists of vertices (0,0), (2,0), (4,0);
(0, i), (2, i), (5, i), i ≡ 1 (mod 3); (0, i), (3, i), i ≡ 2 (mod 3); (1, i), (4, i), i ≡ 0
(mod 3) for i ≥ 1. Note that |S4| = 2n + �n+2

3 �.

Theorem 2.8 Let n ≥ 6. Then γ (P6�Pn) = 2n + �n+2
3 �.

Proof Note that the set S4 is a dominating set of P6�Pn, thus, γ (P6�Pn) ≤
2n + �n+2

3 �. Now we prove that γ (P6�Pn) ≥ 2n + �n+2
3 �. By Lemma 2.7, we

have γ (P6�Pn) ≥ 2n. Let S be a minimum dominating set of P6�Pn such that
2 ≤ |P i

6 ∩ S| ≤ 3 for every i ∈ V (Pn) by Lemma 2.7. First, we give the following
two claims.

Claim A There do not exist four consecutive integers r, r + 1, r + 2 and r + 3 such
that |P r

6 ∩ S| = |P r+1
6 ∩ S| = |P r+2

6 ∩ S| = |P r+3
6 ∩ S| = 2.

Proof Suppose that |P r
6 ∩ S| = |P r+1

6 ∩ S| = |P r+2
6 ∩ S| = |P r+3

6 ∩ S| = 2. In
fact, there are at least 12 vertices in (P r+1

6 ∪ P r+2
6 ∪ P r+3

6 ) need be dominated by
(P r+1

6 ∪ P r+2
6 ) ∩ S. If there are more than 12 vertices in (P r+1

6 ∪ P r+2
6 ∪ P r+3

6 )

need be dominated, a contradiction, since |(P r+1
6 ∪ P r+2

6 ) ∩ S| = 4 and each ver-
tex dominates at most three vertices including itself. If there are exact 12 vertices in
(P r+1

6 ∪ P r+2
6 ∪ P r+3

6 ) need be dominated, then each vertex in (P r+1
6 ∪ P r+2

6 ) ∩ S

must exactly dominate three vertices including itself. Thus, (5, r + 1) and (5, r + 2)
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Fig. 8 An illustration for the
proof of Theorem 2.8 (Claim B)

are not in S, (4, r + 2) and (1, r + 2) must be in S. In this case |P r+3
6 ∩ S| ≥ 3, a

contradiction. �

Claim B If there exists three consecutive integers r, r + 1 and r + 2 such that |P r
6 ∩

S| = |P r+1
6 ∩S| = |P r+2

6 ∩S| = 2, then they must be as the set of Fig. 8 in the closed
dashed curve and r > 4.

Let |P r
6 ∩ S| = |P r+1

6 ∩ S| = |P r+2
6 ∩ S| = 2, then |P r+3

6 ∩ S| ≥ 3 and the vertices
in P r−1

6 ∩ S must be as Fig. 8. If |P r−2
6 ∩ S| ≥ 3, then |S| ≥ |S4|. If |P r−2

6 ∩ S| = 2,
then it must be as Fig. 8. We could make |P r−3

6 ∩ S| = 3 by adjusting the vertices
in P r−3

6 ∩ S and P r−4
6 ∩ S (see Fig. 8). Thus, there are six consecutive vertices in

V (Pn) such that there are at least two subdigraphs with |P i
6 ∩ S| = 3 and at most

four subdigraphs with |P l
6 ∩ S| = 2, clearly, |S| ≥ |S4|. From above all, we have

γ (P6�Pn) ≥ 2n + �n+2
3 �. �

Next, we will give a lower and upper bound for dominating set of Cartesian prod-
uct Pm�Pn of two directed paths. We define three sets S5 (see Fig. 9), S′

5, S′′
5 as

follows: S5 consists of vertices (0, i), (3, i), (6, i), . . . , i ≡ 0 (mod 3); (1, i), (4, i),
(7, i), . . . , i ≡ 1 (mod 3); (2, i), (5, i), (8, i), . . . , i ≡ 2 (mod 3); S′

5 consists of ver-
tices (2,0), (5,0), (8,0), . . . ; S′′

5 consists of vertices (0,2), (0,5), (0,8), . . . .

Theorem 2.9 The Cartesian product digraph Pm�Pn (2 ≤ m ≤ n) has an efficient
dominating set if and only if m = 2 and n = 2.

Proof If m = 2 and n = 2, then Pm�Pn has an efficient dominating set. Let n �= 2.
Suppose that S is an efficient dominating set of Pm�Pn, then (0,0), (0,2) ∈ S, in
order to dominate the vertex (1,1), one vertex of {(0,1), (1,1), (1,0)} must be in S.
If (0,1) or (1,0) is in S, then it is dominated twice by S, if (1,1) is in S, then the
vertex (1,2) is dominated twice by S. A contradiction. �
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Fig. 9 The set S5

Theorem 2.10 Let m,n ≥ 3. Then
⌈

mn

3

⌉
+ 1 ≤ γ (Pm�Pn)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3k1k2 + k1 + k2 if m = 3k1 and n = 3k2;
k1(n + 1) + k2 if m = 3k1 and n �= 3k2;
k2(m + 1) + k1 if m �= 3k1 and n = 3k2;
3k1k2 + 2k1 + 2k2 + 1 if m = 3k1 + 1 and n = 3k2 + 1;
3k1k2 + 3k1 + 2k2 + 1 if m = 3k1 + 1 and n = 3k2 + 2;
3k1k2 + 2k1 + 3k2 + 1 if m = 3k1 + 2 and n = 3k2 + 1;
3k1k2 + 3k1 + 3k2 + 2 if m = 3k1 + 2 and n = 3k2 + 2.

Proof Since Pm�Pn is a digraph with mn vertices and maximum out-degree is
2, every vertex in Pm�Pn dominates at most three vertices including itself, thus,
γ (Pm�Pn) ≥ �mn

3 �. If 3 | m or 3 | n, then Pm�Pn has no efficient dominating set by
Theorem 2.9, and thus, �mn

3 � + 1 ≤ γ (Pm�Pn). Now assume that 3 � m and 3 � n. By
analogous, in order to dominate vertices (m − 1, n − 1), (m − 1,1) and (1, n − 1),
there are at least three times repeated domination. Thus, �mn

3 � vertices dominate at
most 3�mn

3 � − 3 (< mn) vertices. Hence γ (Pm�Pn) ≥ �mn
3 � + 1.

In the following, we will discuss the upper bound. Let �m
3 � = k1, �n

3 � = k2, we
have

|S5| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3k1k2 if m = 3k1 and n = 3k2;
nk1 if m = 3k1 and n �= 3k2;
mk2 if m �= 3k1 and n = 3k2;
3k1k2 + k1 + k2 + 1 if m = 3k1 + 1 and n = 3k2 + 1;
3k1k2 + 2k1 + k2 + 1 if m = 3k1 + 1 and n = 3k2 + 2;
3k1k2 + k1 + 2k2 + 1 if m = 3k1 + 2 and n = 3k2 + 1;
3k1k2 + 2k1 + 2k2 + 2 if m = 3k1 + 2 and n = 3k2 + 2,
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|S′
5| = �m

3 � = k1 and |S′′
5 | = �n

3 � = k2.
It is clear that S5 ∪ S′

5 ∪ S′′
5 is a dominating set of Pm�Pn. Thus, the upper bound

can be obtain as theorem. �

The lower bound is sharp for P3�P3,P3�P4 and P4�P4; the upper bound can be
obtained when m = 5 and n ≥ 3, or m = 4 and n = 3k + 2, or m = 6 and n = 3k + 2
where k is an integer.

3 Conclusions

This paper determined the exact value of Pm�Pn (m ≤ 6), and then gave a lower and
upper bound for the domination number of Pm�Pn. It is our hope that the methods
used here will eventually lead to a determination of γ (Pm�Pn) for all m and n.
Furthermore, we hope that discuss the bounds for the domination number of general
digraphs.
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