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Abstract In bilevel programming there are two decision makers, the leader and the
follower, who act in a hierarchy. In this paper we deal with a weighted matroid prob-
lem where each of the decision makers has a different set of weights. The independent
set of the matroid that is chosen by the follower determines the payoff to both the
leader and the follower according to their different weights. The leader can increase
his payoff by changing the weights of the follower, thus influencing the follower’s
decision, but he has to pay a penalty for this. We want to find an optimum strategy
for the leader. This is a bilevel programming problem with continuous variables in
the upper level and a parametric weighted matroid problem in the lower level. We an-
alyze the structure of the lower level problem. We use this structure to develop local
optimality criteria for the bilevel problem that can be verified in polynomial time.

Keywords Bilevel programming · Combinatorial optimization · Matroids

1 Introduction

Bilevel programming problems are used to model decision processes with two de-
cision makers that are called leader and follower, respectively. At this, leader and
follower solve linked optimization problems. The leader modifies with his decision
the problem of the follower. In return, the value of this decision is also influenced
by the decision of the follower. The task in bilevel programming is to find a good
strategy for the leader to optimize his objective function value.

Due to the many applications there exists a large number of papers on bilevel
programming. An overview on this is given in the books and bibliographies of Bard
(1998) and Dempe (2002, 2003).
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However, there are only a small number of papers (Dempe 2002; Dempe et al.
2005; Fanghänel 2006a, 2006b; Fanghänel and Dempe 2009; Kalashnikov and Ríos-
Mercado 2001; Vicente et al. 1996) that investigate problems where the decision
variables of the follower are discrete and those of the leader are continuous. More
established is the related theory of inverse combinatorial optimization. An overview
on inverse combinatorial problems can be found in Heuberger (2004).

To make progress in the theory of bilevel programming problems with discrete
lower and continuous upper level, it seems reasonable to start with the easiest possi-
ble cases, such as problems that involve in polynomial time solvable combinatorial
problems.

The easiest problems in combinatorial optimization are the weighted matroid
problems. They can be solved by using the well-known Greedy Algorithm and
are well investigated. The theory of these problems is common knowledge and
can be found, e.g., in Cook et al. (1998), Schrijver (2003). To the best of our
knowledge there are no papers that investigate bilevel problems with a parametric
weighted matroid problem in the lower level and a continuous problem in the upper
level.

Thus, in this paper we consider a problem where the second problem is a para-
metric weighted matroid problem. We start the investigations with the mathematical
formulation of the problem and some important definitions. In Sects. 3 and 4 we
explore the structure of the solution sets and the so-called regions of stability.

In 1994 it was proved by Vicente et al. (1994), that it is NP-hard to check lo-
cal optimality for a given feasible point of a linear bilevel problem. In Sect. 5 we
show that checking local optimality is less difficult for the bilevel matroid problem.
Actually, we provide local optimality conditions that can be tested in polynomial
time O(γ n2).

2 Mathematical formulation of the problem

In combinatorial optimization matroids are an important concept that has been devel-
oped during the last century. It was introduced to find a common language for similar
problems in, e.g., linear algebra, graph theory, and projective geometry. Many nota-
tions in matroid theory have their origin in these areas.

Matroids can be introduced by different equivalent definitions. We will use the
independent sets to define them.

Definition 1 Let E with |E| = n > 1 be a finite set. Further, let I ⊆ 2E be a subset
of the partition set of E. We denote the pair (E, I) as a matroid iff the following
conditions are satisfied:

(I0) ∅ ∈ I ,
(I1) I1 ⊆ I2 with I2 ∈ I implies I1 ∈ I ,
(I2) for all sets I1, I2 ∈ I with |I1| < |I2| there exists some element e ∈ I2\I1 with

I1 ∪ {e} ∈ I .
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The elements I ∈ I are called independent sets. All other subsets A ⊆ E with A /∈ I
are called dependent. A base is an independent set that is not a subset of a larger
independent set. All bases of the matroid have the same cardinality that is called rank
of the matroid. The set of all bases we denote with B.

Typical examples for matroids are, e.g., the partition matroid and the graphical
matroid. For the partition matroid the set E is partitioned into disjoint subsets E =
E1 ∪ · · · ∪ Ek , and the independent sets are defined by

I = {I ⊆ E : |I ∩ Ei | ≤ ni for all i = 1, . . . , k}
with given natural numbers ni ∈ N, i = 1, . . . , k. The graphical matroid is defined on
a graph G = (V ,E) with the independent sets

I = {I ⊆ E : G(I) = (V , I ) is a forest}.
A programming problem that is often solved for a matroid (E, I) is the so-called
weighted matroid problem

max{w(I) : I ∈ I} (WMP)

where w(I) = ∑
e∈I we is the sum of all weights we with e ∈ I for a given vector

w ∈ R
E . The weighted matroid problem (WMP) can be solved easily with the Greedy

Algorithm.
Assume two players with different weight vectors want to solve weighted ma-

troid problems in the following hierarchical way. The so-called follower solves the
weighted matroid problem with respect to his weight vector wF ∈ R

E+ with wF
e > 0

for all elements e ∈ E. His optimum choice I ∈ I also determines the result wL(I)

of the second player (so-called leader). We assume that the leader knows the weights
of the follower. Therefore he can predict what the follower will do. To obtain a better
result, he can influence the choice of the follower by increasing the weights wF by a
vector x ∈ R

E+. For this increase the leader has to pay a penalty c�x where c ∈ R
E+ is

a given cost vector with ce > 0 for all elements e ∈ E. We ask for the best decision
x ∈ R

E+ of the leader.
This is a bilevel programming problem. In formulas we can write it as

max
x

{wL(I) − c�x : I ∈ Ψ (x), x ≥ 0},
s.t. Ψ (x) = Argmax

I

{(wF + x)(I ) : I ∈ I}. (LP)

The problem (LP) is the problem of the leader. At this, the set Ψ (x) is the set of
all optimal solutions of the problem of the follower

max
I

{(wF + x)(I ) : I ∈ I} (FP)

depending on the parameter x ≥ 0. Obviously, it holds Ψ (x) 
= ∅ for all parameters x.
But for some x ≥ 0 the set Ψ (x) is not a singleton, i.e., |Ψ (x)| > 1. This causes some
uncertainty in the definition of problem (LP). In such a case the leader can not predict
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the decision of the follower. In bilevel programming usually two different approaches
are proposed to handle such a situation. The optimistic approach is used if there is
an agreement, that the follower chooses that of his optimum solutions, that is best for
the leader. In this case the leader has to maximize the so-called optimistic solution
function

φo(x) = max
I∈Ψ (x)

wL(I) − c�x

with respect to x ≥ 0, i.e., he has to solve the problem

max
x

{φo(x) : x ≥ 0}. (Opt)

The local/global optimal solutions of this problem (Opt) are called local/global opti-
mistic solutions.

If there is no agreement, it is possible that the follower chooses that of his optimum
solutions, that is worst for the leader. In this case the leader maximizes the so-called
pessimistic solution function

φp(x) = min
I∈Ψ (x)

wL(I) − c�x,

i.e., he solves the problem

max
x

{φp(x) : x ≥ 0}. (Pess)

The local/global optimal solutions of this problem (Pess) are called local/global pes-
simistic solutions. In this paper, we want to determine both local optimistic and local
pessimistic solutions.

3 The solution sets

In this section we investigate the properties of the solution sets Ψ (x). At this we use,
that the problem of the follower (FP) is a weighted matroid problem with the weight
vector wF + x. Therefore, it can be solved with the Greedy Algorithm.

With the Greedy Algorithm (cf. Cook et al. 1998; Schrijver 2003) both maxi-
mum independent sets and maximum bases of a matroid can be computed. Let w :
R

E → R be the weight vector. Then we can compute a maximum independent set for
the problem max{w(I) : I ∈ I} with the following algorithm.

Algorithm 1 (Greedy Algorithm 1—maximum independent sets)

1. Order the element of E as e1, . . . , en such that we1 ≥ we2 ≥ · · · ≥ wen .
2. Set I = ∅.
3. For i = 1, . . . , n, if I ∪ {ei} ∈ I and wei

≥ 0, set I = I ∪ {ei}.

However, sometimes we are searching for a maximum base, i.e., we want to solve
the problem max{w(I) : I ∈ B}. Then the following version of the Greedy Algorithm
can be used.
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Algorithm 2 (Greedy Algorithm 2—maximum bases)

1. Order the element of E as e1, . . . , en such that we1 ≥ we2 ≥ · · · ≥ wen .
2. Set I = ∅.
3. For i = 1, . . . , n, if I ∪ {ei} ∈ I , set I = I ∪ {ei}.

Clearly, if the weights we are nonnegative for all e ∈ E, the Algorithm 1 coincides
with Algorithm 2. Due to the assumptions, this holds also for the weight vector w =
wF + x. Thus, we can determine some element of the set Ψ (x) with Algorithm 2.

If some independent set I ∈ I is given, we can verify I ∈ Ψ (x) with the following
well-known theorem.

Theorem 1 (Cook et al. 1998) Let M = (E, I) be a matroid. Let I ∈ I and x ∈ R
E+.

Then it holds I ∈ Ψ (x) if and only if the following conditions are satisfied:

1. The independent set I ∈ I is a base of the matroid, i.e., I ∈ B.
2. If q /∈ I , e ∈ I , and (I ∪ {q})\{e} ∈ I , then wF

q + xq ≤ wF
e + xe holds.

However, we need a description of the whole set Ψ (x). This can be answered by
specifying a theorem on polymatroids (Fujishige 2005, Theorem 3.15).

Theorem 2 Let x ∈ R
E+, and assume that the distinct values of wF

e + xe (e ∈ E) are
given by

w1 > w2 > · · · > wp > 0.

Then the sets

Ai = {e ∈ E : wF
e + xe ≥ wi}, i = 1, . . . , p

form a chain A1 ⊂ A2 ⊂ · · · ⊂ Ap = E. With these sets matroids MAi/Ai−1 =
(Ai\Ai−1, IAi/Ai−1) are defined with A0 = ∅ and

IAi/Ai−1 = {I ⊆ Ai\Ai−1 : ∃I ′ ⊆ Ai−1 with I ∪ I ′ ∈ I},
i = 1, . . . , p. The set of all bases of MAi/Ai−1 we denote with BAi/Ai−1 . Then it is

Ψ (x) = BA1/A0 ⊕ BA2/A1 ⊕ · · · ⊕ BAp/Ap−1,

i.e., I ∈ Ψ (x) iff there exist bases Ii ∈ BAi/Ai−1 with I = I1 ∪ I2 ∪ · · · ∪ Ip .

Remarks

1. The matroid MAi/Ai−1 is generated by repeatedly applying matroid deletion and
contraction.

2. As an example, if M is the graphical matroid for a graph G, MAi/Ai−1 is the
graphical matroid for the graph G′ = G(Ai)/Ai−1, that is generated by contract-
ing the edge set Ai−1 in the subgraph that is induced by the edge set Ai .

3. The matroids MAi/Ai−1 can have zero rank, i.e., it is possible that the empty set is
the only independent set.
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4. The directed sum

M(x) = MA1/A0 ⊕ MA2/A1 ⊕ · · · ⊕ MAp/Ap−1

of the p small matroids is also a matroid (see Cook et al. 1998). Then, due to the
theorem, Ψ (x) is the set of all bases of the matroid M(x).

Since Ψ (x) is the set of all bases of a matroid, we obtain the following result on
the computation of the optimistic/pessimistic solution function.

Corollary 1 Let x ≥ 0. Then, the values φo(x) and φp(x) can be computed in poly-
nomial time.

Proof Remember that the optimistic/pessimistic solution function was defined by

φo(x) = −c�x + max
I∈Ψ (x)

wL(I) and φo(x) = −c�x + min
I∈Ψ (x)

wL(I),

respectively. Since Ψ (x) is the set of bases of the matroid M(x), the formulas contain
matroid problems. These matroid problem can be solved with the Greedy Algorithm
(see Algorithm 2). Consequently, the values φo(x) and φp(x) can be computed within
polynomial time. �

In practice it is enough to apply the Greedy Algorithm only once. For the opti-
mistic case the algorithm is as follows.

Algorithm 3 (Compute φo(x))

1. Order the elements of E = {e1, . . . , en} such that it holds
(a) wF

ei
+ xei

≥ wF
ei+1

+ xei+1 for all indices i = 1, . . . , n − 1,

(b) wL
ei

≥ wL
ei+1

for each index i with wF
ei

+ xei
= wF

ei+1
+ xei+1 .

2. Set I = ∅.
3. For i = 1, . . . , n, if I ∪ {ei} ∈ I , then set I = I ∪ {ei}.
4. Compute φo(x) = wL(I) − c�x.

To compute the value φp(x) we have only to reverse the second ordering condition,
i.e., we have to order the elements of E such that wL

ei
≤ wL

ei+1
holds for each index i

with wF
ei

+xei
= wF

ei+1
+xei+1 . Then a base I is computed with Step 2 and Step 3, and

φp(x) = wL(I)−c�x. For optimality conditions in the optimistic case this computed
base will be more important to us than the value.

Next we want to apply the statements of this section on a small example.

Example 1 We investigate the graphical matroid with E = {1,2,3,4,5,6,7} and the
following graph G:
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For the data x = 0, wL = (1,−1,0,1,1,5,4), and wF = (4,4,2,2,2,1,1) we
want to compute the set Ψ (x), φo(x), and φp(x).

We start with computing the set Ψ (x) as described in Theorem 2. It is A1 = {1,2},
A2 = {1,2,3,4,5}, and A3 = E. Thus, we have to compute all spanning forests of
the following graphs:

The sets of spanning forests are BA1/A0 = {{1,2}}, BA2/A1 = {{3,5}, {4,5}}, and
BA3/A2 = {{6}, {7}}. Consequently, we obtain

Ψ (0) = {{1,2,3,5,6}, {1,2,3,5,7}, {1,2,4,5,6}, {1,2,4,5,7}}.
Now we want to compute the value φo(x). Because of x = 0 we do not need

the vector c for this. It is simply φo(x) = max{wL(I) : I ∈ Ψ (x)}. We apply Algo-
rithm 3. Thus, first we have to order the elements of E. The values of wF are already
decreasing. However, the values of wL are not. Therefore we reorder the elements of
E as E = {1,2,4,5,3,6,7}. Then we proceed with the algorithm. As a solution we
compute

Io = {1,2,4,5,6}, i.e., φo(0) = 7.

In the pessimistic case we obtain E = {2,1,3,4,5,7,6} by reordering the elements.
Consequently, a result of the algorithm is

Ip = {2,1,3,5,7} and φp(0) = 5.

4 The regions of stability

An important concept for the development of optimality conditions and solution al-
gorithms for the problems (Opt) and (Pess) are the so-called regions of stability. They
describe the set of all points x ≥ 0, for which a given independent set is optimum,
i.e.,

R(I) = {x ∈ R
E+ : I ∈ Ψ (x)}.

First we want to discuss some simple properties of the regions of stability.

Lemma 1

1. Each region of stability R(I) with I ∈ I is an convex polyhedron.
2. Two different regions of stability overlap each other only on their boundaries, i.e.,

Ψ (x) = I for all x ∈ intR(I) with I ∈ I .
3. The regions of stability cover the set R

E+, i.e.,
⋃

I∈I R(I) = R
E+.
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Proof The third property holds obviously because of Ψ (x) 
= ∅ for all x ∈ R
E+. To

prove the other properties we reformulate the definition of R(I). For each I ∗ ∈ I it
is

R(I) = {x ∈ R
E+ : (wF + x)(I ) ≤ (wF + x)(I ∗) for all I ∈ I}

= {x ∈ R
E+ : wF (I) − wF (I ∗) ≤ x(I ∗) − x(I) for all I ∈ I}.

Since R(I ∗) is determined by a finite number of linear inequalities, it is a convex
polyhedron. Moreover, the interior is given if all inequalities are replaced by sharp
ones. Because of (wF + x)(I ) = (wF + x)(I ∗) for all x ∈ R(I)∩R(I ∗), this implies
the second property. �

An independent set with empty region of stability is not interesting for us since it
is never an optimum decision of the follower. Therefore, we consider the following
trivial corollary of Theorem 1.

Theorem 3 It holds R(I) 
= ∅ if and only if I ∈ B. Furthermore,

R(I) = {
x ∈ R

E+ : xq − xe ≤ wF
e − wF

q

for all q /∈ I, e ∈ I with (I ∪ {q})\{e} ∈ I
}

for all I ∈ B.

In the following important corollary of Lemma 1 and Theorem 3 we investigate
the interior of the regions of stability. Remark that the interior of a polyhedron is
nonempty if and only if it has full dimension.

Corollary 2 For each I ∈ B it holds intR(I) 
= ∅ and cl(intR(I)) = R(I).

Proof The second property holds since R(I) is a nonempty convex polyhedron. It
is still open to prove intR(I) 
= ∅ if I is a base of the matroid. But this is a simple
consequence of the formula in Theorem 3 since sharp inequalities can be obtained
from any x ∈ R(I) by increasing all xe by some ε > 0 for all e /∈ I and by 2ε for all
e ∈ I , respectively. �

For each base I ∈ B of the matroid we define (as in Schrijver 2003) an exchange
set

A(I) = {(e, q) : e ∈ I, q ∈ E\I, (I ∪ {q})\{e} ∈ I}.
Then Theorem 3 implies

R(I) = {x ∈ R
E+ : xe ≥ xq + wF

q − wF
e for all (e, q) ∈ A(I)}.

Now we can prove that there exists a minimal element in the region of stability.

Corollary 3 Let I ∈ B. We consider the vector x̄I ∈ R
E that is defined by

x̄I
e =

{
0 if e /∈ I,

max{0,maxq: (e,q)∈A(I)(w
F
q − wF

e )} if e ∈ I.

Then it holds x̄I ∈ R(I) and x̄I ≤ x for all x ∈ R(I).
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Proof Obviously, x̄I ∈ R(I). Now, let be given some arbitrary x ∈ R(I). Then it is
xq ≥ 0 = x̄I

q for all q /∈ I . For each e ∈ I Theorem 3 implies 0 ≤ xe and

wF
q − wF

e ≤ xq + wF
q − wF

e ≤ xe for all q with (e, q) ∈ A(I).

Thus, the inequality holds also for the maximum of the left-hand terms, i.e., x̄I
e =

maxq{0,wF
q − wF

e } ≤ xe. Consequently, x̄I ≤ x. �

The points x̄I will be very important for the development of optimality conditions.
For each base I ∈ B we can compute x̄I and the set A(I) with O(n2) independence
tests. Since the independence test for concrete classes of matroids are quite different,
it is given by an oracle with running time γ .

Next, we use the results of this section to develop optimality criteria for the
leader’s problem (LP).

5 Optimality criteria

5.1 Basic concepts

In the previous sections we have investigated the solution sets Ψ (x) and the regions of
stability R(I). The results we want to use now to construct optimality conditions for
the problems (Opt) and (Pess), i.e., we want to describe points x ∈ R

E+ that are local
optimal solutions for the optimistic (resp. pessimistic) solution function φo (resp. φp).

In the following we use the notation Locmax{φ(x) : x ∈ Y } for the set of all local
maximum solutions of a function φ : Y → R.

First, we need a better description of the optimistic and pessimistic solution func-
tions φo and φp . Remember that they are given as the maximum and minimum, re-
spectively, of the function wL(I) − c�x over the solution set Ψ (x). Thus, if Ψ (x) is
a singleton, there is nothing to compute. In this case Lemma 1 helps. It tells us that

φo(x) = φp(x) = wL(I) − c�x

for all x ∈ intR(I) with I ∈ B. In general, let

O(I) = {x ∈ R(I) : φo(x) = wL(I) − c�x} and

P(I) = {x ∈ R(I) : φp(x) = wL(I) − c�x}
denote all x ∈ R

E+, such that I ∈ B is chosen by the follower in the optimistic and
pessimistic case, respectively. Then, for each base I of the matroid it holds

intR(I) ⊆ O(I) and intR(I) ⊆ P(I).

Thus, Corollary 2 implies the following lemma.

Lemma 2 The sets O(I) and P(I) are nonempty for all I ∈ B, and

R(I) = clO(I) = clP(I).
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Proof The sets O(I) and P(I) are nonempty because of intR(I) 
= ∅.
Due to the definitions it holds R(I) ⊇ O(I) and R(I) ⊇ P(I). Then, since R(I) is

a closed set, it has the subsets clO(I) and clP(I). The other inclusion holds because
of R(I) = cl intR(I) (Corollary 2), intR(I) ⊆ O(I), and intR(I) ⊆ P(I). �

Obviously, if some x∗ ∈ R
E+ is a local optimal solution of the problems (Opt) and

(Pess), respectively, then it is also a local maximum if the feasible set is reduced. For
this reason we investigate the set

L(I) = Locmax{wL(I) − c�x : x ∈ R(I)}.
If I ∈ I is a base, then Lemma 2 implies

L(I) = Locmax{φo(x) : x ∈ clO(I)} = Locmax{φp(x) : x ∈ clP(I)}.
The following lemma characterizes these sets L(I).

Lemma 3 It holds L(I) = {x̄I } for each set I ∈ B.

Proof Obviously,

L(I) = Locmax{−c�x : x ∈ R(I)} = Locmin{c�x : x ∈ R(I)}.
Now, remember that x̄I ≤ x for all x ∈ R(I) (see Corollary 3). Then ce > 0 for all
e ∈ E implies c�x̄I ≤ c�x for all x ∈ R(I) with equality only in the case x̄I = x.
Thus, L(I) = {x̄I }. �

As a result of Lemma 3 we obtain the inclusions

Locmax {φp(x) : x ≥ 0} ⊆ {x̄I : I ∈ B} and

Locmax {φo(x) : x ≥ 0} ⊆ {x̄I : I ∈ B}.
Local optimality conditions for bilevel programming problems with a discrete

problem of the follower are developed in Fanghänel (2006b), Fanghänel and Dempe
(2009). We can specify them easily for the given bilevel matroid problem. Thus, we
obtain the following optimality conditions.

Theorem 4 (Fanghänel 2006b; Fanghänel and Dempe 2009)

1. The point x ∈ R
E+ is a local optimistic solution if and only if it holds x = x̄I for

all I ∈ Ψ (x) with φo(x) = wL(I) − c�x.
2. The point x ∈ R

E+ is a local pessimistic solution if and only if x = x̄I and φp(x) =
wL(I) − c�x for all I ∈ Ψ (x).

Checking local optimality conditions is a difficult task in many classes of bilevel
problems. Actually, it is NP-hard to check if a given feasible point is a local optimistic
solution of a linear bilevel programming problem (Vicente et al. 1994). To provide
tests with polynomial running time for the bilevel matroid problem, we simplify the
conditions of Theorem 4.
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5.2 Local pessimistic solutions

Remember, that x ∈ R
E+ is a local pessimistic solution if and only if the following

two conditions are satisfied:

1. The value wL(I) coincides for all bases I ∈ Ψ (x).
2. It holds x = x̄I for all I ∈ Ψ (x).

Then we can prove that x = 0 is the only possible local pessimistic solution.

Theorem 5 It holds Locmax {φp(x) : x ≥ 0} ⊆ {0}.

Proof Assume that there exists some base I ∈ B such that x = x̄I is a local pes-
simistic solution with xe > 0 for some e ∈ E. Then, due to the definition of x̄I

(see Corollary 3) it holds e ∈ I , and there exists some q ∈ E\I with xq = 0,
xe = wF

q − wF
e > 0, and I ′ = (I ∪ {q})\{e} ∈ B. Furthermore, because of wF

e + xe =
wF

q + xq it is (wF + x)(I ) = (wF + x)(I ′), i.e., {I, I ′} ⊆ Ψ (x). However, e /∈ I ′ im-

plies x̄I
e > 0 = x̄I ′

e . Thus, the optimality conditions of Theorem 4 are violated, i.e., x

is not a local pessimistic solution. �

Now, consider the point x = 0. Then, because of x̄I ≤ x for all I ∈ Ψ (x), the
second condition is satisfied. The first condition can be tested with the next theorem.

Theorem 6 The point x = 0 is a local pessimistic solution if and only if it holds
φo(0) = φp(0).

Proof Obviously, if the values wL(I) coincide for all I ∈ Ψ (x), also the maximum
and the minimum value coincide, i.e., φo(0) = φp(0).

Reversely, assume that φo(0) = φp(0). Then, for all I ∈ Ψ (x) it is

wL(I) − c�0 ≤ φo(0) = φp(0) ≤ wL(I) − c�0,

i.e., it holds φo(0) = φp(0) = wL(I) for all I ∈ Ψ (x). �

The condition of Theorem 6 can be tested with Algorithm 3 in polynomial time
O(γ n2). But, even if x = 0 is a local pessimistic solution, the set of all global pes-
simistic solutions can be empty.

5.3 Local optimistic solutions

Let be given some point x ∈ R
E+. We want to specify the conditions under which the

given point is a local optimistic solution. For this we remember the computation of
the optimistic solution function value φo(x) (see Corollary 1 and Algorithm 3). There
we have solved the problem

max{wL(I) : I ∈ Ψ (x)}
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where Ψ (x) is the set of all bases of the matroid M(x). Since this is a matroid
problem, we can apply Theorem 2. This theorem implies, that the set of all optimum
solutions (denoted by Ψo(x)) is the set of all bases of a matroid that is a directed sum
of minors of M(x) and therefore also of M = (E, I).

Now, remember the optimality conditions of Theorem 4. We can rewrite them by
using the solution set

Ψo(x) = {I ∈ Ψ (x) : wL(I) ≥ wL(J ) for all J ∈ Ψ (x)}.
Then, x ∈ R

E+ is a local optimistic solution if and only if x = x̄I for all I ∈ Ψo(x).
Thus, as a first step in an optimality test we apply Algorithm 3 and compute a base

I ∈ B with I ∈ Ψo(x). This is done in polynomial time O(γ n2).
Then, we have to compare the points x̄J for different sets J ∈ Ψo(x). To do this,

we need to know more about the sets

A(J ) = {(e, q) : e ∈ J, q /∈ J, (J ∪ {q})\{e} ∈ I}
from Sect. 4. A useful result on these sets is given in Schrijver (2003) (Lemma 40.4α).
Since we want to apply it, we state the lemma but omit the proof.

Lemma 4 Let M = (E, I) be a matroid and I ∈ I . Let (t, s) ∈ A(I) and J = (I ∪
{s})\{t}. Then, (e, q) ∈ A(I)\A(J ) implies

1. e = t or (e, t) ∈ A(J ), and
2. s = q or (s, q) ∈ A(J ).

Using Lemma 4 we can characterize the local optimistic solutions.

Theorem 7 Let I ∈ Ψo(x). Then, x = x̄I is a local optimistic solution if and only if
for each pair (e, q) ∈ A(I) with wL

e = wL
q and wF

e + xe = wF
q it holds xe = 0.

Proof We want to show that the given condition coincides with the condition of The-
orem 4, i.e., we prove that x̄J = x for all sets J ∈ Ψo(x) if and only if there exists no
(e, q) ∈ A(I) with wL

e = wL
q , wF

e + xe = wF
q , and xe > 0.

⇒: This part of the proof is analogously to the proof of Theorem 5. We assume that
there exists some pair (e, q) ∈ A(I) with xe > 0, wL

e = wL
q , and wF

e +xe = wF
q . Then

it holds J = (I ∪{q})\{e} ∈ Ψo(x). However, since e /∈ J , it holds x̄J
e = 0 < x̄I

e = xe.
Thus, it is not x = x̄J for all sets J ∈ Ψo(x).

⇐: Assume that there exists some set J ∈ Ψo(x) with x̄J 
= x. Because of J ∈
Ψ (x) and Corollary 3 it holds x ≥ x̄J , and there exists some e ∈ I with

0 ≤ x̄J
e < xe = x̄I

e .

Furthermore, there exists some q /∈ I with wF
q = wF

e + xe > wF
e and (e, q) ∈ A(I)

(see the definition of x̄I in Corollary 3).
Since Ψo(x) is the set of bases of a matroid, we can assume, w.l.o.g., that there

exists a pair of elements (t, s) ∈ A(I) with J = (I ∪ {s})\{t}. Because of J ∈ Ψo(x)

it is wL
s = wL

t and wF
t + xt = wF

s .
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If t = e, then we are finished. With q = s we have found some q /∈ I , such that
(e, q) ∈ A(I), wL

e = wL
q , and wF

e + xe = wF
q . Analogously, we are finished if xt > 0.

Therefore we suppose that it holds e 
= t and xt = 0, and thus, e ∈ J and wF
t = wF

s .
Furthermore, it is (e, q) ∈ A(I)\A(J ) because of e ∈ J and

x̄J
e = max{wF

z − wF
e : (e, z) ∈ A(J )} < wF

q − wF
e = xe.

Then, Lemma 4 and e 
= t imply (e, t) ∈ A(J ). This yields

wF
t − wF

e ≤ x̄J
e < x̄I

e = wF
q − wF

e , i.e., wF
s = wF

t < wF
q .

Consequently, it is also s 
= q . Now, applying Lemma 4 again, we obtain (s, q) ∈
A(J ). But then it is x̄J

s = 0 = xs ≥ wF
q − wF

s . This is a contradiction to wF
s =

wF
t < wF

q . �

Remark that x = 0 is always a local optimistic solution since there exists some
I ∈ Ψ (0) and because 0 ≤ x̄J ≤ x̄I for all J ∈ Ψo(x̄

I ) implies the condition of The-
orem 7.

We want to test if a given point x is a local optimistic solution. Because of Theo-
rem 7 this can be done with the following algorithm.

Algorithm 4 (Optimality test for the optimistic case)

1. Compute a base I ∈ Ψo(x) with Algorithm 3.
2. Compute the set A = A(I) and x̄I . If x 
= x̄I , then goto Step 5.
3. While A 
= ∅ do:

(a) Choose some pair (e, q) ∈ A and set A = A\{(e, q)}.
(b) If xe = wF

q − wF
e , wL

e = wL
q , and xe > 0, then goto Step 5.

4. Result: The point x = x̄I is a local optimistic solution. Stop.
5. Result: The point x = x̄I is not a local optimistic solution. Stop.

Obviously, also this algorithm has a polynomial running time O(γ n2). Remark
that the vector c has no influence on local optimality. However, it is important to find
a best local optimistic solution, i.e., it is needed for discussing global optimality.

5.4 An example

Finally we apply the optimality conditions on a small example. For this we consider
again the situation from Example 1.

Example 2 We proceed with Example 1, i.e., we investigate the graphical matroid
with E = {1,2,3,4,5,6,7} and the following graph G:
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We assume that for the bilevel problem the weights and costs are wL = (1,−1,

0,1,1,5,4), wF = (4,4,2,2,2,1,1), and c = (1,1,1,1,1,1,1).
First we consider the pessimistic case. Due to Theorem 5 only x = 0 can be a

local pessimistic solution. Local pessimistic optimality in this point can be verified by
comparing the values of the optimistic and pessimistic solution function (Theorem 6).
In Example 1 we have computed φo(0) = 7 and φp(0) = 5. Thus, there exists no local
pessimistic solution.

Now we want to investigate some points x ∈ R
E+ for local optimistic optimality.

1. Let x = 0, i.e., the leader does not increase the weights of the follower. Then we
know from Example 1 that I1 = {1,2,4,5,6} ∈ Ψo(0) and φo(x) = wL(I1) = 7.
This is a local optimistic solution.

2. Now, consider x = (0,0,2,2,0,1,1). Then it holds I2 = {1,3,4,6,7} ∈ Ψo(x).
Obviously, this base is a optimum solution of the matroid problem max{wL(I) :
I ∈ B} that arises if the leader can choose an optimum base by himself. In Step 2
of Algorithm 4 we obtain

A = A(I2) = {(1,2), (3,2), (4,2), (4,5), (6,5), (7,5)}
and x = x̄I2 . For all pairs (e, q) ∈ A with xe + wF

e = wF
q it holds wL

e > wL
q .

Hence, x = (0,0,2,2,0,1,1) is a local optimistic solution. The value is

φo(x) = wL(I2) − c�x = 11 − 6 = 5.

3. Let x = (0,0,2,0,0,1,1). Then, I3 = {1,2,3,6,7} ∈ Ψ (x). But because of x̄I3 =
(0,0,0,0,0,1,1) 
= x the point x = (0,0,2,0,0,1,1) is not a local optimistic
solution. However, remark that x = x̄I3 = (0,0,0,0,0,1,1) is not only a local
optimistic solution but even a global optimistic one with φo(x) = 8.

Consequently, there exist many local optimistic solutions in the example. The best
one is neither the point x = 0, where the leader does not influence the behaviour
of the follower, nor the point x = (0,0,2,2,0,1,1) where the follower chooses the
optimum base of the problem max{wL(I) : I ∈ B}.

6 Conclusions

In this paper we have presented a bilevel problem with a matroid problem in the
lower level and continuous variables of the leader. After discussing the solution sets
we have introduced and characterized so-called regions of stability. These results we
have used to develop optimality conditions for both local optimistic and pessimistic
solutions. We have shown that these conditions can be verified in polynomial running
time O(γ n2).
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