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Abstract In this paper, we study on-line scheduling problems on a batch machine
with the assumption that all jobs have their processing times in [p, (1 + φ)p], where
p > 0 and φ = (

√
5−1)/2. Jobs arrive over time. First, we deal with the on-line prob-

lem on a bounded batch machine with the objective to minimize makespan. A class
of algorithms with competitive ratio (

√
5 + 1)/2 are given. Then we consider the

scheduling on an unbounded batch machine to minimize the time by which all jobs
have been delivered, and provide a class of on-line algorithms with competitive ratio
(
√

5 + 1)/2. The two class of algorithms are optimal for the problems studied here.

Keywords Batching · Scheduling · On-line algorithm · Delivery time

1 Introduction

A batch machine is a machine that can process up to B jobs simultaneously as a
batch. All jobs processed in one batch have the same starting time and completion
time. The batch model studied in this paper is p-batch model (burn-in model). This
model is motivated by the burn-in operations in the final testing stage of semicon-
ductor manufacturing, and one job’s processing time is its minimal burn-in time. The
processing time of one batch is equal to the longest processing time of the jobs in it
(Lee et al. 1992). Once one batch starts to be processed, we can not stop it.

There are unbounded and bounded machines. For unbounded machine, there is
no upper bound on the number of jobs that can be processed in the same batch, i.e.,
B = +∞. On bounded machine each batch size B is limited, i.e., B < +∞. Note
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that in classical scheduling problems the machine can process no more than one job
at a time. So it can be regarded as the special case B = 1 of bounded batch machine.

Scheduling problems are divided into two categories: off-line and on-line. Most
works in scheduling area are for the off-line problem, i.e., before we decide to sched-
ule, we know all information about every job Jj . However, in reality it is unreasonable
to assume that all knowledge of the jobs are available beforehand. In this paper, we
study the on-line model where jobs arrive over time. Every job has one release date
rj , before which we do not have any information about the job. As one job arrives,
we get all of its information, such as processing time pj and delivery time qj . We
need to decide whether to start the jobs or wait for more information.

For a given on-line scheduling problem, we usually use the competitive ratio to
measure the performance of an on-line algorithm. Let A(I) and OPT(I ) denote, re-
spectively, the values obtained by an on-line algorithm A and an optimal off-line al-
gorithm for an input instance I . The algorithm is ρ-competitive, if A(I) ≤ ρ ·OPT(I )

for any instance. The competitive ratio ρA of the on-line algorithm A is defined as

ρA = inf
ρ

{ρ ≥ 1 : A(I) ≤ ρ · OPT(I ),∀I }

Moreover, the lower bound of the on-line problem is L if there does not exist an
algorithm with competitive ratio smaller than L. If the competitive ratio ρA of an
algorithm A for this on-line problem matches the lower bound, i.e. ρA = L, we call
the algorithm optimal, or best possible.

For on-line scheduling problem to minimize makespan on single unbounded batch
machine, Deng et al. (2003) and Zhang et al. (2001) prove that no on-line algorithm
can get competitive ratio less than (

√
5 + 1)/2 even if all jobs’ processing times

are same. They also independently give the same on-line algorithm with competitive
ratio matching the lower bound. Poon and Yu (2005) provide a more general class
of algorithms that also have the optimal competitive ratio for this case. Thus, the
unbounded capacity case is finished.

For the bounded version, when all jobs have the same release date, the optimal
schedule can be found by the FBLPT (Full Batch Longest Processing Times) rule
provided by Bartholdi (Brucker et al. 1998). For the on-line version, Liu and Yu
(2000) show the GRLPT algorithm is 2-competitive. Zhang et al. (2001) provide two
2-competitive on-line algorithms, HB and MHB . They also provide an optimal al-
gorithm for the special case where there are only two distinct release times. Poon and
Yu (2005) present a class of algorithms called FBLPT-based algorithms that contain
the above three algorithms, and show that the algorithms are 2-competitive for any
bounded capacity. They also give a 7/4-competitive algorithm for the case B = 2.

Hoogeveen and Vestjens (2000) first study the on-line scheduling problem with
delivery time. After completion of processing jobs need to be delivered. The objective
is to minimize the time by which all jobs have been delivered. For one non-batch
machine B = 1, they show the lower bound is (

√
5 + 1)/2, and provide the optimal

algorithm. For the unbounded batch machine version, Tian et al. (2007) give a 2-
competitive on-line algorithm for general case. When all jobs’ processing times are
the same, they provide an optimal algorithm with competitive ratio (

√
5+1)/2. Yuan

et al. (2009) consider an restricted model where every job’s processing time is not
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smaller than its delivery time, and provide an on-line algorithm with competitive
ratio (

√
5 + 1)/2 which is also optimal.

Sometimes we assume all jobs have an identical processing time for ease of expo-
sition. However, it is more reasonable to assume jobs have their processing times be-
ing in one interval. In semiconductor manufacturing integrated circuits (jobs) are pro-
duced through the same technical processes. Therefore they have their burn-in times
(processing times) in a not big interval. In this paper we assume that the processing
times of all jobs are in the interval [p, (1 + φ)p], where φ = (

√
5 − 1)/2. In Sect. 2,

we will give a class of on-line algorithms with competitive ratio (
√

5 + 1)/2 to min-
imize makespan on a bounded batch processing machine. In Sect. 3, we also provide
a class of on-line algorithms with competitive ratio (

√
5 + 1)/2 to minimize maxi-

mum delivery time on an unbounded batch machine. For the two problems above, our
algorithms are proved to be optimal.

Throughout the paper we use σ to denote the schedule produced by our algorithm
and π to denote an optimal schedule. Let U(t) be the set of all unscheduled jobs
available at time t , and let |U(t)| be the cardinality of U(t). For any job set J , we
use r(J ), p(J ), and q(J ), to denote the minimum release date, the largest processing
time, and the largest delivery time of J , respectively. For any batch B , S(B) repre-
sents its starting time.

2 Minimizing makespan on a bounded batch machine

In this section, we consider on-line scheduling problem on a bounded batch machine
with the objective of minimizing the makespan under the assumption that the process-
ing times of all jobs are drawn in [p, (1 + φ)p]. This problem can be expressed as
1|rj ,pj ∈ [p, (1 + φ)p],B < +∞, on-line|Cmax, where B is the capacity of batch
machine.

A batch is called full if it contain exactly B jobs. Otherwise, it is non-full.
Since pj ∈ [p, (1 + φ)p], it is better to put long jobs in one batch as many as

possible. We choose to start a batch as soon as it is full. In addition, in order to
obtain the optimal algorithm a non-full batch should not wait too long. Otherwise
the competitive ratio will be too large if there is no job coming. Scheduler needs to
decide how long a non-full batch should wait before it is processed. Based on waiting
and FBLPT, we give the following algorithm.

Algorithm HB

Step 0. If the machine is idle and U(t) is not empty at time t , determine r(t) =
min{rj |Jj ∈ U(t)}, p(t) = max{pj |Jj ∈ U(t)} and α(t), where α(t) ∈ [φp(t),
(1 + φ)r(t) + φp(t)]. Otherwise, wait until the machine is idle and at least a job
is available.

Step 1. If |U(t)| ≥ B , select the longest B jobs in U(t) as a batch and schedule the
batch.

Step 2. If 0 < |U(t)| < B then
Step 2A. If t ≥ α(t), then schedule jobs in U(t) as a single batch and start this batch.
Step 2B. If t ≤ α(t), wait until α(t) or the next arrival.

Step 3. Goto step 0.
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According to Algorithm HB , a full batch will be processed immediately and a non-
full batch can be started at t only when t ≥ α(t). When the number of unscheduled
jobs is smaller than B , idle times may be produced.

Theorem 1 The competitive ratio of Algorithm HB is 1 + φ.

Proof We use σ to denote the schedule produced by Algorithm HB and π to denote
an optimal schedule. Let t be the minimum time such that there are no idle interval
between t and Cmax(σ ). Assume that there are k batches B1,B2, . . . ,Bk in this inter-
val [t,Cmax(σ )]. Without loss of generality, we assume the k batches are indexed in
order of their non-decreasing starting times.

If k = 1, then t ≤ (1 + φ)r(B1) + φp(B1) and Cmax(π) ≥ r(B1) + p(B1). There-
fore,

Cmax(σ ) = t + p(B1) ≤ (1 + φ)(r(B1) + p(B1)) ≤ (1 + φ)Cmax(π)

If k ≥ 2, we consider two cases.
Case 1: In σ , all of the batches B1,B2, . . . ,Bk−1 are full.
Since pj ∈ [p, (1 + φ)p] for each job Jj , we have Cmax(π) ≥ p(B1) + (k − 1)p.
We consider the jobs whose release dates are no less than time t . Denote the set of

these jobs by S. By Algorithm HB , it is clear that jobs in S can form k − 1 batches at
least, and the longest job has its processing time not shorter than p(B2). So we have
Cmax(π) ≥ t + p(B2) + (k − 2)p.

In addition, Cmax(σ ) ≤ t + p(B1) + p(B2) + (k − 2)(1 + φ)p. Thus,

Cmax(σ ) − Cmax(π) ≤ p(B1) + (k − 2)φp

We know that (1 + φ)p(B1) + (k − 2)p ≤ p(B1) + (k − 1)p ≤ Cmax(π). Therefore,

Cmax(σ )/Cmax(π) ≤ 1 + φ

Case 2: There are some non-full batches in the batches B1,B2, . . . ,Bk−1.
Denote the last non-full batch before S(Bk) by Bj . For each batch Bi (j ≤ i ≤ k),

let Ji be the longest job. We have Cmax(π) ≥ S(Bj ) + pj+1 + (k − j − 1)p, and

Cmax(σ ) = S(Bj )+pj +pj+1 +· · ·+pk ≤ S(Bj )+pj +pj+1 +(k−j −1)(1+φ)p

Thus

Cmax(σ ) − Cmax(π) ≤ pj + (k − j − 1)φp

Case 2.1: If Jj is started before S(Bj ) in π , then

Cmax(π) ≥ pj + (k − j)p ≥ (1 + φ)pj + (k − j − 1)p

It follows from two above inequalities that Cmax(σ ) − Cmax(π) ≤ φCmax(π)

Case 2.2: If Jj is started at or after S(Bj ) in π , then

Cmax(π) ≥ S(Bj ) + pj + (k − j − 1)p ≥ (1 + φ)pj + (k − j − 1)p

Thus, Cmax(σ ) − Cmax(π) ≤ φCmax(π). �
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According to the result in Zhang et al. (2001), the lower bound of 1|rj ,B < +∞,
on-line|Cmax is 1 + φ even when pj = 1. Thus the lower bound of this problem can
not be smaller than 1 + φ. Therefore, this algorithm is best possible.

3 Minimizing maximum delivery time on an unbounded batch machine

In this section, we deal with the problem 1|rj ,pj ∈ [p, (1 + φ)p], qj ,B = +∞,
on-line|Lmax. The problem can be described as follows. We have one unbounded
batch machine and sufficiently many vehicles. Every job has a release date, process-
ing time and delivery time. Jobs arrive over time. After processing on the batch ma-
chine, jobs need to be delivered by vehicles. All jobs in one batch have the same
completion time. Let Cj be the completion time on batch machine of Jj , and Lj be
the time by which Jj has been delivered, i.e., Lj = Cj + qj . Our goal is to minimize
the time Lmax, by which all jobs have been delivered, i.e., Lmax = maxj {Lj : Lj =
Cj + qj }.

According to the result in Zhang et al. (2001), when pj = 1 and qj = 0, this
problem can be regarded as 1|rj ,pj = 1,B = +∞, on-line|Cmax, whose lower bound
is 1 + φ. Thus, there is no on-line algorithm with competitive ratio less than 1 + φ

for 1|rj ,pj ∈ [p, (1 + φ)p], qj ,B = +∞, on-line|Lmax.
Similar to Sect. 2, we will provide a class of on-line algorithms with competitive

ratio 1 + φ. Since the machine’s capacity is infinite, we can assign all unscheduled
jobs in one batch. We just need to decide when to start unscheduled jobs. The algo-
rithm is following.

Algorithm H∞

Step 0. If the machine is idle and U(t) is not empty at time t , determine r(t) =
min{rj |Jj ∈ U(t)}, p(t) = max{pj |Jj ∈ U(t)} and α(t), where α(t) ∈ [φp(t),
(1 + φ)r(t) + φp(t)]. Otherwise, wait until the machine is idle and at least a job
is available.

Step 1. If t ≥ α(t), then schedule jobs in U(t) as a single batch.
Step 2. If t < α(t), wait until α(t) or the next arrival.
Step 3. Goto step 0.

We use σ to denote the schedule produced by Algorithm H∞ and π to denote an
optimal schedule. Let Jl be the first job in σ such that Ll = Lmax(σ ). Let t be the
minimum time such that there is no idle time in the time interval [t,Lmax(σ ) − ql].
Assume that there are k batches B1,B2, . . . ,Bk in this interval. Without loss of gen-
erality, we assume the k batches are indexed in order of their non-decreasing starting
times, i.e., S(B1) < S(B2) < · · · < S(Bk).

According to Algorithm H∞, we can get three properties easily:

1. S(Bi) ≥ φp(Bi), for 1 ≤ i ≤ k. One batch could start at t only when t ≥ α(t) ≥
φp(t) ≥ φp(Bi).

2. r(Bi) > S(Bi−1), for 2 ≤ i ≤ k. All jobs processing in one batch must arrive the
time when the previous batch is started. Otherwise, they should be assigned to the
previous batch.

3. t = S(B1) ≤ (1 + φ)r(B1) + φp(B1).
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Theorem 2 The competitive ratio of the Algorithm H∞ is 1 + φ.

Proof For each batch Bi in σ , denote by Ji(ri ,pi, qi) and J ∗
i (r∗

i , p∗
i , q

∗
i ), the longest

job and the job with the largest delivery time, respectively. (If the longest job has the
largest delivery time, then Ji = J ∗

i .) We have pi = p(Bi) and

Lmax(σ ) = t + p1 + p2 + · · · + pk + q∗
k

We check all possible cases by discussing how many batches are processed in
[t,Lmax(σ ) − ql].

Case 1: There is only one batch in [t,Lmax(σ ) − ql], i.e., k = 1. We have
Lmax(σ ) = t + p1 + q∗

1 ≤ (1 + φ)(r(B1) + p1) + q∗
1 .

Case 1.1: If q∗
1 ≥ p1, then

Lmax(σ )

Lmax(π)
≤ (1 + φ)(r(B1) + p1) + q∗

1

r(B1) + p∗
1 + q∗

1
≤ (1 + φ)(r(B1) + p1) + p1

r(B1) + p1 + p∗
1

≤ 1 + φ

where p1 ≤ (1 + φ)p∗
1 .

Case 1.2: If q∗
1 < p1,

(1) In π , if J1 and J ∗
1 are not in the same batch, then Lmax(π) ≥ r(B1) + p1 + p∗

1 .
Thus

Lmax(σ )

Lmax(π)
≤ (1 + φ)(r(B1) + p1) + q∗

1

r(B1) + p1 + p∗
1

≤ (1 + φ)(r(B1) + p1) + p1

r(B1) + p1 + p∗
1

≤ 1 + φ

(2) In π , if J1 and J ∗
1 are in the same batch, then Lmax(π) ≥ r(B1) + p1 + q∗

1 . Thus

Lmax(σ )

Lmax(π)
≤ (1 + φ)(r(B1) + p1) + q∗

1

r(B1) + p1 + q∗
1

≤ 1 + φ

Case 2: There are more than one batches in [t,Lmax(σ ) − ql], i.e., k ≥ 2. We have
Lmax(σ ) = S(Bk−1) + pk−1 + pk + q∗

k .
Case 2.1: If q∗

k ≥ pk , then

Lmax(σ )

Lmax(π)
≤ S(Bk−1) + pk−1 + pk + q∗

k

S(Bk−1) + p∗
k + q∗

k

≤ S(Bk−1) + pk−1 + 2pk

S(Bk−1) + p∗
k + pk

≤ (1 + φ)pk−1 + 2pk

φpk−1 + pk + p∗
k

and

[(1 + φ)pk−1 + 2pk] − (1 + φ)(φpk−1 + pk + p∗
k )

= φpk−1 + φ2pk − (1 + φ)p∗
k

≤ φ(1 + φ)p + φ2(1 + φ)p − (1 + φ)p

≤ (1 + φ)p − (1 + φ)p = 0
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Therefore, Lmax(σ )/Lmax(π) ≤ 1 + φ.
Case 2.2: If q∗

k < pk ,

(1) In π , Jk and J ∗
k are in the same batch, then Lmax(π) ≥ S(Bk−1)+pk +q∗

k . Thus,
Lmax(σ ) − Lmax(π) ≤ pk−1.
(a) In π , Jk−1 is started before S(Bk−1). Lmax(π) ≥ pk−1 + pk ≥ (1 + φ)pk−1.

Then

Lmax(σ ) − Lmax(π) ≤ φLmax(π)

(b) In π , Jk−1 is started at or after S(Bk−1). Lmax(π) ≥ S(Bk−1) + pk−1 ≥
(1 + φ)pk−1. Then

Lmax(σ ) ≤ (1 + φ)Lmax(π)

(2) In π , Jk and J ∗
k are not in the same batch. Lmax(π) ≥ S(Bk−1) + pk + p∗

k . Then

Lmax(σ )

Lmax(π)
≤ S(Bk−1) + pk−1 + pk + q∗

k

S(Bk−1) + pk + p∗
k

≤ S(Bk−1) + pk−1 + 2pk

S(Bk−1) + pk + p∗
k

≤ (1 + φ)pk−1 + 2pk

φpk−1 + pk + p∗
k

Similar to case 2.1, we have Lmax(σ )/Lmax(π) ≤ 1 + φ.

Note that we have checked all possible schedules, the competitive ratio of the
Algorithm H∞ is 1 + φ. �

Since there is no on-line algorithm with competitive ratio less than 1 + φ for the
problem 1|rj ,pj ∈ [p, (1 + φ)p], qj ,B = +∞, on-line|Lmax, Algorithms H∞ is
best possible.

4 Conclusion

In this paper, we study the problems 1|rj ,pj ∈ [p, (1+φ)p],B < +∞, on-line|Cmax

and 1|rj ,pj ∈ [p, (1 + φ)p], qj ,B = +∞, on-line|Lmax. For each problem studied
here, we provide a class of algorithms which are optimal. When the first problem
is changed to 1|rj ,pj ∈ [p, (1 + φ)p], qj ,B < +∞, on-line|Lmax, we think there
exists an optimal algorithm based on FBLDT (Full Batch Longest Delivery Times).
For the general case of first problem, Poon and Yu (2005) present a class of FBLPT-
based algorithms which are 2-competitive. Although we conjecture that there exist the
algorithms with competitive ratio less than 2, it is very difficult to find one. Further
research is required.
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