J Comb Optim (2011) 22:509-516
DOI 10.1007/s10878-010-9298-6

Optimal on-line algorithms for one batch machine
with grouped processing times

Yang Fang - Peihai Liu - Xiwen Lu

Published online: 12 February 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we study on-line scheduling problems on a batch machine
with the assumption that all jobs have their processing times in [p, (1 + ¢) p], where
p > 0and ¢ = (v/5—1)/2. Jobs arrive over time. First, we deal with the on-line prob-
lem on a bounded batch machine with the objective to minimize makespan. A class
of algorithms with competitive ratio (v/5 + 1)/2 are given. Then we consider the
scheduling on an unbounded batch machine to minimize the time by which all jobs
have been delivered, and provide a class of on-line algorithms with competitive ratio
(+/5 + 1)/2. The two class of algorithms are optimal for the problems studied here.

Keywords Batching - Scheduling - On-line algorithm - Delivery time

1 Introduction

A batch machine is a machine that can process up to B jobs simultaneously as a
batch. All jobs processed in one batch have the same starting time and completion
time. The batch model studied in this paper is p-batch model (burn-in model). This
model is motivated by the burn-in operations in the final testing stage of semicon-
ductor manufacturing, and one job’s processing time is its minimal burn-in time. The
processing time of one batch is equal to the longest processing time of the jobs in it
(Lee et al. 1992). Once one batch starts to be processed, we can not stop it.

There are unbounded and bounded machines. For unbounded machine, there is
no upper bound on the number of jobs that can be processed in the same batch, i.e.,
B = +00. On bounded machine each batch size B is limited, i.e., B < +00. Note

Y. Fang - P. Liu - X. Lu (X))

Department of Mathematics, School of Science, East China University of Science and Technology,
Shanghai, People’s Republic of China, 200237

e-mail: xwlu@ecust.edu.cn

@ Springer

mailto:xwlu@ecust.edu.cn

510 J Comb Optim (2011) 22:509-516

that in classical scheduling problems the machine can process no more than one job
at a time. So it can be regarded as the special case B = 1 of bounded batch machine.

Scheduling problems are divided into two categories: off-line and on-line. Most
works in scheduling area are for the off-line problem, i.e., before we decide to sched-
ule, we know all information about every job J;. However, in reality it is unreasonable
to assume that all knowledge of the jobs are available beforehand. In this paper, we
study the on-line model where jobs arrive over time. Every job has one release date
rj, before which we do not have any information about the job. As one job arrives,
we get all of its information, such as processing time p; and delivery time g;. We
need to decide whether to start the jobs or wait for more information.

For a given on-line scheduling problem, we usually use the competitive ratio to
measure the performance of an on-line algorithm. Let A(/) and OPT(I) denote, re-
spectively, the values obtained by an on-line algorithm A and an optimal off-line al-
gorithm for an input instance /. The algorithm is p-competitive, if A(I) < p-OPT(I)
for any instance. The competitive ratio p4 of the on-line algorithm A is defined as

pa=inf{p>1:A() < p-OPT(I),VI}
0

Moreover, the lower bound of the on-line problem is L if there does not exist an
algorithm with competitive ratio smaller than L. If the competitive ratio p4 of an
algorithm A for this on-line problem matches the lower bound, i.e. p4 = L, we call
the algorithm optimal, or best possible.

For on-line scheduling problem to minimize makespan on single unbounded batch
machine, Deng et al. (2003) and Zhang et al. (2001) prove that no on-line algorithm
can get competitive ratio less than (+/5 + 1)/2 even if all jobs’ processing times
are same. They also independently give the same on-line algorithm with competitive
ratio matching the lower bound. Poon and Yu (2005) provide a more general class
of algorithms that also have the optimal competitive ratio for this case. Thus, the
unbounded capacity case is finished.

For the bounded version, when all jobs have the same release date, the optimal
schedule can be found by the FBLPT (Full Batch Longest Processing Times) rule
provided by Bartholdi (Brucker et al. 1998). For the on-line version, Liu and Yu
(2000) show the GRLPT algorithm is 2-competitive. Zhang et al. (2001) provide two
2-competitive on-line algorithms, H? and M H®. They also provide an optimal al-
gorithm for the special case where there are only two distinct release times. Poon and
Yu (2005) present a class of algorithms called FBLPT-based algorithms that contain
the above three algorithms, and show that the algorithms are 2-competitive for any
bounded capacity. They also give a 7/4-competitive algorithm for the case B = 2.

Hoogeveen and Vestjens (2000) first study the on-line scheduling problem with
delivery time. After completion of processing jobs need to be delivered. The objective
is to minimize the time by which all jobs have been delivered. For one non-batch
machine B = 1, they show the lower bound is (v/5 + 1)/2, and provide the optimal
algorithm. For the unbounded batch machine version, Tian et al. (2007) give a 2-
competitive on-line algorithm for general case. When all jobs’ processing times are
the same, they provide an optimal algorithm with competitive ratio (+/5+ 1)/2. Yuan
et al. (2009) consider an restricted model where every job’s processing time is not

@ Springer

J Comb Optim (2011) 22:509-516 511

smaller than its delivery time, and provide an on-line algorithm with competitive
ratio (+/5 + 1)/2 which is also optimal.

Sometimes we assume all jobs have an identical processing time for ease of expo-
sition. However, it is more reasonable to assume jobs have their processing times be-
ing in one interval. In semiconductor manufacturing integrated circuits (jobs) are pro-
duced through the same technical processes. Therefore they have their burn-in times
(processing times) in a not big interval. In this paper we assume that the processing
times of all jobs are in the interval [p, (1 4+ ¢) p], where ¢ = (\/5 —1)/2. In Sect. 2,
we will give a class of on-line algorithms with competitive ratio (+/5 + 1)/2 to min-
imize makespan on a bounded batch processing machine. In Sect. 3, we also provide
a class of on-line algorithms with competitive ratio (+/5 + 1)/2 to minimize maxi-
mum delivery time on an unbounded batch machine. For the two problems above, our
algorithms are proved to be optimal.

Throughout the paper we use o to denote the schedule produced by our algorithm
and 7 to denote an optimal schedule. Let U (¢) be the set of all unscheduled jobs
available at time ¢, and let |U (¢)| be the cardinality of U (¢). For any job set J, we
use r(J), p(J), and g(J), to denote the minimum release date, the largest processing
time, and the largest delivery time of J, respectively. For any batch B, S(B) repre-
sents its starting time.

2 Minimizing makespan on a bounded batch machine

In this section, we consider on-line scheduling problem on a bounded batch machine
with the objective of minimizing the makespan under the assumption that the process-
ing times of all jobs are drawn in [p, (1 4+ ¢) p]. This problem can be expressed as
Llrj, pj € [p, (1 + ¢)pl, B < +00, on-line|Cmax, Where B is the capacity of batch
machine.

A batch is called full if it contain exactly B jobs. Otherwise, it is non-full.

Since p; € [p, (1 + ¢)p], it is better to put long jobs in one batch as many as
possible. We choose to start a batch as soon as it is full. In addition, in order to
obtain the optimal algorithm a non-full batch should not wait too long. Otherwise
the competitive ratio will be too large if there is no job coming. Scheduler needs to
decide how long a non-full batch should wait before it is processed. Based on waiting
and FBLPT, we give the following algorithm.

Algorithm H 5

Step 0. If the machine is idle and U(¢) is not empty at time ¢, determine r(t) =
min{r;|J; € U(t)}, p(t) = max{p;|J; € U(t)} and a(r), where a(t) € [¢p(?),
(1 4+ @)r(t) + ¢p(t)]. Otherwise, wait until the machine is idle and at least a job
is available.

Step 1. If |U(¢)| > B, select the longest B jobs in U (¢) as a batch and schedule the
batch.

Step 2. If 0 < |U(¢t)| < B then
Step 2A. If t > «(¢), then schedule jobs in U (¢) as a single batch and start this batch.
Step 2B. If t < «(#), wait until «(¢) or the next arrival.

Step 3. Goto step 0.

@ Springer

512 J Comb Optim (2011) 22:509-516

According to Algorithm H 2, a full batch will be processed immediately and a non-
full batch can be started at # only when ¢ > «(¢). When the number of unscheduled
jobs is smaller than B, idle times may be produced.

Theorem 1 The competitive ratio of Algorithm H® is 1 + ¢.

Proof We use o to denote the schedule produced by Algorithm H® and 7 to denote
an optimal schedule. Let ¢ be the minimum time such that there are no idle interval
between ¢ and Cpax (0). Assume that there are k batches By, Bs, ..., By in this inter-
val [#, Cnax (0)]. Without loss of generality, we assume the k batches are indexed in
order of their non-decreasing starting times.

Ifk=1,thent < (14 ¢)r(B1) + ¢p(B1) and Cpax(w) > r(B1) + p(By). There-
fore,

Cmax(0) =1+ p(B1) = (1+¢)(r(B1) + p(B1)) = (1 + ¢)Crmax (1)

If k > 2, we consider two cases.

Case 1: In o, all of the batches B, By, ..., Bir_ are full.

Since p; € [p, (1 + ¢)p] for each job J;, we have Ciax (7)) > p(B1) + (k — 1) p.

We consider the jobs whose release dates are no less than time ¢. Denote the set of
these jobs by S. By Algorithm H 5, it is clear that jobs in § can form k — 1 batches at
least, and the longest job has its processing time not shorter than p(B3). So we have
Cmax () >t + p(B2) + (k= 2)p.

In addition, Cpax(0) <t + p(B1) + p(B2) + (k — 2)(1 + ¢) p. Thus,

Cmax(0) — Cmax () < p(B1) + (k — 2)¢pp
We know that (1 4+ ¢)p(B1) + (k—2)p < p(B1) + (k — 1) p < Cpax(7r). Therefore,
Cmax(0)/Crmax () <1+ ¢

Case 2: There are some non-full batches in the batches By, By, ..., Br_1.
Denote the last non-full batch before S(By) by B;. For each batch B; (j <i < k),
let J; be the longest job. We have Ciax () > S(Bj) + pj+1+ (k— j —1)p, and

Cnax(0)=8SBj))+pj+pjr1+-+pe <SBj)+pj+pjr1+k—j—DA+¢)p
Thus

Cinax(0) — Cmax (W) < pj + (k — j — D)¢p
Case 2.1: If J; is started before S(B;) in 7, then

Coax(m)zpj+k—jp=0+¢)pj+k—j—Dp

It follows from two above inequalities that Cpax () — Cpax (7)) < ¢Crax (,7)
Case 2.2: If J; is started at or after S(B;) in 7, then

Coax(m) 2 SBj)+pj+k—j—Dp=>=A+¢)p;j+*k—j—Dp

Thus, Ciax(0) — Cax (71) < @ Crax (77). 0

@ Springer

J Comb Optim (2011) 22:509-516 513

According to the result in Zhang et al. (2001), the lower bound of 1|r;, B < +o0,
on-line|Cpax is 1 + ¢ even when p; = 1. Thus the lower bound of this problem can
not be smaller than 1 + ¢. Therefore, this algorithm is best possible.

3 Minimizing maximum delivery time on an unbounded batch machine

In this section, we deal with the problem 1|r;, p; € [p, (1 + ¢)pl,q;, B = +o0,
on-line|L .. The problem can be described as follows. We have one unbounded
batch machine and sufficiently many vehicles. Every job has a release date, process-
ing time and delivery time. Jobs arrive over time. After processing on the batch ma-
chine, jobs need to be delivered by vehicles. All jobs in one batch have the same
completion time. Let C; be the completion time on batch machine of J;, and L; be
the time by which J; has been delivered, i.e., L; = C; + g;. Our goal is to minimize
the time Lmax, by which all jobs have been delivered, i.e., Lmax = max;{L;: L; =
Ci+gqj}.

According to the result in Zhang et al. (2001), when p; =1 and ¢g; = 0, this
problem can be regarded as 1|7, pj = 1, B = +00, on-line|Cpyax, whose lower bound
is 1 4+ ¢. Thus, there is no on-line algorithm with competitive ratio less than 1 + ¢
for 1lr;, pj € [p, (1 + @) pl, g, B =+00, on-line| L pax.

Similar to Sect. 2, we will provide a class of on-line algorithms with competitive
ratio 1 + ¢. Since the machine’s capacity is infinite, we can assign all unscheduled
jobs in one batch. We just need to decide when to start unscheduled jobs. The algo-
rithm is following.

Algorithm H*®

Step 0. If the machine is idle and U (¢) is not empty at time ¢, determine r(¢) =
min{r;|J; € U(@t)}, p(t) = max{p;|J; € U(t)} and a(t), where a(t) € [¢p(¢),
(1 4+ @)r(t) + ¢p(t)]. Otherwise, wait until the machine is idle and at least a job
is available.

Step 1. If t > (), then schedule jobs in U (¢) as a single batch.

Step 2. If t < «(¢), wait until «(¢) or the next arrival.

Step 3. Goto step 0.

We use o to denote the schedule produced by Algorithm H* and 7 to denote an
optimal schedule. Let J; be the first job in o such that L; = Ly (0). Let ¢ be the
minimum time such that there is no idle time in the time interval [#, Lmax (o) — q;]-
Assume that there are k batches By, By, ..., By in this interval. Without loss of gen-
erality, we assume the k batches are indexed in order of their non-decreasing starting
times, i.e., S(B1) < S(B2) < --- < S(Bg).

According to Algorithm H°, we can get three properties easily:

1. S(B;) = ¢p(B;), for 1 <i < k. One batch could start at r only when t > «(t) >
¢p(t) > ¢p(B;).

2. r(Bj) > S(Bj_1), for 2 <i <k. All jobs processing in one batch must arrive the
time when the previous batch is started. Otherwise, they should be assigned to the
previous batch.

3. 1=8(B1) = (1+¢)r(B1) + ¢p(B1).

@ Springer

514 J Comb Optim (2011) 22:509-516

Theorem 2 The competitive ratio of the Algorithm H*® is 1 + ¢.

Proof For each batch B; in o, denote by J; (r;, pi, ;) and J*(r, p}, q}), the longest
job and the job with the largest delivery time, respectively. (If the longest job has the
largest delivery time, then J; = J;*.) We have p; = p(B;) and

erl'cl)((a):t'|'l7l"'172‘|""'|‘pk'|'ql>ck

We check all possible cases by discussing how many batches are processed in
[7, Lmax(0) — qi]-
Case 1: There is only one batch in [t, Lymax(0) — ¢qi], i.e., k = 1. We have

Liax(o) =1+ p1 +QT < +¢)r(B1)+ p1) +qik'
Case 1.1: If g} > py, then

Lmax(0) _ (1 +@)(r(B1) + p1) +qf _ 04+ B +p) +pi
Lmax () — V(Bl)'i‘PT‘HIT B 7'(B1)'|'Pl'|‘p>1k

=l+¢

where p; < (14 ¢)p7.
Case 1.2: If qf < pi1,

(1) In g, if Jy and J;* are not in the same batch, then Lax () > r(B1) + p1 + p.
Thus

Lmax(0) _ 1+ BU+p)+a7 _ A+ (B +p1)+pi
Lmax () — r(By) + p1+ p} N r(By) + p1+ p}

<1l+¢

(2) Inm,if J; and J| are in the same batch, then Lyax () > 7(B1) + p1 + g7 . Thus

Lmax(0) < (1+¢)(V(Bl)+pl)+Qik
Lax(m) — V(Bl)+P1+CIT

<l+¢

Case 2: There are more than one batches in [#, Lymax (o) — ¢;], i.e., k > 2. We have
Limax(0) = S(Bk—1) + pr—1 + p + qu'
Case 2.1: If g} > py, then

Lmax(0) _ S(Bi—1) + Pi—1 + Pk +aq; _ SBi—D) + i1 +2pk
Lmax () — S(Bx-1) + pi +a; T S(Br-1) + pi+ pr

- (I +¢)pr—1 + 2px
T ¢pk—1+ pr+ P}

and

(14 @) pr—1 +2pk] — (1 + @) (Ppk—1 + pk + Pp)
=¢pi-1+¢"pe — (L +)i
<¢p(+P)p+¢°(1+d)p—(1+¢)p
<(+¢)p—1+¢)p=0

@ Springer

J Comb Optim (2011) 22:509-516 515

Therefore, Linax(0)/Liax () <1+ ¢.
Case 2.2: If g < px,

(1) Inm, Ji and J; are in the same batch, then Lyax (77) > S(Bk—1) + px +¢; . Thus,
Liax(0) — Liax () < pi—1.
(@) Inm, Jp—1 is started before S(Bx—1). Lmax () = px—1 + pr = (1 + @) pr—1.
Then
Linax(0) — Linax(71) < @ Linax (1)
(b) In 7, Jr—1 is started at or after S(Bx—1). Lmax () = S(Bk—1) + pi—1 >
(14 ¢)pk—1. Then
Lmax(0) < (1 + @) Lmax (1)

(2) Inm, Jy and J;f are not in the same batch. Lyax () > S(Bi—1) + px + pf- Then

Lmax(0) < S(Br—1) + pr—1 + Pk ‘i‘q]zk
Limax () — S(Bk—1)+Pk+P1t
_SBe-D +pr-1+2pk _ A+) pr—1 +2pk
S(Bk—1)+ pk+p; — ¢pk—1+ Pk + Py

Similar to case 2.1, we have Lyax(0)/Lmax () <1+ ¢.

Note that we have checked all possible schedules, the competitive ratio of the
Algorithm H* is 1 + ¢. g

Since there is no on-line algorithm with competitive ratio less than 1 + ¢ for the
problem 1|rj, p; € [p, (1 + ¢)pl, g, B = +00, on-line|Ly,x, Algorithms H® is
best possible.

4 Conclusion

In this paper, we study the problems 1|7, p; € [p, (1+¢)p], B < 400, on-line|Ciyax
and 1|r;, pj € [p, (1 + @) pl, qj, B = +00, on-line| L y,x. For each problem studied
here, we provide a class of algorithms which are optimal. When the first problem
is changed to 1|rj, pj € [p, (1 + @) pl,q;, B < +00, on-line|Lnax, we think there
exists an optimal algorithm based on FBLDT (Full Batch Longest Delivery Times).
For the general case of first problem, Poon and Yu (2005) present a class of FBLPT-
based algorithms which are 2-competitive. Although we conjecture that there exist the
algorithms with competitive ratio less than 2, it is very difficult to find one. Further
research is required.

Acknowledgements The authors would like to thank two anonymous referees whose comments helped
a lot to improve this paper. This research was supported by the grant 09ZR 1407200 of Science Foundation
of Shanghai and NSFC (10771067).

@ Springer

516 J Comb Optim (2011) 22:509-516

References

Brucker P, Gladky A, Hoogeveen H, Kovalyov MY, Potts CN, Tautenhahn T, van de Velde SL (1998)
Scheduling a batching machine. J Sched 1:31-54

Deng X, Poon CK, Zhang Y (2003) Approximation algorithms in batch processing. J Comb Optim 7:247—
257

Hoogeveen JA, Vestjens APA (2000) A best possible deterministic on-line algorithm for minimizing max-
imum delivery time on a single machine. SIAM J Discrete Math 13:56—63

Lee CY, Uzsoy R, MartinVega LA (1992) Efficient algorithms for scheduling semiconductor burn-in op-
erations. Oper Res 40:764-775

Liu Z, Yu W (2000) Scheduling one batch processor subject to job release dates. Discrete Appl Math
105:129-136

Poon CK, Yu W (2005) A flexible on-line scheduling algorithm for batch machine with infinite capacity.
Ann Oper Res 133:175-181

Poon CK, Yu W (2005) On-line scheduling algorithms for a batch machine with finite capacity. J Comb
Optim 9:167-186

Tian J, Fu R, Yuan J (2007) On-line scheduling with delivery time on a single batch machine. Theory
Comput Sci 374:49-57

Yuan J, Li S, Tian J, Fu R (2009) A best on-line algorithm for the single machine parallel-batch scheduling
with restricted delivery times. J Comb Optim 17:206-213

Zhang G, Cai X, Wong CK (2001) On-line algorithms for minimizing makespan on batch processing
machines. Nav Res Logist 48:241-258

@ Springer

	Optimal on-line algorithms for one batch machine with grouped processing times
	Abstract
	Introduction
	Minimizing makespan on a bounded batch machine
	Algorithm HB

	Minimizing maximum delivery time on an unbounded batch machine
	Algorithm Hinfty

	Conclusion
	Acknowledgements
	References

