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Abstract We investigate four variants of the longest common subsequence problem.
Given two sequences X, Y and a constrained pattern P of lengths m, n, and ρ, respec-
tively, the generalized constrained longest common subsequence (GC-LCS) problems
are to find a longest common subsequence of X and Y including (or excluding) P as
a subsequence (or substring). We propose new dynamic programming algorithms for
solving the GC-LCS problems in O(mnρ) time. We also consider the case where the
number of constrained patterns is arbitrary.
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1 Introduction

A sequence is a string of characters over an alphabet �. A subsequence of a sequence
X is obtained by deleting zero or more characters from X (not necessarily contigu-
ous). A substring of a sequence X is a subsequence of successive characters within
X. Given a sequence X of length m, let X[i] denote the ith character of X for any
i = 1, . . . ,m. We also let X[i..j ] denote the subsequence of consecutive characters
in X from position i to position j if 1 ≤ i ≤ j ≤ m, and an empty string otherwise.
For example, if X = algorithm, then X[7] = t and X[3..5] = gor.
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A common subsequence of two sequences is a subsequence that appears in
both sequences. A longest common subsequence (LCS) of two sequences is a
maximum-length common subsequence of the sequences. The LCS problem is to
find an LCS of two given sequences, which is a fundamental problem in com-
puter science. Wagner and Fischer (1974) proposed the LCS problem and solved
it by computing the edit distance between the sequences in quadratic time and
space. Hirschberg (1975) presented a quadratic-time and linear-space algorithm
for the LCS problem. The LCS problem has been studied intensively to improve
the time complexity for decades (Aho et al. 1976; Apostolico and Guerra 1987;
Bergroth et al. 2000; Bonizzoni et al. 2007; Cormen et al. 2001; Gusfield 1997;
Hirschberg 1977; Hunt and Szymanski 1977; Masek and Paterson 1980; Pevzner
2000; Rahman and Iliopoulos 2007). The LCS problem with an arbitrary number of
sequences, even on a binary alphabet, is NP-hard (Maier 1978).

The LCS problem is a special case of the sequence alignment problem (Chao and
Zhang 2009; Gusfield 1997), and has many applications in molecular biology and pat-
tern recognition. One major application is to measure the similarity of sequences. In
the evolutionary molecular biology, a significant segment of the DNA sequence might
have been conserved in different species. To take a common specific segment into ac-
count for the similarity measurement, the LCS problem with an inclusive constraint,
named the inclusion-constrained longest common subsequence (IC-LCS) problem, is
considered. We address two IC-LCS problems as follows.

Problem 1 (SEQ-IC-LCS) (Arslan and Eǧecioǧlu 2005; Chin et al. 2004; Iliopoulos
and Rahman 2008; Tsai 2003) Given two sequences X, Y and a constrained pattern
P of lengths m, n, and ρ, respectively, the SEQ-IC-LCS problem is to find an LCS
of X and Y including P as a subsequence.

Problem 2 (STR-IC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the STR-IC-LCS problem is to find an LCS of
X and Y including P as a substring.

For example, if X = AATGCCTAGGC, Y = CGATCTGGAC, and P = GTAC, an
LCS of X and Y is ATCTGGC, and outputs of the SEQ-IC-LCS and STR-IC-LCS
problems are GCTAC and GTAC, respectively.

The SEQ-IC-LCS problem was proposed and solved in O(m2n2ρ) time by Tsai
(2003). Later, Chin et al. (2004) and Arslan and Eǧecioǧlu (2005) independently pre-
sented two improved algorithms with O(mnρ) time. Chin et al. (2004) also showed
that this problem is equivalent to a special case of the constrained multiple se-
quence alignment problem (Chin et al. 2005; Tang et al. 2003). Without loss of
generality, assume that m ≤ n. Recently, Iliopoulos and Rahman (2008) proposed
an O(ρr log logn + n)-time algorithm by employing the van Emde Boas tree (van
Emde Boas 1977; van Emde Boas et al. 1977), where r is the total number of or-
dered pairs of positions at which X and Y match. It should be noted, however, that
the preprocessing time of the van Emde Boas tree was not evaluated when analyzing
the time complexity.
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Problem Input Output

SEQ-IC-LCS An LCS of X and Y including P as a subsequence
STR-IC-LCS X,Y, and P An LCS of X and Y including P as a substring
SEQ-EC-LCS An LCS of X and Y excluding P as a subsequence
STR-EC-LCS An LCS of X and Y excluding P as a substring

Fig. 1 The GC-LCS problems

To take more common flexible structures into account for the similarity measure-
ment, we extend the definition of the IC-LCS problem to be the LCS problem with an
exclusive constraint, named the exclusion-constrained longest common subsequence
(EC-LCS) problem. We address two EC-LCS problems as follows.

Problem 3 (SEQ-EC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the SEQ-EC-LCS problem is to find an LCS of
X and Y excluding P as a subsequence.

Problem 4 (STR-EC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the STR-EC-LCS problem is to find an LCS of
X and Y excluding P as a substring.

For example, suppose X = AATGCCTAGGC and Y = CGATCTGGAC. If P = TGC,
an output of the SEQ-EC-LCS problem is ATCTGG. If P = TG, an output of the STR-
EC-LCS problem is ATCGGC.

The four variants of the LCS problem are named as the generalized constrained
longest common subsequence (GC-LCS) problems and summarized in Fig. 1. To
our knowledge, the STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems are
discussed for the first time.

In Sect. 2, we present three O(mnρ)-time algorithms for solving the STR-IC-LCS,
SEQ-EC-LCS, and STR-EC-LCS problems, respectively. We also consider the GC-
LCS problems with an arbitrary number of constrained patterns in Sect. 3. Finally,
concluding remarks are given in Sect. 4.

2 The algorithms

In the following, we propose three dynamic programming algorithms for solving the
STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems, respectively.

2.1 An O(mnρ)-time algorithm for the STR-IC-LCS problem

The STR-IC-LCS problem is to find an LCS of two sequences X and Y including
a constrained pattern P as a substring. Property 1 shows the characterization of the
structure of a solution to the STR-IC-LCS problem.
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Fig. 2 An illustration of the problem decomposition on the STR-IC-LCS problem. Z is an LCS of X and
Y including P as a substring, and is also a concatenation of the substrings Z1 and Z2, where Z1 is an LCS
of X[1..i] and Y [1..j ] including P as the suffix Z[l′ − ρ + 1..l′], and Z2 is an LCS of X[i + 1..m] and
Y [j + 1..n], for some 0 ≤ i ≤ m, 0 ≤ j ≤ n, and ρ ≤ l′ ≤ l

Property 1 If Z[1..l] is an LCS of X[1..m] and Y [1..n] including P as the substring
Z[l′ − ρ + 1..l′] for some ρ ≤ l′ ≤ l, then Z[1..l] is a concatenation of the following
two substrings, for some 0 ≤ i ≤ m and 0 ≤ j ≤ n:

1. The prefix Z[1..l′]: Z[1..l′] is an LCS Z1 of X[1..i] and Y [1..j ] including P as
the suffix Z[l′ − ρ + 1..l′], and

2. The suffix Z[l′ + 1..l]: Z[l′ + 1..l] is an LCS Z2 of X[i + 1..m] and Y [j + 1..n].

Figure 2 illustrates the concept of the problem decomposition shown in Property 1.
Based on solutions of the STR-IC-LCS problem to subproblems, we solve it by first
computing an LCS of X[1..i] and Y [1..j ] including P as a suffix and an LCS of
X[i..m] and Y [j..n] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. The solutions to the two sub-
problems are then merged to determine a longest concatenation. A quadratic-time
algorithm for computing an LCS of X[i..m] and Y [j..n] (Cormen et al. 2001) is
employed. For obtaining an LCS of X[1..i] and Y [1..j ] including P as a suffix, The-
orem 1 decomposes the structure of an optimal solution based on the solutions to its
smaller subproblems.

Theorem 1 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j ] including
P [1..k] as a suffix. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j ] = P [k] and k > 0, then Z[l] = X[i] = Y [j ] = P [k] and
Z[1..l − 1] ∈ Si−1,j−1,k−1.

(2) If X[i] = Y [j ], X[i] �= P [k], and k > 0, then Z[l] �= X[i] and Z[1..l] ∈
Si−1,j−1,k .

(3) If X[i] = Y [j ] and k = 0, then Z[l] = X[i] = Y [j ] and Z[1..l − 1] ∈ Si−1,j−1,k .
(4) If X[i] �= Y [j ], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(5) If X[i] �= Y [j ], then Z[l] �= Y [j ] implies Z[1..l] ∈ Si,j−1,k .

Proof We prove this theorem case by case. (1) Since P [1..k] is a suffix of Z[1..l], we
have Z[l] = P [k]. If Z[l] �= X[i], we could append X[i] = Y [j ] = P [k] to Z[1..l−1]
obtain a common subsequence of length l, and the resulting sequence also includes
P [1..k] as a suffix. Thus, Z[1..l − 1] is a common subsequence of X[1..i − 1] and
Y [1..j − 1] including P [1..k − 1] as the suffix Z[l − k + 1..l − 1]. Assume by
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contradiction that there exists a common subsequence Z′[1..l] of X[1..i − 1] and
Y [1..j − 1] including P [1..k − 1] as the suffix Z′[l − k + 2..l]. We could append
X[i] = Y [j ] = P [k] to Z′[1..l] to obtain a common subsequence of X[1..i] and
Y [1..j ] of length greater than l such that P [1..k] is the suffix S[l − k + 2..l + 1],
contradicting the hypothesis of Z[1..l] ∈ Si,j,k .

(2) If Z[l] = X[i], then Z[l] �= P [k] and P [1..k] is not a suffix of Z[1..l]. Thus,
we have Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k . Assume by contradiction that there
exists a common subsequence Z′[1..l + 1] of X[1..i − 1] and Y [1..j − 1] containing
P [1..k] as a suffix. Obviously, Z′[1..l + 1] is also a common subsequence of X[1..i]
and Y [1..j ] of length greater than l such that P [1..k] is a suffix. This contradicts the
hypothesis of Z[1..l] ∈ Si,j,k .

(3) This case is equivalent to the case of X[i] = Y [j ] in the LCS problem. Hence,
it is obvious that Z[l] = X[i] = Y [j ] and Z[1..l − 1] ∈ Si−1,j−1,k .

(4) Since Z[l] �= X[i], Z[1..l] is a common subsequence of X[1..i−1] and Y [1..j ]
including P [1..k] as the suffix Z[l−k+1..l]. Similar to proof of 2, we have Z[1..l] ∈
Si−1,j,k . The proof of Case (5) is similar to the proof of this case. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j ] including
P [1..k] as a suffix. By the optimal-substructure properties of the STR-IC-LCS prob-
lem shown in Theorem 1, we have the following recursive formula. For 0 < i ≤ m,
0 < i ≤ n, and 0 ≤ k ≤ ρ,

L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + L(i − 1, j − 1, k − 1) if k > 0 and X[i] = Y [j ] = P [k],
L(i − 1, j − 1, k) if k > 0, X[i] = Y [j ] and X[i] �= P [k],
1 + L(i − 1, j − 1, k) if k = 0 and X[i] = Y [j ],
max{L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j ].

(1)

The boundary conditions of this recursive formula are L(i,0,0) = L(0, j,0) = 0 and
L(0, j, k) = L(i,0, k) = −∞ for any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 1 ≤ k ≤ ρ. Based
on (1), L is computed.

Let C(i, j) denote the length of an LCS of X[i..m] and Y [j..n] for 1 ≤ i ≤ m and
1 ≤ j ≤ n. If i = m+1 or j = n+1, we set C(i, j) = 0. C is computed by employing
an O(mn)-time algorithm for the LCS problem (Cormen et al. 2001).

Let Z be an LCS of X and Y including P as a substring, and initially be an empty
sequence. We define T (i, j) = L(i, j, ρ) + C(i + 1, j + 1) for 1 ≤ i ≤ m and 1 ≤
j ≤ n. According to Property 1, the length of Z is given by the maximum value of T .
Suppose that the maximum value of T is supplied from the entry T (i∗, j∗) for some
1 ≤ i∗ ≤ m and 1 ≤ j∗ ≤ n. Let Z1 be an LCS of X[1..i∗] and Y [1..j∗] containing P

as a suffix, and Z2 be an LCS of X[i∗ + 1..m] and Y [j∗ + 1..n]. We construct Z1 and
Z2 by backtracking through the computation paths from L(i∗, j∗, ρ) to L(0,0,0)

and from C(i∗ + 1, j∗ + 1) to C(m + 1, n + 1), respectively. Figure 3 illustrates the
concept of constructing Z1 and Z2. Finally, we concatenate Z1 and Z2 to obtain Z.
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Fig. 3 An illustration of finding solutions to two subproblems of the STR-IC-LCS problem. The maxi-
mum value T (i∗, j∗) is the length of an LCS of X and Y including P as a substring. We construct an LCS
Z1 of X[1..i∗] and Y [1..j∗] including P as a suffix by backtracking through the computation path from
L(i∗, j∗, ρ) to L(0,0,0). An LCS Z2 of X[i∗ + 1..m] and Y [j∗ + 1..n] is constructed by backtracking
through the computation path from C(i∗ + 1, j∗ + 1) to C(m,n)

Recovering the computation paths of Z1 and Z2 take O(m + n + ρ) and O(m + n)

steps, respectively. Consequently, we solve the STR-IC-LCS problem in O(mnρ)

time and space.

2.2 An O(mnρ)-time algorithm for the SEQ-EC-LCS problem

The SEQ-EC-LCS problem is to find an LCS of two sequences X and Y excluding a
constrained pattern P as a subsequence. Theorem 2 decomposes the structure of an
optimal solution based on the solutions to its smaller subproblems.

Theorem 2 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j ] excluding
P [1..k] as a subsequence. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j ] = P [k] and k = 1, then Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k .
(2) If X[i] = Y [j ] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j ] = P [k] implies

Z[1..l − 1] ∈ Si−1,j−1,k−1.
(3) If X[i] = Y [j ] = P [k] and k ≥ 2, then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j−1,k .
(4) If X[i] = Y [j ] and (X[i] �= P [k] and k > 0, or k = 0), then Z[l] = X[i] = Y [j ]

and Z[1..l − 1] ∈ Si−1,j−1,k .
(5) If X[i] �= Y [j ], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(6) If X[i] �= Y [j ], then Z[l] �= Y [j ] implies Z[1..l] ∈ Si,j−1,k .

Proof The proof is similar to Theorem 1. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j ] excluding
P [1..k] as a subsequence. By the optimal-substructure properties of the SEQ-EC-
LCS problem shown in Theorem 2, we have the following recursive formula. For any
0 < i ≤ m, 0 < j ≤ n, and 0 ≤ k ≤ ρ,
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L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) if k = 1 and X[i] = Y [j ] = P [k],
max {L(i − 1, j − 1, k),

1 + L(i − 1, j − 1, k − 1)} if k > 2 and X[i] = Y [j ] = P [k],
1 + L(i − 1, j − 1, k) if X[i] = Y [j ] and

(k = 0, or k > 0 and X[i] �= P [k]),
max {L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j ].

(2)

The boundary conditions of this recursive formula are L(i,0, k) = L(0, j, k) = 0 for
any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ ρ. Based on (2), L is computed.

Let Z be an LCS of X and Y excluding P as a subsequence, and initially be an
empty sequence. The length of Z is given by L(m,n,ρ). Thus, Z is constructed by
backtracking through the computation path from L(m,n,ρ) to L(0,0,0). Recovering
the computation path of an LCS takes O(m + n + ρ) steps. Consequently, we solve
the SEQ-EC-LCS problem in O(mnρ) time and space.

2.3 An O(mnρ)-time algorithm for the STR-EC-LCS problem

The STR-EC-LCS problem is to find an LCS of two sequences X and Y excluding
a constrained pattern P as a substring. Theorem 3 decomposes the structure of an
optimal solution based on the solutions to its smaller subproblems.

Theorem 3 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j ] excluding
P [1..k] as a substring. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j ] = P [k] and k = 1, then Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k .
(2) If X[i] = Y [j ] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j ] = P [k] and

Z[l − 1] = P [k − 1] implies Z[1..l − 1] ∈ Si−1,j−1,k−1.
(3) If X[i] = Y [j ] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j ] = P [k] and

Z[l − 1] �= P [k − 1] implies Z[1..l − 1] ∈ Si−1,j−1,k .
(4) If X[i] = Y [j ] = P [k] and k ≥ 2, then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j−1,k .
(5) If X[i] = Y [j ] and X[i] �= P [k], then Z[l] = X[i] = Y [j ] and Z[1..l − 1] ∈

Si−1,j−1,k .
(6) If X[i] �= Y [j ], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(7) If X[i] �= Y [j ], then Z[l] �= Y [j ] implies Z[1..l] ∈ Si,j−1,k .

Proof The proof is similar to Theorem 1. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j ] excluding P [1..k]
as a substring. By the optimal-substructure properties of the STR-EC-LCS problem
shown in Theorem 3, we have the following recursive formula. For any 0 < i ≤ m,
0 < j ≤ n, and 0 ≤ k ≤ ρ,
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L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) if k = 1 and X[i] = Y [j ] = P [k],
max {1 + L(i − 1, j − 1, k − 1)),

1 + L(i − 1, j − 1, k)} if k ≥ 2 and X[i] = Y [j ] = P [k],
1 + L(i − 1, j − 1, k) if X[i] = Y [j ] and

(k = 0, or k > 0 and X[i] �= P [k]),
max {L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j ].

(3)

The boundary conditions of this recursive formula are L(i,0, k) = L(0, j, k) = 0 for
any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ ρ. Based on (3), L is computed.

Let Z be an LCS of X and Y excluding P as a substring, and initially be an empty
sequence. The length of Z is given by L(m,n,ρ). Therefore, Z is constructed by
backtracking through the computation path from L(m,n,ρ) to L(0,0,0). Recovering
the computation path of an LCS takes O(m + n + ρ) steps. Consequently, we solve
the STR-EC-LCS problem in O(mnρ) time and space.

3 The GC-LCS problems with an arbitrary number of constrained patterns

In this section, we consider the GC-LCS problems whose inputs are two sequences
X, Y and w constrained patterns P1, . . ., and Pw of lengths m, n, ρ1, . . . , and ρw , re-
spectively. Gotthilf et al. (2008) showed that the SEQ-IC-LCS problem with multiple
constrained patterns is NP-hard and does not have a polynomial-time approximation
scheme (PTAS). In fact, one can further show that the STR-IC-LCS, SEQ-EC-LCS,
and STR-EC-LCS problems with multiple constrained patterns are also NP-hard.

We solve the SEQ-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems with an
arbitrary number of constrained patterns by the following approach, which is sim-
ilar to the methods for the problems with single constrained pattern. An optimal-
substructure property for the problem is first given, and a recurrence formula is de-
rived based on this property. We then apply a tabular method to compute the length
of an LCS of X and Y including each pattern in O(mn × ∏w

k=1 ρk) time, and con-
struct an LCS by backtracking through the computation path in O(m+n+∑w

k=1 ρk)

steps. Therefore, the procedure for obtaining an LCS takes O(mn × ∏w
k=1 ρk) time

and space.
The approach to the STR-IC-LCS problem with more than one constrained pat-

tern, however, is quite different from the method for the problem with single con-
strained pattern. Here we only investigate the STR-IC-LCS problem with two con-
strained patterns.

Property 2 gives the characterization of the structure of a solution for the STR-IC-
LCS problem with two constrained patterns.

Property 2 If Z[1..l] is an LCS of X[1..m] and Y [1..n] including P1 and P2 as
substrings, and assume that P2 is the latter substring Z[l′ − ρ2 + 1..l′] (the case
of P1 being the latter substring is similar) for some ρ2 ≤ l′ ≤ l, then Z[1..l] is a
concatenation of the following two substrings, for some 1 ≤ i ≤ m and 1 ≤ j ≤ n:
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1. The prefix Z[1..l′]: Z[1..l′] is an LCS of X[1..i] and Y [1..j ] including P1 and P2

as substrings, where P2 is the suffix Z[l′ − ρ2 + 1..l′], and
2. The suffix Z[l′ + 1..l]: Z[l′ + 1..l] is an LCS of X[i + 1..m] and Y [j + 1..n].

Based on Property 2, we first compute an LCS of X[1..i] and Y [1..j ] including P1

as a substring and P2 as a suffix, and an LCS of X[i..m] and Y [j..n] for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The solutions to the two subproblems are then merged to determine
a longest concatenation. The length of an LCS of X[i..m] and Y [j..n] is computed
by applying a quadratic-time algorithm (Cormen et al. 2001) for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

For obtaining an LCS Z[1..l′] of X[1..i] and Y [1..j ] including P1 a substring and
P2 as the suffix Z[l′ −ρ2 +1..l′] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we need to consider
the following two cases:

(1) P2 overlaps P1: We merge P1 and P2 as a new pattern (there are min {ρ1, ρ2}
concatenations of length at most ρ1 + ρ2 − 1), and then apply the algorithm
for the STR-IC-LCS problem shown in Sect. 2.1 to solve it. For all 1 ≤ i ≤ m

and 1 ≤ j ≤ n, computing the length of an LCS of X[1..i] and Y [1..j ] in this
case takes �

min {ρ1,ρ2}−1
k=0 O(mn × (max {ρ1, ρ2} + k)) (= O(mnρ1ρ2)) time and

O(mn × (ρ1 + ρ2 − 1)) (= O(mn × max {ρ1, ρ2})) space.
(2) P2 does not overlap P1: Z[1..l′] is a concatenation of two substrings, which are

an LCS Z[1..l′ − ρ2] of X[1..i′] and Y [1..j ′] including P1 as a substring and
an LCS Z[l′ − ρ2 + 1..l′](= P2) of X[i′ + 1..i] and Y [j ′ + 1..j ], respectively,
for some 1 ≤ i′ < i and 1 ≤ j ′ < j . Let L1(i, j) denote the length of an LCS of
X[1..i] and Y [1..j ] including P1 as a substring, and L2(i, j) denote the length
of an LCS of X[1..i] and Y [1..j ] including P2 as a suffix. L1 and L2 are com-
puted by the algorithms shown in Sect. 2.1. We use a 2-dimension matrix where
σ(i, j) records the pair (i′, j ′) such that P2 is exactly an LCS of X[i′ + 1..i]
and Y [j ′ + 1..j ] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. The matrix σ is computed in
O(mnρ2) time. The length of an LCS of X[1..i] and Y [1..j ] in this case equals
to L1(i

′, j ′) + L2(i, j) − L2(i
′, j ′). For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, computing

L1 and L2 take O(mn× max {ρ1, ρ2}) time and space, and calculating the length
of an LCS of X[1..i] and Y [1..j ] in this case takes O(mn × max {ρ1, ρ2})) time
and space.

Finally, we concatenate an LCS of X[i + 1..m] and Y [j + 1..n] and an LCS of
X[1..i] and Y [1..j ] including P1 as a substring and P2 as a suffix, for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The concatenation of maximum length is an LCS of X[1..m] and
Y [1..n] including P1 and P2 as substrings. Computing the length of all concatenation
takes O(mnρ1ρ2) time and O(mn × max {ρ1, ρ2}) space. Constructing an LCS by
backtracking and concatenating takes O(m + n + ρ1 + ρ2) steps. Consequently, we
solve the STR-IC-LCS problem with two constrained patterns in O(mnρ1ρ2) time
and O(mn × max {ρ1, ρ2}) space.
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4 Concluding remarks

In this paper, we present three O(mnρ)-time and O(mnρ)-space algorithms for solv-
ing the STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems, where m, n, and
ρ are the lengths of two sequences and a constrained pattern, respectively. In fact, the
space requirement can be further reduced to O(ρ×(m+n)) by applying Hirschberg’s
approach (Hirschberg 1975). We also consider the GC-LCS problems with an arbi-
trary number of constrained patterns.
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