
J Comb Optim (2011) 21: 383–392
DOI 10.1007/s10878-009-9262-5

On the generalized constrained longest common
subsequence problems

Yi-Ching Chen · Kun-Mao Chao

Published online: 27 August 2009
© Springer Science+Business Media, LLC 2009

Abstract We investigate four variants of the longest common subsequence problem.
Given two sequences X, Y and a constrained pattern P of lengths m, n, and ρ, respec-
tively, the generalized constrained longest common subsequence (GC-LCS) problems
are to find a longest common subsequence of X and Y including (or excluding) P as
a subsequence (or substring). We propose new dynamic programming algorithms for
solving the GC-LCS problems in O(mnρ) time. We also consider the case where the
number of constrained patterns is arbitrary.

Keywords Algorithms · Longest common subsequence · Dynamic programming

1 Introduction

A sequence is a string of characters over an alphabet �. A subsequence of a sequence
X is obtained by deleting zero or more characters from X (not necessarily contigu-
ous). A substring of a sequence X is a subsequence of successive characters within
X. Given a sequence X of length m, let X[i] denote the ith character of X for any
i = 1, . . . ,m. We also let X[i..j] denote the subsequence of consecutive characters
in X from position i to position j if 1 ≤ i ≤ j ≤ m, and an empty string otherwise.
For example, if X = algorithm, then X[7] = t and X[3..5] = gor.

This research was supported in part by NSC grants NSC 95-2221-E-002-126-MY3 and NSC
97-2221-E-002-097-MY3 from the National Science Council, Taiwan.

Y.-C. Chen
Department of Computer Science and Information Engineering, National Taiwan University,
Taipei 106, Taiwan

K.-M. Chao (�)
Department of Computer Science and Information Engineering, Graduate Institute of Biomedical
Electronics and Bioinformatics, Graduate Institute of Networking and Multimedia, National Taiwan
University, Taipei 106, Taiwan
e-mail: kmchao@csie.ntu.edu.tw

mailto:kmchao@csie.ntu.edu.tw

384 J Comb Optim (2011) 21: 383–392

A common subsequence of two sequences is a subsequence that appears in
both sequences. A longest common subsequence (LCS) of two sequences is a
maximum-length common subsequence of the sequences. The LCS problem is to
find an LCS of two given sequences, which is a fundamental problem in com-
puter science. Wagner and Fischer (1974) proposed the LCS problem and solved
it by computing the edit distance between the sequences in quadratic time and
space. Hirschberg (1975) presented a quadratic-time and linear-space algorithm
for the LCS problem. The LCS problem has been studied intensively to improve
the time complexity for decades (Aho et al. 1976; Apostolico and Guerra 1987;
Bergroth et al. 2000; Bonizzoni et al. 2007; Cormen et al. 2001; Gusfield 1997;
Hirschberg 1977; Hunt and Szymanski 1977; Masek and Paterson 1980; Pevzner
2000; Rahman and Iliopoulos 2007). The LCS problem with an arbitrary number of
sequences, even on a binary alphabet, is NP-hard (Maier 1978).

The LCS problem is a special case of the sequence alignment problem (Chao and
Zhang 2009; Gusfield 1997), and has many applications in molecular biology and pat-
tern recognition. One major application is to measure the similarity of sequences. In
the evolutionary molecular biology, a significant segment of the DNA sequence might
have been conserved in different species. To take a common specific segment into ac-
count for the similarity measurement, the LCS problem with an inclusive constraint,
named the inclusion-constrained longest common subsequence (IC-LCS) problem, is
considered. We address two IC-LCS problems as follows.

Problem 1 (SEQ-IC-LCS) (Arslan and Eǧecioǧlu 2005; Chin et al. 2004; Iliopoulos
and Rahman 2008; Tsai 2003) Given two sequences X, Y and a constrained pattern
P of lengths m, n, and ρ, respectively, the SEQ-IC-LCS problem is to find an LCS
of X and Y including P as a subsequence.

Problem 2 (STR-IC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the STR-IC-LCS problem is to find an LCS of
X and Y including P as a substring.

For example, if X = AATGCCTAGGC, Y = CGATCTGGAC, and P = GTAC, an
LCS of X and Y is ATCTGGC, and outputs of the SEQ-IC-LCS and STR-IC-LCS
problems are GCTAC and GTAC, respectively.

The SEQ-IC-LCS problem was proposed and solved in O(m2n2ρ) time by Tsai
(2003). Later, Chin et al. (2004) and Arslan and Eǧecioǧlu (2005) independently pre-
sented two improved algorithms with O(mnρ) time. Chin et al. (2004) also showed
that this problem is equivalent to a special case of the constrained multiple se-
quence alignment problem (Chin et al. 2005; Tang et al. 2003). Without loss of
generality, assume that m ≤ n. Recently, Iliopoulos and Rahman (2008) proposed
an O(ρr log logn + n)-time algorithm by employing the van Emde Boas tree (van
Emde Boas 1977; van Emde Boas et al. 1977), where r is the total number of or-
dered pairs of positions at which X and Y match. It should be noted, however, that
the preprocessing time of the van Emde Boas tree was not evaluated when analyzing
the time complexity.

J Comb Optim (2011) 21: 383–392 385

Problem Input Output

SEQ-IC-LCS An LCS of X and Y including P as a subsequence
STR-IC-LCS X,Y, and P An LCS of X and Y including P as a substring
SEQ-EC-LCS An LCS of X and Y excluding P as a subsequence
STR-EC-LCS An LCS of X and Y excluding P as a substring

Fig. 1 The GC-LCS problems

To take more common flexible structures into account for the similarity measure-
ment, we extend the definition of the IC-LCS problem to be the LCS problem with an
exclusive constraint, named the exclusion-constrained longest common subsequence
(EC-LCS) problem. We address two EC-LCS problems as follows.

Problem 3 (SEQ-EC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the SEQ-EC-LCS problem is to find an LCS of
X and Y excluding P as a subsequence.

Problem 4 (STR-EC-LCS) Given two sequences X, Y and a constrained pattern P

of lengths m, n, and ρ, respectively, the STR-EC-LCS problem is to find an LCS of
X and Y excluding P as a substring.

For example, suppose X = AATGCCTAGGC and Y = CGATCTGGAC. If P = TGC,
an output of the SEQ-EC-LCS problem is ATCTGG. If P = TG, an output of the STR-
EC-LCS problem is ATCGGC.

The four variants of the LCS problem are named as the generalized constrained
longest common subsequence (GC-LCS) problems and summarized in Fig. 1. To
our knowledge, the STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems are
discussed for the first time.

In Sect. 2, we present three O(mnρ)-time algorithms for solving the STR-IC-LCS,
SEQ-EC-LCS, and STR-EC-LCS problems, respectively. We also consider the GC-
LCS problems with an arbitrary number of constrained patterns in Sect. 3. Finally,
concluding remarks are given in Sect. 4.

2 The algorithms

In the following, we propose three dynamic programming algorithms for solving the
STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems, respectively.

2.1 An O(mnρ)-time algorithm for the STR-IC-LCS problem

The STR-IC-LCS problem is to find an LCS of two sequences X and Y including
a constrained pattern P as a substring. Property 1 shows the characterization of the
structure of a solution to the STR-IC-LCS problem.

386 J Comb Optim (2011) 21: 383–392

Fig. 2 An illustration of the problem decomposition on the STR-IC-LCS problem. Z is an LCS of X and
Y including P as a substring, and is also a concatenation of the substrings Z1 and Z2, where Z1 is an LCS
of X[1..i] and Y [1..j] including P as the suffix Z[l′ − ρ + 1..l′], and Z2 is an LCS of X[i + 1..m] and
Y [j + 1..n], for some 0 ≤ i ≤ m, 0 ≤ j ≤ n, and ρ ≤ l′ ≤ l

Property 1 If Z[1..l] is an LCS of X[1..m] and Y [1..n] including P as the substring
Z[l′ − ρ + 1..l′] for some ρ ≤ l′ ≤ l, then Z[1..l] is a concatenation of the following
two substrings, for some 0 ≤ i ≤ m and 0 ≤ j ≤ n:

1. The prefix Z[1..l′]: Z[1..l′] is an LCS Z1 of X[1..i] and Y [1..j] including P as
the suffix Z[l′ − ρ + 1..l′], and

2. The suffix Z[l′ + 1..l]: Z[l′ + 1..l] is an LCS Z2 of X[i + 1..m] and Y [j + 1..n].

Figure 2 illustrates the concept of the problem decomposition shown in Property 1.
Based on solutions of the STR-IC-LCS problem to subproblems, we solve it by first
computing an LCS of X[1..i] and Y [1..j] including P as a suffix and an LCS of
X[i..m] and Y [j..n] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. The solutions to the two sub-
problems are then merged to determine a longest concatenation. A quadratic-time
algorithm for computing an LCS of X[i..m] and Y [j..n] (Cormen et al. 2001) is
employed. For obtaining an LCS of X[1..i] and Y [1..j] including P as a suffix, The-
orem 1 decomposes the structure of an optimal solution based on the solutions to its
smaller subproblems.

Theorem 1 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j] including
P [1..k] as a suffix. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j] = P [k] and k > 0, then Z[l] = X[i] = Y [j] = P [k] and
Z[1..l − 1] ∈ Si−1,j−1,k−1.

(2) If X[i] = Y [j], X[i] �= P [k], and k > 0, then Z[l] �= X[i] and Z[1..l] ∈
Si−1,j−1,k .

(3) If X[i] = Y [j] and k = 0, then Z[l] = X[i] = Y [j] and Z[1..l − 1] ∈ Si−1,j−1,k .
(4) If X[i] �= Y [j], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(5) If X[i] �= Y [j], then Z[l] �= Y [j] implies Z[1..l] ∈ Si,j−1,k .

Proof We prove this theorem case by case. (1) Since P [1..k] is a suffix of Z[1..l], we
have Z[l] = P [k]. If Z[l] �= X[i], we could append X[i] = Y [j] = P [k] to Z[1..l−1]
obtain a common subsequence of length l, and the resulting sequence also includes
P [1..k] as a suffix. Thus, Z[1..l − 1] is a common subsequence of X[1..i − 1] and
Y [1..j − 1] including P [1..k − 1] as the suffix Z[l − k + 1..l − 1]. Assume by

J Comb Optim (2011) 21: 383–392 387

contradiction that there exists a common subsequence Z′[1..l] of X[1..i − 1] and
Y [1..j − 1] including P [1..k − 1] as the suffix Z′[l − k + 2..l]. We could append
X[i] = Y [j] = P [k] to Z′[1..l] to obtain a common subsequence of X[1..i] and
Y [1..j] of length greater than l such that P [1..k] is the suffix S[l − k + 2..l + 1],
contradicting the hypothesis of Z[1..l] ∈ Si,j,k .

(2) If Z[l] = X[i], then Z[l] �= P [k] and P [1..k] is not a suffix of Z[1..l]. Thus,
we have Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k . Assume by contradiction that there
exists a common subsequence Z′[1..l + 1] of X[1..i − 1] and Y [1..j − 1] containing
P [1..k] as a suffix. Obviously, Z′[1..l + 1] is also a common subsequence of X[1..i]
and Y [1..j] of length greater than l such that P [1..k] is a suffix. This contradicts the
hypothesis of Z[1..l] ∈ Si,j,k .

(3) This case is equivalent to the case of X[i] = Y [j] in the LCS problem. Hence,
it is obvious that Z[l] = X[i] = Y [j] and Z[1..l − 1] ∈ Si−1,j−1,k .

(4) Since Z[l] �= X[i], Z[1..l] is a common subsequence of X[1..i−1] and Y [1..j]
including P [1..k] as the suffix Z[l−k+1..l]. Similar to proof of 2, we have Z[1..l] ∈
Si−1,j,k . The proof of Case (5) is similar to the proof of this case. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j] including
P [1..k] as a suffix. By the optimal-substructure properties of the STR-IC-LCS prob-
lem shown in Theorem 1, we have the following recursive formula. For 0 < i ≤ m,
0 < i ≤ n, and 0 ≤ k ≤ ρ,

L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + L(i − 1, j − 1, k − 1) if k > 0 and X[i] = Y [j] = P [k],
L(i − 1, j − 1, k) if k > 0, X[i] = Y [j] and X[i] �= P [k],
1 + L(i − 1, j − 1, k) if k = 0 and X[i] = Y [j],
max{L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j].

(1)

The boundary conditions of this recursive formula are L(i,0,0) = L(0, j,0) = 0 and
L(0, j, k) = L(i,0, k) = −∞ for any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 1 ≤ k ≤ ρ. Based
on (1), L is computed.

Let C(i, j) denote the length of an LCS of X[i..m] and Y [j..n] for 1 ≤ i ≤ m and
1 ≤ j ≤ n. If i = m+1 or j = n+1, we set C(i, j) = 0. C is computed by employing
an O(mn)-time algorithm for the LCS problem (Cormen et al. 2001).

Let Z be an LCS of X and Y including P as a substring, and initially be an empty
sequence. We define T (i, j) = L(i, j, ρ) + C(i + 1, j + 1) for 1 ≤ i ≤ m and 1 ≤
j ≤ n. According to Property 1, the length of Z is given by the maximum value of T .
Suppose that the maximum value of T is supplied from the entry T (i∗, j∗) for some
1 ≤ i∗ ≤ m and 1 ≤ j∗ ≤ n. Let Z1 be an LCS of X[1..i∗] and Y [1..j∗] containing P

as a suffix, and Z2 be an LCS of X[i∗ + 1..m] and Y [j∗ + 1..n]. We construct Z1 and
Z2 by backtracking through the computation paths from L(i∗, j∗, ρ) to L(0,0,0)

and from C(i∗ + 1, j∗ + 1) to C(m + 1, n + 1), respectively. Figure 3 illustrates the
concept of constructing Z1 and Z2. Finally, we concatenate Z1 and Z2 to obtain Z.

388 J Comb Optim (2011) 21: 383–392

Fig. 3 An illustration of finding solutions to two subproblems of the STR-IC-LCS problem. The maxi-
mum value T (i∗, j∗) is the length of an LCS of X and Y including P as a substring. We construct an LCS
Z1 of X[1..i∗] and Y [1..j∗] including P as a suffix by backtracking through the computation path from
L(i∗, j∗, ρ) to L(0,0,0). An LCS Z2 of X[i∗ + 1..m] and Y [j∗ + 1..n] is constructed by backtracking
through the computation path from C(i∗ + 1, j∗ + 1) to C(m,n)

Recovering the computation paths of Z1 and Z2 take O(m + n + ρ) and O(m + n)

steps, respectively. Consequently, we solve the STR-IC-LCS problem in O(mnρ)

time and space.

2.2 An O(mnρ)-time algorithm for the SEQ-EC-LCS problem

The SEQ-EC-LCS problem is to find an LCS of two sequences X and Y excluding a
constrained pattern P as a subsequence. Theorem 2 decomposes the structure of an
optimal solution based on the solutions to its smaller subproblems.

Theorem 2 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j] excluding
P [1..k] as a subsequence. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j] = P [k] and k = 1, then Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k .
(2) If X[i] = Y [j] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j] = P [k] implies

Z[1..l − 1] ∈ Si−1,j−1,k−1.
(3) If X[i] = Y [j] = P [k] and k ≥ 2, then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j−1,k .
(4) If X[i] = Y [j] and (X[i] �= P [k] and k > 0, or k = 0), then Z[l] = X[i] = Y [j]

and Z[1..l − 1] ∈ Si−1,j−1,k .
(5) If X[i] �= Y [j], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(6) If X[i] �= Y [j], then Z[l] �= Y [j] implies Z[1..l] ∈ Si,j−1,k .

Proof The proof is similar to Theorem 1. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j] excluding
P [1..k] as a subsequence. By the optimal-substructure properties of the SEQ-EC-
LCS problem shown in Theorem 2, we have the following recursive formula. For any
0 < i ≤ m, 0 < j ≤ n, and 0 ≤ k ≤ ρ,

J Comb Optim (2011) 21: 383–392 389

L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) if k = 1 and X[i] = Y [j] = P [k],
max {L(i − 1, j − 1, k),

1 + L(i − 1, j − 1, k − 1)} if k > 2 and X[i] = Y [j] = P [k],
1 + L(i − 1, j − 1, k) if X[i] = Y [j] and

(k = 0, or k > 0 and X[i] �= P [k]),
max {L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j].

(2)

The boundary conditions of this recursive formula are L(i,0, k) = L(0, j, k) = 0 for
any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ ρ. Based on (2), L is computed.

Let Z be an LCS of X and Y excluding P as a subsequence, and initially be an
empty sequence. The length of Z is given by L(m,n,ρ). Thus, Z is constructed by
backtracking through the computation path from L(m,n,ρ) to L(0,0,0). Recovering
the computation path of an LCS takes O(m + n + ρ) steps. Consequently, we solve
the SEQ-EC-LCS problem in O(mnρ) time and space.

2.3 An O(mnρ)-time algorithm for the STR-EC-LCS problem

The STR-EC-LCS problem is to find an LCS of two sequences X and Y excluding
a constrained pattern P as a substring. Theorem 3 decomposes the structure of an
optimal solution based on the solutions to its smaller subproblems.

Theorem 3 Let Si,j,k denote the set of all LCSs of X[1..i] and Y [1..j] excluding
P [1..k] as a substring. If Z[1..l] ∈ Si,j,k , the following conditions hold:

(1) If X[i] = Y [j] = P [k] and k = 1, then Z[l] �= X[i] and Z[1..l] ∈ Si−1,j−1,k .
(2) If X[i] = Y [j] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j] = P [k] and

Z[l − 1] = P [k − 1] implies Z[1..l − 1] ∈ Si−1,j−1,k−1.
(3) If X[i] = Y [j] = P [k] and k ≥ 2, then Z[l] = X[i] = Y [j] = P [k] and

Z[l − 1] �= P [k − 1] implies Z[1..l − 1] ∈ Si−1,j−1,k .
(4) If X[i] = Y [j] = P [k] and k ≥ 2, then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j−1,k .
(5) If X[i] = Y [j] and X[i] �= P [k], then Z[l] = X[i] = Y [j] and Z[1..l − 1] ∈

Si−1,j−1,k .
(6) If X[i] �= Y [j], then Z[l] �= X[i] implies Z[1..l] ∈ Si−1,j,k .
(7) If X[i] �= Y [j], then Z[l] �= Y [j] implies Z[1..l] ∈ Si,j−1,k .

Proof The proof is similar to Theorem 1. �

Let L(i, j, k) denote the length of an LCS of X[1..i] and Y [1..j] excluding P [1..k]
as a substring. By the optimal-substructure properties of the STR-EC-LCS problem
shown in Theorem 3, we have the following recursive formula. For any 0 < i ≤ m,
0 < j ≤ n, and 0 ≤ k ≤ ρ,

390 J Comb Optim (2011) 21: 383–392

L(i, j, k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1, k) if k = 1 and X[i] = Y [j] = P [k],
max {1 + L(i − 1, j − 1, k − 1)),

1 + L(i − 1, j − 1, k)} if k ≥ 2 and X[i] = Y [j] = P [k],
1 + L(i − 1, j − 1, k) if X[i] = Y [j] and

(k = 0, or k > 0 and X[i] �= P [k]),
max {L(i − 1, j, k),

L(i, j − 1, k)} if X[i] �= Y [j].

(3)

The boundary conditions of this recursive formula are L(i,0, k) = L(0, j, k) = 0 for
any 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ ρ. Based on (3), L is computed.

Let Z be an LCS of X and Y excluding P as a substring, and initially be an empty
sequence. The length of Z is given by L(m,n,ρ). Therefore, Z is constructed by
backtracking through the computation path from L(m,n,ρ) to L(0,0,0). Recovering
the computation path of an LCS takes O(m + n + ρ) steps. Consequently, we solve
the STR-EC-LCS problem in O(mnρ) time and space.

3 The GC-LCS problems with an arbitrary number of constrained patterns

In this section, we consider the GC-LCS problems whose inputs are two sequences
X, Y and w constrained patterns P1, . . ., and Pw of lengths m, n, ρ1, . . . , and ρw , re-
spectively. Gotthilf et al. (2008) showed that the SEQ-IC-LCS problem with multiple
constrained patterns is NP-hard and does not have a polynomial-time approximation
scheme (PTAS). In fact, one can further show that the STR-IC-LCS, SEQ-EC-LCS,
and STR-EC-LCS problems with multiple constrained patterns are also NP-hard.

We solve the SEQ-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems with an
arbitrary number of constrained patterns by the following approach, which is sim-
ilar to the methods for the problems with single constrained pattern. An optimal-
substructure property for the problem is first given, and a recurrence formula is de-
rived based on this property. We then apply a tabular method to compute the length
of an LCS of X and Y including each pattern in O(mn × ∏w

k=1 ρk) time, and con-
struct an LCS by backtracking through the computation path in O(m+n+∑w

k=1 ρk)

steps. Therefore, the procedure for obtaining an LCS takes O(mn × ∏w
k=1 ρk) time

and space.
The approach to the STR-IC-LCS problem with more than one constrained pat-

tern, however, is quite different from the method for the problem with single con-
strained pattern. Here we only investigate the STR-IC-LCS problem with two con-
strained patterns.

Property 2 gives the characterization of the structure of a solution for the STR-IC-
LCS problem with two constrained patterns.

Property 2 If Z[1..l] is an LCS of X[1..m] and Y [1..n] including P1 and P2 as
substrings, and assume that P2 is the latter substring Z[l′ − ρ2 + 1..l′] (the case
of P1 being the latter substring is similar) for some ρ2 ≤ l′ ≤ l, then Z[1..l] is a
concatenation of the following two substrings, for some 1 ≤ i ≤ m and 1 ≤ j ≤ n:

J Comb Optim (2011) 21: 383–392 391

1. The prefix Z[1..l′]: Z[1..l′] is an LCS of X[1..i] and Y [1..j] including P1 and P2

as substrings, where P2 is the suffix Z[l′ − ρ2 + 1..l′], and
2. The suffix Z[l′ + 1..l]: Z[l′ + 1..l] is an LCS of X[i + 1..m] and Y [j + 1..n].

Based on Property 2, we first compute an LCS of X[1..i] and Y [1..j] including P1

as a substring and P2 as a suffix, and an LCS of X[i..m] and Y [j..n] for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The solutions to the two subproblems are then merged to determine
a longest concatenation. The length of an LCS of X[i..m] and Y [j..n] is computed
by applying a quadratic-time algorithm (Cormen et al. 2001) for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

For obtaining an LCS Z[1..l′] of X[1..i] and Y [1..j] including P1 a substring and
P2 as the suffix Z[l′ −ρ2 +1..l′] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we need to consider
the following two cases:

(1) P2 overlaps P1: We merge P1 and P2 as a new pattern (there are min {ρ1, ρ2}
concatenations of length at most ρ1 + ρ2 − 1), and then apply the algorithm
for the STR-IC-LCS problem shown in Sect. 2.1 to solve it. For all 1 ≤ i ≤ m

and 1 ≤ j ≤ n, computing the length of an LCS of X[1..i] and Y [1..j] in this
case takes �

min {ρ1,ρ2}−1
k=0 O(mn × (max {ρ1, ρ2} + k)) (= O(mnρ1ρ2)) time and

O(mn × (ρ1 + ρ2 − 1)) (= O(mn × max {ρ1, ρ2})) space.
(2) P2 does not overlap P1: Z[1..l′] is a concatenation of two substrings, which are

an LCS Z[1..l′ − ρ2] of X[1..i′] and Y [1..j ′] including P1 as a substring and
an LCS Z[l′ − ρ2 + 1..l′](= P2) of X[i′ + 1..i] and Y [j ′ + 1..j], respectively,
for some 1 ≤ i′ < i and 1 ≤ j ′ < j . Let L1(i, j) denote the length of an LCS of
X[1..i] and Y [1..j] including P1 as a substring, and L2(i, j) denote the length
of an LCS of X[1..i] and Y [1..j] including P2 as a suffix. L1 and L2 are com-
puted by the algorithms shown in Sect. 2.1. We use a 2-dimension matrix where
σ(i, j) records the pair (i′, j ′) such that P2 is exactly an LCS of X[i′ + 1..i]
and Y [j ′ + 1..j] for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. The matrix σ is computed in
O(mnρ2) time. The length of an LCS of X[1..i] and Y [1..j] in this case equals
to L1(i

′, j ′) + L2(i, j) − L2(i
′, j ′). For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, computing

L1 and L2 take O(mn× max {ρ1, ρ2}) time and space, and calculating the length
of an LCS of X[1..i] and Y [1..j] in this case takes O(mn × max {ρ1, ρ2})) time
and space.

Finally, we concatenate an LCS of X[i + 1..m] and Y [j + 1..n] and an LCS of
X[1..i] and Y [1..j] including P1 as a substring and P2 as a suffix, for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The concatenation of maximum length is an LCS of X[1..m] and
Y [1..n] including P1 and P2 as substrings. Computing the length of all concatenation
takes O(mnρ1ρ2) time and O(mn × max {ρ1, ρ2}) space. Constructing an LCS by
backtracking and concatenating takes O(m + n + ρ1 + ρ2) steps. Consequently, we
solve the STR-IC-LCS problem with two constrained patterns in O(mnρ1ρ2) time
and O(mn × max {ρ1, ρ2}) space.

392 J Comb Optim (2011) 21: 383–392

4 Concluding remarks

In this paper, we present three O(mnρ)-time and O(mnρ)-space algorithms for solv-
ing the STR-IC-LCS, SEQ-EC-LCS, and STR-EC-LCS problems, where m, n, and
ρ are the lengths of two sequences and a constrained pattern, respectively. In fact, the
space requirement can be further reduced to O(ρ×(m+n)) by applying Hirschberg’s
approach (Hirschberg 1975). We also consider the GC-LCS problems with an arbi-
trary number of constrained patterns.

References

Aho AV, Hirschberg DS, Ullman JD (1976) Bounds on the complexity of the longest common subsequence
problem. J ACM 23:1–12

Apostolico A, Guerra C (1987) The longest common subsequence problem revisited. Algorithmica 2:315–
336

Arslan AN, Eǧecioǧlu O (2005) Algorithms for the constrained longest common subsequence problems.
Int J Found Comput Sci 16(6):1099–1109

Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms. In: Proceed-
ings of the 7th international symposium on string processing and information retrieval (SPIRE’00),
pp 39–48

Bonizzoni P, Vedova GD, Dondi R, Fertin G, Rizzi R, Vialette S (2007) Exemplar longest common subse-
quence. IEEE Trans Comput Biol Bioinform 4(4):535–543

Chao KM, Zhang L (2009) Sequence comparison: theory and methods. Springer, Berlin
Chin FYL, Santis AD, Ferrara AL, Ho NL, Kim SK (2004) A simple algorithm for the constrained longest

common sequence problems. Inf Process Lett 90:175–179
Chin FYL, Ho NL, Lam TW, Wong PWH (2005) Efficient constrained multiple sequence alignment with

performance guarantee. J Bioinform Comput Biol 3(1):1–18
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001). In: Introduction to algorithms, 2nd edn. MIT

Press/McGraw-Hill, New York, pp 350–355.
Gotthilf Z, Hermelin D, Lewenstein M (2008) Constrained LCS: hardness and approximation. In: Pro-

ceedings of the 19th annual symposium on combinatorial pattern matching (CPM’08), pp 255–262
Gusfield D (1997) Algorithms on strings, trees, and sequences. Cambridge University Press, Cambridge
Hirschberg DS (1975) A linear space algorithm for computing maximal common subsequences. Commun

ACM 18:341–343
Hirschberg DS (1977) Algorithms for the longest common subsequence problem. J ACM 24:664–675
Hunt JW, Szymanski TG (1977) A fast algorithm for computing longest common subsequence. Commun

ACM 20(5):350–353
Iliopoulos CS, Rahman MS (2008) New efficient algorithms for the LCS and constrained LCS problems.

Inf Process Lett 106:13–18
Maier D (1978) The complexity of some problems on subsequences and supersequence. J ACM 25:322–

336
Masek WJ, Paterson MS (1980) A faster algorithm computing string edit distances. J Comput Syst Sci

20:18–31
Pevzner PA (2000) Computational molecular biology: An algorithmic approach. MIT Press, Cambridge
Rahman MS, Iliopoulos CS (2007) A new efficient algorithm for computing the longest common subse-

quence. In: Proceedings of the 3rd international conference on algorithmic aspects in information and
management (AAIM’07), pp 82–90

Tang CY, Lu CL, Chang MD, Tsai YT, Sun YJ, Chao KM, Chang JM, Chiou YH, Wu CM, Chang HT,
Chou WI (2003) Constrained multiple sequence alignment tool development and its application to
RNase family alignment. J Bioinform Comput Biol 1(2):267–287

Tsai YT (2003) The constrained longest common subsequence problem. Inf Process Lett 88:173–176
van Emde Boas P (1977) Preserving order in a forest in less than logarithmic time and linear space. Inf

Process Lett 6:80–82
van Emde Boas P, Kaas R, Zijlstra E (1977) Design and implementation of an efficient priority queue.

Math Syst Theory 10:99–127
Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173

	On the generalized constrained longest common subsequence problems
	Abstract
	Introduction
	The algorithms
	An O(mnrho)-time algorithm for the STR-IC-LCS problem
	An O(mnrho)-time algorithm for the SEQ-EC-LCS problem
	An O(mnrho)-time algorithm for the STR-EC-LCS problem

	The GC-LCS problems with an arbitrary number of constrained patterns
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

