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Abstract A popular model for protecting privacy when person-specific data is re-
leased is k-anonymity. A dataset is k-anonymous if each record is identical to at least
(k − 1) other records in the dataset. The basic k-anonymization problem, which min-
imizes the number of dataset entries that must be suppressed to achieve k-anonymity,
is NP-hard and hence not solvable both quickly and optimally in general. We ap-
ply parameterized complexity analysis to explore algorithmic options for restricted
versions of this problem that occur in practice. We present the first fixed-parameter
algorithms for this problem and identify key techniques that can be applied to this
and other k-anonymization problems.

Keywords Privacy · Anonymization · Parameterized complexity · Fixed-parameter
tractability · Kernelization

1 Introduction

One of the most important promises a physician makes to a patient is that of con-
fidentiality. Therefore, whether on paper or recorded electronically, patients expect
their personal health information to remain confidential. At the same time, there is
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a conflicting need to release this information for health research. However, today in
our growing digital society, guaranteeing patient privacy while providing researchers
with worthwhile data has become increasingly difficult.

It is often desirable to make a dataset publicly available for research. In the past,
it was believed that de-identification, i.e., removing obvious identifiers like social
security number and name, would be sufficient in the protection of patient privacy.
However, even if the individual pieces of information are common, combining them
can be sufficient to either identify an individual uniquely or determine with high prob-
ability that he or she is part of a group with the same health information (Brankovic
and Estivill-Castro 1999). The information used for this identification can be very
general; for example, Sweeney showed how easily a de-identified medical record
could be linked to an individual using little more then a zip code, date of birth, and
gender—in particular, she pinpointed the governor of Massachusetts’ medical record
using publicly available medical records and a voter registry (six people in the state
share his birth date, only three of which are male, and he is the only one of these three
in his 5-digit ZIP code) (Sweeney 2002).

Work on statistical databases raises deeper concerns of the need to conceal individ-
uals so that their information cannot be inferred with high probability. Information
can be compromised even if the dataset can only be queried for basic statistics on
ranges and multidimensional intervals; bounds on the confidential data in the interval
can certainly be calculated based on the statistical results, and, with sufficient queries,
the values of individual data items can be inferred either with certainty or with high
probability (Brankovic and Estivill-Castro 1999). Many different techniques have
been investigated to limit these risks and protect people’s privacy. One method of
risk limitation is to restrict the combinations of queries that can be asked, with the
largest askable proportion of queries serving as the measure of the database’s us-
ability. Brankovic et al. investigated usability under Sum, Count, and Mean queries,
finding that usability was inversely related to the number of unique rows (Brankovic
et al. 1997), while, if Sum queries alone are used, all even-sized contiguous sub-
matrices can be queried (Horak et al. 1999). Alternatively, noise can be added, en-
abling queries to be answered but compromising some of their accuracy, though some
noise techniques can preserve important data patterns (Islam and Brankovic 2004).
All privacy-protection techniques need to balance the need for high-quality statistics
against the risks of revealing individual data.

Another model of privacy protection which limits the risk of re-identification of
individuals whose data is stored in released datasets is k-Anonymity. A dataset is
k-anonymous if each record is identical to at least (k − 1) others in the dataset
(Samarati and Sweeney 1998; Sweeney 2002). A k-anonymous dataset limits re-
identification and enables high usability of the remaining data with respect to statisti-
cal queries, so k-anonymization techniques seek to minimize information loss while
transforming a collection of records to be k-anonymous. Information loss should be
minimized to make k-anonymized datasets useful in subsequent analyses; moreover,
k-anonymization must be done efficiently to make it an attractive option for privacy
protection software systems.

There are many types of k-anonymization (see Chaytor 2006 for a survey), the
most basic of which suppresses the smallest possible number of dataset entries to
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achieve k-anonymity. More complex types address inferrability concerns, includ-
ing requiring an identical group of public data to be linked to a variety of dif-
ferent medical results. Recently-derived complexity results (Aggarwal et al. 2005;
Bonizzoni et al. 2007; Chaytor 2006; Meyerson and Williams 2004) imply that effi-
cient algorithms for optimally or even approximately solving the general version of
this problem (and hence many other types of k-anonymization) probably do not ex-
ist. This has motivated privacy researchers to concentrate on fast heuristic algorithms
that produce good sub-optimal results (Chaytor 2007; Wang et al. 2004). However,
given the need to minimize information loss, efficient optimal algorithms that solve
restricted versions of k-anonymization that occur in practice would be preferable.
Questions about the existence and derivation of such algorithms are best addressed
using the theory of parameterized complexity (Downey and Fellows 1999). Parame-
terized complexity has previously been used to explore another problem based on
anonymizing data, that of merging a limited number of rows or columns in a binary
matrix to get a matrix of zeros (Fernau 2004); this problem is related to generalizing
entries rather than completely suppressing them.

In this paper, we give the first parameterized complexity analysis of a k-anon-
ymization problem, namely the entry suppression problem. This analysis includes
algorithms which demonstrate the fixed-parameter tractability of this problem un-
der a number of practically-useful restrictions; underlying these algorithms are three
general frameworks that may be applicable to other k-anonymization problems. This
paper is organized as follows: Sections 2 and 3 give background on k-anonymization
by entry suppression and parameterized complexity theory, Sect. 4 gives parameter-
ized hardness and tractability results for this problem, and Sect. 5 discusses these
results and directions for future research.

2 Problem definition

Consider the following definitions, adapted from Meyerson and Williams (2004):
Represent a database D of n entities described by m attributes as a row-set X =
{x1, x2, . . . , xn}, where xi ∈ �m for some attribute value-set �. Let xi[j ] be the j th
element of xi . A function f : D → (� ∪ {∗})m is a suppressor for D if:

∀xi ∈ D,∀j ∈ {1,2, . . . ,m}, {f (xi[j ]) ∈ {xi[j ],∗}}.
f thus transforms the database by replacing some entries by ∗, suppressing their
original values. A transformed dataset f (D) is k-anonymous if

∀xi ∈ D, ∃ distinct i1, . . . , ik−1 ∈ {1, . . . , n} − {i}
such that

∀1 ≤ j ≤ k − 1, f (xij ) = f (xi),

so that each row is identical to at least k − 1 other rows. Our problem can now be
stated as follows:
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First Last Age Town Gender Married

John Smith 21 Fredericton M Yes

Joni Smith 54 Fredericton F Yes

Sue Taylor 37 Saint John F No

Teri Walsh 37 Saint John F Yes

(a) Patient dataset

First Last Age Town Gender Married

* Smith * Fredericton * Yes

* Smith * Fredericton * Yes

* * 37 Saint John F *

* * 37 Saint John F *

(b) 2-Anonymous patient dataset

Fig. 1 k-anonymization by dataset entry suppression

ENTRY SUPPRESSION (ESup)
Instance: An n × m dataset D over an alphabet � and integers e, k ≥ 0.
Question: Can D be transformed into a k-anonymous dataset f (D) by suppressing
at most e entry values in D?

An example of k-anonymization by suppression is given in Fig. 1, in which the
dataset in (a) is transformed into the 2-anonymous dataset in (b) by suppressing var-
ious entry values. This way of making the dataset anonymous allows the choice of
entries to suppress to differ for different groups, suppressing them for individuals that
they would distinguish while keeping them for others.

A number of complexity results have recently been derived for this problem. Ini-
tially, the ENTRY SUPPRESSION problem has been proven to be NP-hard when k ≥ 3
(Meyerson and Williams 2004). Improving upon this result, the problem was shown
to be NP-hard when k ≥ 3 and |�| ≥ 3 (Aggarwal et al. 2005), and this result has
recently been improved to show that it is also NP-hard for binary alphabets (|�| = 2)
with k ≥ 3 (Bonizzoni et al. 2007).

Considering the approximability of the problem, the minimum number of sup-
pressions can be approximated within O(m log k) in polynomial time (Meyerson and
Williams 2004). It can also be approximated within O(k) in polynomial time using
a graph-based representation (Aggarwal et al. 2005). Considering inapproximabil-
ity, polynomial-bounded absolute approximation or FPTAS algorithms do not exist
for this problem unless P = NP (Chaytor 2006). Furthermore, even if k = 3 and
|�| = 2, the problem is APX-hard, so there are no polynomial time approximation
schemes for it unless P = NP (Bonizzoni et al. 2007).

3 Parameterized complexity analysis

Given intractability results such as those at the end of the previous section that rule
out optimal efficient algorithms for general versions of a problem, one may still be in-



366 J Comb Optim (2009) 18: 362–375

terested in algorithms whose non-polynomial running time is phrased purely in terms
of an aspect x of that problem that is small in practice, e.g., O(2xn3 + m2). An as-
pect of the problem can be any characteristic of the problem input, often including
the intended solution size. Parameterized complexity theory (Downey and Fellows
1999) directly addresses such questions by defining parameterized problems, which
break instances into a parameter k and a main part n, and fixed-parameter tractability
such that an algorithm’s running time can only be non-polynomial in the parame-
ter, i.e., the algorithm runs in O(f (k)p(n)) time, where f and p are arbitrary and
polynomial functions, respectively. An algorithm with O(f (k)p(n)) running time
can also be said to run in O∗(f (k)) time, eliminating the polynomial to focus on the
exponential function of the parameter.

Denote a parameterized problem X with parameter k by 〈k〉-X. Two basic
techniques for deriving fixed-parameter algorithms (Downey and Fellows 1999;
Niedermeier 2006) are bounded search and kernelization (in which a classical ex-
haustive search and the candidate solution-set, respectively, are bounded by a function
of the parameter). Fixed-parameter intractability can be shown via hardness for any
of the classes of the W -hierarchy = {W [1],W [2], . . . ,W [P ], . . . ,XP}, all of which
seem (but have not been proven) to properly contain the class FPT of fixed-parameter
tractable problems.

The analyses described above suffice in the case of problem restrictions encoded
by single aspects; however, it is often of interest to look at restrictions operating over
multiple aspects simultaneously. Such analyses can be simplified by the following
relationships. For a problem of interest X, let S be a set of aspects for X, and we can
consider any S′ ⊆ S. Hardness is transferred from S′ to subsets of S′, and tractability
is transferred from S to supersets of S′, as follows:

– Given S′ ⊆ S′′ ⊆ S, if 〈S′〉-X ∈ FPT then 〈S′′〉-X ∈ FPT.
– Given S′ ⊆ S′′ ⊆ S, if 〈S′′〉-X is C-hard for some parameterized complexity

class C, then 〈S′〉-X is also C-hard.

4 The parameterized complexity of ENTRY SUPPRESSION

Several parameters of ENTRY SUPPRESSION that may be fixed or limited for different
applications or sources of data are as follows:

m: the number of columns, or fields, in the dataset
n: the number of rows, or records, in the dataset

|�|: the maximum number of different values in any column
k: the desired minimum size of the anonymous groups
e: the maximum number of entries that can be suppressed

We investigate the parameterized complexity of ENTRY SUPPRESSION relative to
various subsets of S = {n,m, |�|, k, e}. The following relationships between these
aspects will be exploited below:

– As the number of values in any column cannot exceed the number of rows, |�| ≤ n.
– As the number of suppressed entries cannot exceed the number of dataset entries,

e ≤ mn.
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– As the size of any identical group cannot exceed the number of rows, k ≤ n.
– If the input dataset is not already k-anonymous, then at least one group must need

suppressed entries, so at least k entries must be suppressed. Thus k ≤ e unless
the input dataset is either k-anonymous or cannot be k-anonymized with only e

suppressed entries.

The last relationship has more general consequences. Checking a dataset to de-
termine if it is k-anonymous can be done by sorting and then grouping the rows, in
O(mn logn) time, so 〈e〉-ENTRY SUPPRESSION reduces to 〈e, k〉-ENTRY SUPPRES-
SION. Since the reverse reduction also holds, using 〈e〉 as a parameter is equivalent
to using 〈e, k〉 as parameters. This property also holds if additional parameters are
included.

The alphabet size |�| can vary greatly according to the dataset, from binary (such
as gender) to highly multivalued (such as location). Tradeoffs are possible between
the number of columns and the alphabet size; columns could be merged, with the
values in the new column representing the combined result, or alternatively a column
could be split. However, this type of alteration would restrict the types of suppressions
possible, since merged entries would have to be kept or suppressed together rather
than individually, and which results are optimal could change. The cost of suppressing
a joint entry could also lead to adding cost weights for the columns.

Multivalued columns could instead be split into a set of binary columns, one for
each of the original values, though this alteration would require multiple entries to be
suppressed in order to obscure one value. This type of expansion into binary columns
could be used to produce privacy through generalization rather than outright suppres-
sion, since, if only some of the possible types are suppressed, the value may be able
to be categorized while still allowing anonymity.

4.1 Hardness results

Limiting the size of the anonymous group, k, and the size of the dataset’s alphabet �

does not, by themselves, enable parameterized solutions.

Theorem 4.1.1 〈k, |�|〉-ESUP �∈ XP unless P = NP.

Proof For a decision problem � with aspect-set parameter S, if � is NP-hard when
all aspects in S are constants then 〈S〉-� is not in XP unless P = NP (Wareham
1999). Since ESUP is NP-hard when k ≥ 3 and |�| ≥ 3 (Aggarwal et al. 2005), the
result follows. �

These hardness results are also transferred to problem variants whose parame-
ters are a subset of those proven hard. Thus 〈k〉-ESUP and 〈|�|〉-ESUP �∈ XP unless
P = NP.

4.2 Fixed-parameter tractability results

While fixing k and |�| is insufficient for fixed-parameter tractability, including ei-
ther the number of rows or number of columns as a parameter does, in most cases,
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1 A B C D E
2 A B C D E
3 A B C D E
4 X B C D E
5 X B C D E
6 A B Y D E
7 A B Y D E
8 A B C D Z
9 A B C D Z

1 A B C D E
2 A B C D E
3 A B C D E
4 * B * D E
5 * B * D E
6 * B * D E
7 A B * D *
8 A B * D *
9 A B * D *

3 * B C D E
4 * B C D E
5 * B C D E
2 A B * D E
6 A B * D E
7 A B * D E
1 A B C D *
8 A B C D *
9 A B C D *

(a) Original data set, with
{1,2,3} already 3-anonymous.

(b) 12 suppressions are needed
to keep {1,2,3} together.

(c) Only 9 suppressions are
needed if {1,2,3} are separated.

Fig. 2 Splitting up k-anonymous groups is needed to efficiently anonymize other rows

lead to fixed-parameter tractable algorithms. Note that limiting rows and columns si-
multaneously effectively fixes input size and hence is trivially in FPT (check all 2mn

entry-suppression combinations in O(2mnmn logn) time). That being said, this basic
exhaustive search algorithm forms part of the more complex algorithms given below.

Allowing the number of rows to be unlimited yields two cases, depending on
whether or not all rows in the given dataset are distinct. The first case is fairly easy
to deal with if m and |�| form the parameter (as n ≤ |�|m, it can be solved in
O(2m|�|mnm logn) time). Unfortunately, this will not typically hold, e.g., after all
unique-value columns (such as name) have been removed as being identifying infor-
mation. The second case, in which one has multiple copies of certain rows, initially
seems to be potentially easier, since the dataset is already somewhat anonymous.
However, identical rows are not necessarily grouped together, and even k identical
rows may need to be split up in order to form groups with other similar rows. For
example, we can have a dataset that includes k copies of one row x, and k groups of
k − 1 copies each of other rows ri (1 ≤ i ≤ k), where each row ri differs from row
x in column i only. If the k copies of row x are kept together, then all other groups
(of size k or more) must be formed from rows that differ in at least two columns,
thus requiring the suppression of at least 2k2 − 2k entries. If instead the x rows are
broken up, with one x row grouped with each group of ri rows, then only one entry
must be deleted from each row, suppressing only k2 entries. This situation, illustrated
for k = 3 in Fig. 2, shows that we cannot reduce the data that we need to consider
by eliminating already k-anonymous rows. This example also illustrates some limi-
tations on trying to kernelize datasets where the number of distinct rows is bounded.

To handle the situation where rows are not distinct, it suffices to add k to the
previously-considered parameter. This is interesting in itself, because though k and
|�| do not by themselves yield fixed-parameter tractability, they do suffice when
combined with m.

Theorem 4.2.1 〈m, |�|, k〉-ESUP can be solved in O(nm logn+2|�|2mkm ·|�|2mkm·
(m log |�| + logk)) time, or O∗(2|�|2mkm · |�|2m).

Proof There will be at most |�|m distinct rows and, as discussed above, we cannot
always group identical rows together. However, the number of groups needed will not
be more than the number of distinct rows, since any row moved to another group must
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Fig. 3 Algorithm 1. See
Theorem 4.2.1 for details

Algorithm 1:
sort the rows and group identical rows
for each identical group i

if the number of copies ci > |�|m · k
remove these excess copies
xi = ci − |�|m · k

for all combinations of entries in the remaining rows
suppress the selected combination of entries
sort the rows and group identical rows
if all groups are of size ≤ k

t = total number of suppressions of grouped rows
for all initial groups i that have excess copies

find the grouped copy that has the fewest suppressions si
if xi < k

t = t + xi · si
if t ≤ e

return true
return false

be needed in order to supplement a group of some other identical rows. Therefore
the number of rows from any identical group that may be distributed to different
groups is no more than |�|m · k. If an identical group has more row copies than
this, the remaining rows can be included in whichever group (that already includes
some copies of them) requires them to have the least number of suppressions per
additional row. Since there are at most |�|m initial groups, where each group may
give no more than |�|m · k rows to other groups, we have a kernel of |�|2m · k rows,
each of length m.

Algorithm 1 (see Fig. 3) uses this principle to reduce and bound the number of
rows need to be partitioned through trying each possible subset of entries to suppress.
There will be at most 2|�|2mkm suppressed-entry subsets to be considered, and each
combination requires |�|2mk rows of length m to be sorted and grouped. Arriving
at the total number of suppressions, including the rows that were not partitioned, is
done for each original identical group by including the suppressions for those rows
that were left out of the partition. Rows that are in groups of k or more should not be
added in, since they are already part of a sufficiently large group. Thus Algorithm 1
runs in O(nm logn+2|�|2mkm · |�|2mkm · (m log |�|+ logk)) time, or O∗(2|�|2mkm ·
|�|2m). �

Given the relationships between e and k mentioned earlier, the above also implies
that 〈m, |�|, e〉-ESUP and 〈m, |�|, e, k〉-ESUP are in FPT .

If we allow the number of columns to be unlimited, we can instead limit the num-
ber of rows. Parameterizing by n supports two different fixed-parameter techniques,
since the different partitions of the rows can be searched, and also the dataset can be
kernelized by identifying columns that partition the rows in the same way.

Theorem 4.2.2 〈n〉-ESUP is solvable in O(nm logm + 2nn+1
nn+1 logn) time, or

O∗(2nn+1
nn+1), through kernelization.
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Fig. 4 Algorithm 2A. See
Theorem 4.2.2 for details

Algorithm 2A:
for all columns j from 1 to m

relabel the entries of column j , starting from 1, in order
sort the columns, and group them into sets of identical columns
for each set j of identical columns

remove all but one representative
weight it by sj , the number of columns in the identical group

for all combinations of entries in the at most n × |�|n table
Sum = sum, over all selected entries, of their columns’ weights
if Sum ≤ e

suppress all of these entries
sort the table and group identical rows
if all groups are of size ≥ k

return true
return false

Proof We kernelize by reducing it to the related problem where the columns are
weighted, and kernelizing the weighted problem by grouping columns. Unlike iden-
tical rows, which may need to be separated, identical columns can be grouped and
handled together. If two columns produce an identical partitioning of the rows, then
they need to have the same entries suppressed. If two identical columns have different
entries suppressed, then they will partition the rows in different ways. If instead both
columns have the same entries suppressed (choosing whichever had the fewest sup-
pressed entries), then the partitioning produced by the other column will be removed
from the overall partition (formed by overlaying the different column partitions). Re-
moving a partitioning cannot decrease the size of the sets of rows in the overall par-
tition, so making the columns identically suppressed will not increase the number of
suppressions or break the k-anonymity condition. Thus the columns in the dataset can
be restricted to the columns that produce different partitions of the rows, which is less
than |�|n. Each set of columns that produce the same partition can be represented by
a single column, weighted by the size of the set, and there will be no more than |�|n
such weighted columns. Algorithm 2A (see Fig. 4) implements this approach, and
runs in O(nm logm + 2n·|�|n · |�|nn logn) = O(nm logm + 2nn+1

nn+1 logn) time
(as |�| ≤ n). �

This algorithm’s running time is also greatly improved if the alphabet size |�| is
fixed independently of n, so that |�| � n, since there will be at most |�|n columns
left after the reduction. Algorithm 2A, then, is more useful for situations where |�|
is small.

Alternatively, the dataset can be anonymized by considering all possible partitions
of the rows, and suppressing any column in a subset of the partition that is not identi-
cal in all the subset’s rows. Any fast partition generating algorithm can be used, such
as Er’s (1988), which takes time O(Bn), where Bn is the nth Bell number (count-
ing the number of partitions of a set of n elements), a very fast growing progression
generated by the recurrence

Bn =
n−1∑

k=0

Bk

(
n − 1

k

)
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Algorithm 2B:
for all partitions of the n rows

if all groups are of size ≤ k

for each column
for each row

if the entry is different from other rows in the group
suppress the entry for all rows in that group

if there are no more than e entries suppressed
return true

return false

Fig. 5 Algorithm 2B. See Theorem 4.2.3 for details

where B0 = 1. Bn could also be used instead of |�|n for Algorithm 2A; the number
of possible partitions based on a single column can be considered to be constrained
either by the number of rows alone (using Bn) or by the alphabet size together with
the number of rows (using |�|n).

Theorem 4.2.3 〈n〉-ESUP is solvable in O(Bn · n(m + logn)) time, or O∗(Bn),
through bounded searching.

Proof Instead of the kernelization approach of Algorithm 2A, Algorithm 2B (see
Fig. 5) searches through all possible partitions into groups of size at least k, and
suppresses whatever entries are needed to be suppressed in order for each group to
be identical. There are Bn possible partitions, and the rows in any partition can be
grouped in O(n logn) time through sorting and then have the necessary entries sup-
pressed in O(nm) time. Algorithm 2B thus solves the ENTRY SUPPRESSION problem
in O(Bn · n(m + logn)) time. �

All of the algorithms above limit the number of symbols |�|, either directly or
by limiting n. However, if we allow � to be arbitrarily large, we can still achieve
fixed-parameter tractability by limiting m and e.

Theorem 4.2.4 〈m,e〉-ESUP is in FPT and can be solved using a combined kernel-
ization and search strategy in O(2em(e32e)emn logn) time, or O∗(2em(e32e)e).

Proof This result holds courtesy of Algorithm 3 (see Fig. 6). In order to be k-anon-
ymizable, the number of rows in the original dataset that are in groups of less than
k identical copies must be less than e, since each of these groups must have at least
one entry suppressed per row. This produces a sub-dataset D′′ of at most e rows,
so there are at most 2em different combinations of entries in that subset to consider
suppressing and testing to determine if this suppression combination will work.

Once a suppression combination is to be tested, the other rows (already part of
larger groups, D′ in Algorithm 3) need to be considered to be added to the rows with
suppressed entries. Since the suppression combination has determined which entries
of D′′ are suppressed, we consider rows from D′ that are compatible with the groups
of D′′. We may need to consider more than just the excess rows of large groups (rows
over the k minimum group size); however, we can only suppress e entries in total, so
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Algorithm 3:
sort and group identical rows
select all rows in groups of size < k

if more than e rows are selected
return false

D′ = dataset—selected rows
D′′ = selected rows
for all entry combinations in the selected rows D′′

where each row has at least one entry included
suppress the combination of entries in D′′
e′ = e—number of entries suppressed
if e′ ≥ 0

sort and group identical rows from D′′
construct D′′′ from D′ by:

for all pairs i1, i2 of groups of identical rows in D′
let d(i1, i2) = Hamming distance between i1 and i2 rows

sort the (i1, i2) pairs by nondecreasing d(i1, i2)

D′′′ = empty
for each pair i1, i2 of groups of identical rows in D′ , as sorted

size(i) = number of rows in i

m(i) = set of groups in D′′ whose unsuppressed entries
match group i for all non-suppressed entries

c(i) = number of groups j already in D′′′ with
m(j) = m(i) and (size(j) = size(i) or size(j) ≥ e′ + k)

if c(i1) < e′
move min(e′, size(i1)) rows of group i1 from D′ to D′′′

if c(i2) < e′
move min(e′, size(i2)) rows of group i2 from D′ to D′′′

for each selection of e′ rows from D′′′
for all combinations of up to e′ entries in the selected rows

suppress that combination of entries
re-build D by uniting all rows in D′, D′′ and D′′′
if at most e entries in D are suppressed

sort and group identical rows of D

if all groups of D are of size ≥ k

return true
return false

Fig. 6 Algorithm 3. See Theorem 4.2.4 for details

we only need to consider at most e′ rows from each group (where e′ = e—the number
of entries suppressed in the combination currently being tested).

Since |�| is not bounded, there may be many groups in D′ that are compatible with
the groups of D′′. We need, then, to find a boundary set D′′′ of rows from D′ such that
rows in D′′ − D′′′ are functionally equivalent to rows that are in D′′′, for the purpose
of building a k-anonymous dataset. For example, if a group X of D′′ that needs
extending has one suppressed column, there may be |�| different groups that agree
with the non-suppressed columns of group X; they are functionally equivalent for
extending group X. They may not, however, be functionally equivalent for extending
other groups from D′′; also, their sizes may differ, leading to a different number of
rows being available or needing to be grouped after some rows have been removed to
supplement X (or other groups). So, the boundary needs to include rows from groups
that have different compatibilities with the groups in D′′, and also are of different
sizes. Since no more than e′ rows can be taken from the boundary, groups of size
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≥ e′ +k are considered to be functionally the same size, and indeed can be substituted
for smaller groups.

Finally, after the groups in D′′ are filled out with “donated” rows, the remainder
of the rows still need to form groups of size at least k. The groups that donate rows
to D′′′ thus need to be as close together as possible, so that the number of entries that
need to be suppressed to merge them is minimized.

The rows of D′′′ are added to the groups of D′′, put back into their original groups
in D′, or put together to form new groups; trying a suppression pattern of entries from
e′ rows selected from D′′′ will induce a complete grouping over all the rows. All of
the rows are then reassembled and tested to determine if the suppression limit of e

has been respected and the k-anonymity condition is met.
A minimum size set of suppressed entries is found by considering only those rows

in D′′ and D′′′. Consider any minimum size set of suppressed entries that produces a
k-anonymized dataset, and assume that it contains a row x that is not part of D′′ ∪D′′′.
Let Gx refer to the k-anonymous group that row x is part of. Two cases need to be
considered, depending on whether any rows from Gx are part of groups that use rows
of D′′′. If some row y from Gx is in D′′′, then there are at least e′ rows z in D′′′
such that d(y, z) ≤ d(y, x); an identical group of up to k of them can be substituted
for x (and any other rows from Gx not in D′′′) to produce a group with no more
suppressed entries than Gx . If Gx itself does not contain any rows from D′′′, but other
copies of one of its rows x′ are found in a group that does contain rows from D′′′,
the same argument can be applied to substitute for x′ in Gx′ , and, by extension, Gx ,
since D′′′ will contain enough closely related rows to be able to substitute for any
cascade of groups related by common rows. If, on the other hand, no row from Gx or
a related group is in D′′′, then x has a corresponding z row in D′′′ that is its functional
equivalent and is from a group of D′ that is the same size, so the rows identical to
z can be substituted for the rows of x, with the rows close to z (from D′′′) in turn
substituting for the rows close to x. Thus there is a minimum size set of suppressed
entries that uses rows only from D′′′ ∪ D′′′.

With at most e rows in D′′, there can be at most 2e sets of rows m(i) classified
according to their functional compatibilities with groups of D′′. Since D′′′ contains
at most e rows from each of at most e groups of each of e + 1 possible sizes (sizes
k, k + 1, . . . , e + k) and 2e functional types, the boundary set D′′′ will include at
most e2(e + 1)2e rows. Up to e rows from D′′′ need to be selected to extend D′′,
so all possible subsets of size at most e are potentially tried. Each subset selected
needs to be tested for all possible e entries to be suppressed. These two steps can be
combined so that up to e rows, with at most e entries suppressed, are chosen.

To test one of the 2e1m possible suppression patterns (where e1 is the number of
rows in D′′), then, requires testing each selection of no more than e rows from a set
of e2(e + 1)2e rows, and trying each of no more than 2e2m suppression patterns in the
result (where e2 = e − e1). Considering these different suppression possibilities thus
searched and tested, Algorithm 3 thus runs in O(mn logn + 2emmn + 2em(e2(e +
1)2e)emn logn) = O(2em(e32e)emn logn) time. �
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Table 1 Summary of Parameterized Results for ENTRY SUPPRESSION. For each FPT result, the numbers
of the algorithms implying this result are given in parentheses

– k e k, e

– NP-hard �∈ XP ??? ???

|�| �∈ XP �∈ XP ??? ???

m ??? ??? FPT(3) FPT(3)

n FPT(2) FPT(2) FPT(2) FPT(2)

|�|,m ??? FPT(1) FPT(1,3) FPT(1,3)

|�|, n FPT(2) FPT(2) FPT(2) FPT(2)

5 Conclusion

Table 1 summarizes the hardness and tractability results presented in this paper, in-
cluding all results implied by pairwise parameter and parameter subset relationships.
Note that as k ≤ e, unless the dataset is already k-anonymous, the two rightmost
columns are equivalent.

The algorithms underlying these FPT results illustrate techniques that can be ap-
plied to this problem, individually and together, and provide a general framework for
algorithm development. Searching, either using a bounded search through the entire
set or searching through a problem kernel, can consider all possible entry suppression
combinations or all partitions. The results of such searches are equivalent, since parti-
tioning the dataset into sets of rows will require any nonidentical columns in a group
to have all their entries suppressed; similarly, an entry suppression combination will
induce a partition of the rows into groups. In addition to the two search approaches,
kernels can be found for problem variants where the number of rows or columns that
differ or need to be considered can be bounded by a function of the parameters.

These algorithms show fixed-parameter tractability of the problem variants as in-
dicated, and thus open up these variants to the investigation and development of faster
algorithms that exploit those parameter combinations. The techniques presented here
provide a framework for future algorithm development, especially with the general
approach taken in algorithms such as Algorithm 3 that finds a core set of rows that
need altering and then consider a limited set of other rows that are close to them.

The most pressing direction for future research is to improve the running times of
the given FPT algorithms. Though most of these algorithms are not themselves prac-
tical, they do indicate which aspect-combinations allow fixed-parameter tractability.
Past experience has shown that once a problem is shown to be in FPT, more sophis-
ticated techniques can often be applied to derive practical algorithms (Niedermeier
2006), and similar work could potentially improve on the running times given here.

Also, the parameterized complexity of some variants relative to the parameters
examined in this paper are still open. Of these, 〈m,k〉-ENTRY SUPPRESSION is of
particular interest since the datasets to be anonymized frequently have small values
of m and k. For example, according to current practices for statistical release adopted
by the Newfoundland and Labrador Centre for Health Information (NLCHI), suitable
values for m and k are 25 and 5, respectively (MacDonald 2005).
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As well as improving the results within k-anonymity and the ENTRY SUPPRES-
SION problem, these results and problem variants can be expanded to incorporate
other key issues that arise in database privacy, such as the need for an identical anony-
mous group to have different medical test results. Entry suppression can also be com-
bined with some limited statistical querying, so that the entries may be suppressed but
still have some statistical information about them available. Expanding suppression
to value generalization should also be investigated.
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