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Abstract This paper investigates Russian Cards problem for the purpose of uncon-
ditional secure communication. First, a picking rule and deleting rule as well as safe
communication condition are given to deal with the problem with 3 players and 7
cards. Further, the problem is generalized to tackle n players and n(n − 1) + 1 cards.
A new picking rule for constructing the announcement is presented, and a new delet-
ing rule for players to determine each other’s cards is formalized. Moreover, the safe
communication condition is proved. In addition, to illustrate the approach, an exam-
ple for 5 players and 21 cards is presented in detail.

Keywords Russian Cards problem · Picking rule · Deleting rule

1 Introduction

The security of cryptographic protocols generally depends upon several assumptions
such as the agents are computationally limited and certain computational problems
are intractable with these computational limits. In protocols based on public key en-
cryption schemes such as RSA (Rivest et al. 1978), for example, decryption of mes-
sages is tractable for the intended recipient but assumed to be impossible for an in-
truder, because it requires factoring a large product of primes, a problem assumed to
be intractable (Vasilenko 2006). There do exist, however, unconditionally secure pro-
tocols, whose security does not rely upon such assumptions. Some of such protocols
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have been studied recently in the cryptography and information theory community
(Fische and Wright 1996; Makarychev 2001). These protocols can be shown to be
secure even against the adversaries with unlimited computational powers, because
they ensure that the adversary cannot learn secrets for information theory rather than
computational reasons.

‘Russian Cards’ problem was originally presented at the Moscow Mathematics
Olympiad in 2000 with 3 players and 7 cards. The problem can be described as fol-
lows (van Ditmarsch 2003): From a pack of seven known cards two players each
draw three cards and a third player gets the remaining card. How can the players
with three cards openly (publicly) inform each other about their cards, without the
third player learning from any of their cards who holds it?

This type of problem has been studied in Fische and Wright (1996), Koichi et al.
(2004), Ramanujam and Suresh (2001), Roehling (2005), Stiglic (2001) as the Key-
set protocol for communication among a team of parties and a passive eavesdropper
whose computational power is unlimited. Significantly, it is implied that a solution to
this type of problem can communicate information among parties in a distributed set-
ting securely without using any encryption. Although Russian Cards protocol is simi-
lar to Key-set protocol, parties in the latter only wish to share a common one-bit secret
key while parties in the former want to know the actual card deal. Since such prob-
lems are often rather subtle, dynamic epistemic logic is used to deduce possible so-
lutions to Russian Cards problem in van Ditmarsch (2003, 2005). This has been used
as a basis for a model checking approach in van Ditmarsch et al. (2006). It has been
proved that at least two announcements can solve this problem (Albert et al. 2005;
Atkinson et al. 2007). Nevertheless, how to figure out these solutions are not given.
Moreover, a generic safe communication protocol based on Russia Cards problem
has not intensively been studied. Cyriac and Krishnan studied the Lower Bound for
the Communication Complexity of the Russian Cards Problem (Cyriac and Krishnan
2008). They also pointed out that it is interesting to study the possible generalization
of the problem to an n player m card game, and to derive a possible lower bound for
announcement in this scenario. However, to the best of our knowledge, there is no
published work on this generalization. Therefore, in this paper, we are motivated to
generalize the Russian Cards problem so that more players can communicate using
the unconditional protocol. The main contribution of the paper is as follows: (1) for-
malizing picking and deleting rules as well as safe communication condition with 3
players and 7 cards; (2) generalizing the problem to n players and n(n − 1)+ 1 cards
and further formalizing picking and deleting rules and safe communication condition.

To deal with the initial Russian Cards problem, we first formalize two algorithms
called picking rule and deleting rule to construct announcements (a set of cards an
announcer holds) and to manage communication among players. Moreover, a safe
communication condition is proposed and proved. Further, we generalize the problem
to n players and n(n − 1) + 1 cards so that a safe public communication protocol
can be established. To do so, an assumed cards dealer randomly dispatches n cards
from n(n − 1) + 1 cards to each party as his hand, and leave the remaining one
card for intruder. In the communication with n (n ≥ 4) players, each party has to
announce his hand by means of the announcement one by one. Each announcement
is actually a matrix containing announcer’s hand and other fake hands. After all of
the announcements, all parties but intruder know each other’s hand.
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The rest of the paper is organized as follows. Section 2 models and analyzes the
original Russia Cards problem. The picking rule and deleting rule as well as the safe
communication condition are formalized. In Sect. 3, we generalize the problem to a
generic case with n players and n(n − 1) + 1 cards. By the mathematical analysis,
new picking and deleting rules are given. To prove the communication based on our
approach is safe, some lemmas and two theorems are proved. In Sect. 4, to illustrate
our approach, an example with 5 player and 21 cards is given in detail. Finally, the
conclusion is drawn in Sect. 5.

2 Russian Cards problem

Initially, the cards were named 0, . . . ,6. Besides being public, all announcements
are assumed to be truthful. According to game rules, when all cards are randomly
allocated to each player, we call the set of cards held by a player a hand, the set of
hands appearing in an announcement a hand set, and the allocation of cards a card
deal. Further, for a hand of cards such as {0,1,2}, we write 0-1-2 instead; and for a
card deal such as 0-1-2, 3-4-5, 6, we write 0-1-2.3-4-5.6 to mean that the first player
holds cards {0,1,2}, the second holds {3,4,5}, and the third holds {6}. Suppose three
players are Anne, Bill and Crow. We assume that 0-1-2.3-4-5.6 is the actual card deal.
A solution to the Russian Cards problem is a sequence of secure announcements such
that Anne and Bill know each other’s hand but Crow knows nothing about the card
deal. The following is an instance of solutions (van Ditmarsch 2003): Anne says:
“I have one of 0-1-2, 0-3-4, 0-5-6, 1-3-5, 2-4-6.” After which Bill announces: “Crow
has card 6.” Once Bill receives Anne’s announcement, he learns Anne’s hand from
the hand of his own. Accordingly, after having received both announcements, Crow
knows just Anne has one of 0-1-2, 0-3-4, 1-3-5, but neither which one nor the hand of
Bill. This sequence is safe. However, if we replace Anne’s announcement by “I have
one of 0-1-2, 0-3-4, 0-5-6, 1-3-4, 2-5-6” and keep other conditions, the result is dif-
ferent since although both Anne and Bill can learn each other’s hand, Crow is also
able to figure out some information (for instance, he can work out Bill holds card 5)
about their cards because he holds card 6. So this sequence is unsafe.

According to the rule of the game, three players draw cards in a random manner.
We can equivalently assume that there is a cards dealer who randomly dispatches
cards to these players. When all players obtain their hands, only the dealer knows
the card deal. The dispatching process is straightforward. The cards dealer is also
responsible for constructing announcement (hand set) for Anne according the card
deal. Actually, the key information communicated among players is hand set gener-
ated by the cards dealer, since it not only notifies Bill of Anne’s hand but also keeps
Crow from knowing any information about hands of Anne and Bill. Observe that the
hand set is generated in the way in which the first three hands cover all the cards with
a sharing card (0 in the instance), and each of the remaining hands consists of three
cards, coming from each of the first three hands excluding the sharing card. In this
way, the cards dealer can figure out hand set. We call this procedure picking rule.
Note that only the cards dealer knows picking rule.
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Before we give the algorithm of picking rule, we first introduce a matrix called
hand matrix B = (bi,j )3×3,

B =
⎛
⎝

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

⎞
⎠ B1 =

⎛
⎝

0 1 2
0 3 4
0 5 6

⎞
⎠ B2 =

⎛
⎝

3 0 4
3 1 5
3 2 6

⎞
⎠

for it can more concisely denote a hand set, where each row represents a hand, and
each of the last two columns also represents a hand. Since each announcement is
faithful, Anne’s hand should be contained in her announcement. For example, hand
matrix B1 agrees with the hand set from the instance of solution. The matrix has
Anne’s hand placed in the first row. However, Anne’s hand is not limited to appear
in rows, it can also be contained in columns to make a qualified announcement. For
instance, in hand matrix B2, Anne’s hand appears in the second column. For this
reason, we consider picking rule in row and column cases respectively.

For row case, Anne’s hand can appear in any row. Without loss of generality, we
assume Anne’s hand is placed in the first row of B . Thus, the picking rule can be
given in Algorithm 2.1. Let S = {0,1,2,3,4,5,6} denote the set of all cards, and
ha , hb and hc represent the hand of Anne, Bill and Crow respectively. Hand matrix
B = Arpick (S,ha).

Algorithm 2.1: Arpick (picking rule (row case))

input: set M,h;1

output: matrix B;2

temp variable: integer m;3

M := M − h4

/* extract a sharing card from ha and fill the first
column of B with it */

Let m ∈ h;5

h := h − {m};6

for i := 1 to 3 do7

bi,1 := m;8

end9

Let m ∈ h; b1,2 := m; h := h − {m};10

Let m ∈ h; b1,3 := m; h := h − {m};11

for i := 2 to 3 do /* place cards in other columns of the12

last two rows of B */
for j := 2 to 3 do13

Let m ∈ M;14

bi,j := m; M := M − {m};15

end16

end17



J Comb Optim (2010) 19: 501–530 505

Algorithm 2.2: Acpick (picking rule (column case))

input: set M,h;1

output: matrix B;2

temp variable: integer m;3

M := M − h;4

/* apart from ha, M contains the remaining cards */
Let m ∈ M ; M := M − {m};5

/* extract a sharing card from M to fill the first
column of B with it */

for i := 1 to 3 do6

bi,1 := m;7

end8

for i := 1 to 3 do /* place ha in the second column of B */9

Let m ∈ h; bi,2 := m; h := h − {m};10

end11

for i := 1 to 3 do12

/* place remaining three cards in last column of B */
Let m ∈ M ; bi,3 := m; M := M − {m};13

end14

For column case, Anne’s hand can appear in any but the first column of hand
matrix. For simplicity, we assume Anne’s hand is placed in the second column of B .
So, the picking rule can be given in Algorithm 2.2.

The sequence of announcements, the first from Anne and the second from Bill,
completes the communication procedure for the Russian Cards problem. So we
call this sequence a communication. Note that, in a communication, once receiv-
ing the announcement from Anne, Bill and Crow can remove the hands contain-
ing cards in their own hands, from the hand set. We call this procedure deleting
rule. Let Ri (resp. [Ri]) represent the ith row (resp. set of cards from Ri ), and
Cj (resp. [Cj ]) the j th column (resp. set of cards from Cj ) of matrix B . We use
H = {[R1], [R2], [R3], [C2], [C3]} to denote the set of all possible hands for Anne.
The rule can be formalized in Algorithm 2.3. Thus, Bill can use deleting rule to de-
termine Anne’s hand. Hb = Adel (H,hb). Note that if

|Hb| = 1 (2.1)

then Bill learns Anne’s hand. In deed, the above deleting rule can be used for Crow
to determine Anne’s hand as well. However, it is not enough to guarantee a safe
communication since Crow might learn what cards Anne has not held from his an-
nouncement. For instance, suppose Anne’s announcement is {0-1-2, 0-3-4, 0-5-6,
1-3-4, 2-5-6} and Bill still hold 3-4-5, by Algorithm 2.3, Bill learns Anne’s hand is
0-1-2. Since both hands 0-5-6 and 2-5-6 contain card 6, by removing them from the
hand set, Crow also learns Anne’s hand is one of {0-1-2, 0-3-4, 1-3-4}. Although
Crow cannot determine Anne’s hand however he learns Anne does not hold card 5.
This is not a safe communication. Therefore, to guarantee a safe communication, the
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Algorithm 2.3: Adel (deleting rule)

input: matrix H , set h;1

output: matrix Hb;2

tempt variable: integer i, j ;3

Let Hb := H ;4

for i := 1 to 3 do5

if h ∩ [Ri] �= φ then6

Hb := Hb − {[Ri]};7

end8

end9

for j := 2 to 3 do10

if h ∩ [Cj ] �= φ then11

Hb := Hb − {[Cj ]};12

end13

end14

set of hands generated by using deleting rule must cover all cards except for Crow’s
card. As a result, Hc = Adel(B,hc).

Let Hs represent the set of cards extracted from members of Hc (set of all possible
hands for Anne). It is easy to see that, if

|Hc| > 1 (2.2)

and

hc = S − Hs (2.3)

then Crow learns nothing about hands of Anne and Bill. Thus, after Anne’s announce-
ment, Bill and Crow complete the communication by the deleting rule, Bill learns
Anne’s hand, while Crow knows neither Anne’s nor Bill’s hand. Also, Crow does
not know what cards Anne and Bill do not hold. Based on the above analysis, the
definition of safety for Russian Cards problem can be given as follow.

Definition 1 (Safe communication) A communication with the first announcement
generated according to picking rule is safe if formulas (2.1), (2.2) and (2.3) hold.

Further, we have the following conclusion.

Theorem 1 For the Russian Cards problem, a communication based on the hand
matrix constructed by the picking rule is safe.

Proof We consider the following two cases:

row case Since ha = [R1], hb contains three cards from four cards b2,2, b2,3, b3,2,

b3,3, thus hb ∩ [R1] = φ, hb ∩ [R2] �= φ and hb ∩ [R3] �= φ. According to
picking rule, there are C3

4 = 4 possible placements for hb . With any cases,
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either |hb ∩ [R2]| = 2 or |hb ∩ [R3]| = 2, both hb ∩ [C2] �= φ and hb ∩
[C3] �= φ. Thus according to deleting rule, Hb = {[R1], [R2], [R3], [C2], [C3]}−
{[R2], [R3], [C2], [C3]} = {[R1]}, so formula (2.1) holds. Further, Crow holds
just one card hc . It is one of {b2,2}, {b2,3}, {b3,2} or {b3,3}. We assume,
without loss of generality, hc = {b2,3}. According to the deleting rule, since
hc ∩[R2] �= φ and hc ∩[C3] �= φ, we have Hc = {[R1], [R2], [R3], [C2], [C3]}−
{[R2], [C3]} = {[R1], [R3], [C2]}. Thus Hs = {b1,1, b1,2, b1,3, b2,2, b3,2, b3,3} =
S − hc . So formulas (2.2) and (2.3) hold.

column case: the proof is similar to row case. �

Back to the instance of solutions, Anne’s hand 0-1-2 is one of the first three hands.
So, Bill’s hand contains three cards out of 3, 4, 5 and 6. There are C3

4 = 4 possible
hands 3-4-5, 3-4-6, 3-5-6 or 4-5-6 for Bill. Suppose his hand is 3-4-5. According to
the deleting rule, Bill can remove four hands 0-3-4, 1-3-5, 2-4-6 and 0-5-6 from the
hand set, and the left hand 0-1-2 should be Anne’s hand. The intruder Crow holds
card 6 and can remove hands 0-5-6 and 2-4-6 from the hand set, but the left hands
0-1-2, 0-3-4, 1-3-5 cover all the cards excluding card 6, so he cannot decide which
cards Anne and Bill hold or do not hold. Therefore, the communication in this in-
stance of solutions is safe.

3 Generalization of Russian Cards problem

The Russian Cards problem with 3 players and 7 cards, written as R(3), can be gener-
alized to n players and n × (n − 1) + 1 cards, {0,1, . . . , n2 − n}, written as R(n). The
picking rule and deleting rule for R(3) can also be generalized for R(n). For conve-
nience, we use the following notations. We call each player but the intruder a party,
represented by Pi (1 ≤ i ≤ n− 1), and the party who announces his hand announcer.
Similar to R(3), we assume there is a cards dealer who randomly dispatches n cards
from n(n − 1) + 1 cards to each party as his hand, and leaves the remaining one card
for intruder. The process for R(n) is much similar to R(3). We use hPi

and hin to de-
note hands of party Pi and the intruder respectively. With n (n ≥ 4) players, commu-
nication among parties is also based on announcements. With our approach, each an-
nouncement is actually a matrix (hand matrix for R(n)) containing announcer’s hand
and other fake hands. Since it is hard to construct such matrix without knowledge
of real card deal, only the cards dealer knows the card deal, so he is responsible for
generating matrices for parties. In the communication, the first n − 2 parties obtains
their matrices from cards dealer then announce them one by one, namely ith matrix
is announced after (i − 1)th announcement; and (n − 1)th party can figure out the in-
truder’s card from those matrices. Further, (n − 1)th announcement announces card
of the intruder. After all of n − 1 parties have made their announcements, they know
each other’s hand. In this way, the cards dealer only generates the matrix for each of
the first n−2 parties. So, the communication is safe if, after all n−1 announcements,
(i) all parties learn each other’s hand; and (ii) the intruder knows nothing about any
party’s hand.



508 J Comb Optim (2010) 19: 501–530

In the communication based on R(n), according to the picking rule, the cards dealer
generates a hand matrix for each party and hiding hand of the announcer in it. Simi-
lar to R(3), announcer’s hand can be placed in a row or column. So, we also consider
picking rule for R(n) in row and column cases respectively. As a matter of fact, an-
nouncer’s hand can be placed in any rows or columns of the matrix. However, for
simplicity, we assume the announcer’s hand is placed in the first row in row case and
in the second column in column case. Note that this assumption is a secret to any
players. In the communication protocol the picking rule is actually to encrypt the an-
nouncer’s hand by means of hiding it in the matrix. In the following, we discuss the
picking rule for R(n).

3.1 Picking rule

Each announcer announces his hand by means of a matrix, called hand matrix, so that
his hand can be hidden in it. The cards dealer is responsible for constructing the hand
matrix for each announcer. For convenience, we use Bk = (bk

i,j )n×n (1 ≤ k ≤ n − 2)
to denote the matrix for announcer Pk in kth announcement. In the following, we
consider the construction of Bk in both row case and column case.

3.1.1 Construction of Bk in row case

In row case, the structure of Bk is as follows: the first row we call hand row
holds all n cards of hPk

. The first column which we call sharing column is filled
with a card from hPk

which we call sharing card. As shown in Fig. 1, the an-
nouncer’s hand is hPk

= {bk
1,1, b

k
1,2, . . . , b

k
1,n}, and the sharing card is bk

1,1, where

bk
1,1 = bk

2,1 = · · · = bk
n,1. The intruder’s card can be placed in any of the remaining

places. We assume that the intruder holds card bk
p,q . We call the row and column con-

taining this card respectively redundant row and redundant column. The remaining
part of Bk holds the other n2 − 2n cards. However, how to place these cards into the
matrix is a tricky job. In principle, to guarantee a successful matrix for the commu-
nication based on R(n), the above matrix has to satisfy the property (called covering
property for row case): each row and each column, apart from the hand row and shar-

Fig. 1 Hand matrix of Pk in row case
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ing column, contains a card from each hand of all parties except for the announcer.
In this way, any row of Bk is a possible hand of the announcer, and apart from the
sharing column, any column is also a possible hand of announcer. Let Rk

i (resp. [Rk
i ])

represent the ith row (resp. set of cards from Rk
i ), and Ck

j (resp. [Ck
j ]) the j th column

(resp. set of cards from Ck
j ) of matrix Bk . Thus, the covering property can be given

as follows

∀i∀j
[
(1 ≤ i ≤ n−1∧ i �= k∧2 ≤ j ≤ n) → hPi

∩[Rk
j ] �= φ∧hPi

∩[Ck
j ] �= φ

]
(3.1)

We call the procedure generating matrix Bk for Pk picking rule. Actually, the cards
dealer first generates B1 for P1, then constructs Bh for Ph (2 ≤ h ≤ n − 2) based
on B1. The picking rule can be formalized as follows.

Constructing B1

(a) Firstly, we choose a card from hP1 as the sharing card to fill the sharing column.
Then we place the remaining cards of hP1 in the hand row in any order. Secondly
we randomly place intruder’s card in one of the remaining places of B1. Suppose
intruder’s card is b1

p,q , so pth row and qth column are respectively redundant
row and redundant column. As shown in Fig. 1, apart from the sharing column,
redundant column, hand row and redundant row, indices of the remaining rows
from top to bottom are respectively denoted by s0, s1, . . . , sn−3, and indices of the
remaining columns from left to right are respectively denoted by t0, t1, . . . , tn−3.
For convenience, let S := {s0, . . . , sn−3} and T := {t0, . . . , tn−3}. Thus, the in-
dices can be generated in Algorithm 3.1. As a result, (S,T ) = B1ra (p, q,n).

Algorithm 3.1: B1ra (step (a) of generating B1)

input: integer p,q,n;1

output: set S,T ;2

temp variable integer i;3

for i := 2 to n do4

if i < p then5

si−2 := i;6

else if i=p then /* skip the pth row */7

skip;8

else9

si−3 := i;10

end11

if i < q then12

ti−2 := i;13

else if i=q then /* skip the qth column */14

skip;15

else16

ti−3 := i;17

end18

end19
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(b) We randomly divide each hand of the remaining parties Pk (2 ≤ k ≤ n − 1) into
three parts such that hPk

= X[k] ∪ Y [k] ∪ Z[k], |X[k]| = n − 2 and |Y [k]| =
|Z[k]| = 1.

(c) For convenience, we first define positive integers odk and edk (2 ≤ k ≤ n − 1) as
follows:

odk =
{

2k − 4 2 ≤ k ≤ n+1
2

2k − n − 2 n+1
2 + 1 ≤ k ≤ n − 1

edk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k = 2

n − k 3 ≤ k ≤ n
2

n − 1 − k n+2
2 ≤ k ≤ n − 2

n−2
2 k = n − 1

we place all n − 2 cards of X[2] into the remaining places of B1 so that any sth
row, s ∈ S, and any t th column, t ∈ T , can be occupied, namely [R1

s ] ∩ X[2] �= φ

and [C1
t ]∩X[2] �= φ. Thus, in any t th column there exists a card from X[2]. Sup-

pose the card is in si th row. For each of the remaining parties Pk (3 ≤ k ≤ n − 1)
we randomly pick a card from X[k] and place it in suth (u = (i + odk) mod (n −
2)) row if n is odd, or place it in sv th (v = (i + edk) mod (n − 2)) row if n is
even. Formally, it is described in Algorithm 3.2. Thus, B0 = B1rc (S,T ,X,n).

(d) Since there exists only one card in Y [2] (resp. Z[2]) we place it randomly in
any column (resp. row) within the redundant row (resp. column). We assume the
card is in ti th column (resp. si th row), ti ∈ T (resp. si ∈ S) in the redundant row
(resp. column). For each of the remaining parties Pk (3 ≤ k ≤ n − 1), if n is odd
we place the only one card from Y [k] (resp. Z[k]) into tuth (u = (i + odk) mod
(n− 2)) column (resp. suth row) in the redundant row (resp. column), if n is even
we place the only one card from Y [k] (resp. Z[k]) into tv th (v = (i + edk) mod
(n − 2)) column (resp. sv th row) in the redundant row (resp. column). Formally,
it is described in Algorithm 3.3. Thus, B1 = B1rd (B0, Y,Z,n).

Constructing Bk , 2 ≤ k ≤ n − 2 For convenience, we need three auxiliary matrices
Ak = (ak

i,j )n×n, Dk = (dk
i,j )n×n and Fk = (f k

i,j )n×n. In the same way as Bk , indices

of rows and columns of matrices Ak,Dk and Fk can respectively be represented by
s0, s1, . . . , sn−3 and t0, t1, . . . , tn−3. Let Ak(Ri), Dk(Ri) and Fk(Ri) (resp. Ak(Ci),
Dk(Ci) and Fk(Ci )) be ith rows (resp. columns) of matrices Ak , Dk and Fk respec-
tively. Let [Dk(Ri)] represent the set of cards from Dk(Ri), and [Dk(Cj )] the set of
cards from Dk(Cj ). The procedure for constructing Bk is as follows

(a) Constructing Ak from B1 (see Algorithm 3.4)
We first copy the first row and pth row of B1 to the first row and pth row of Ak

respectively. Then, for the remaining rows, we copy si th row of B1 to sj th row
of Ak , j := (i − (k − 1) + n − 2) mod (n − 2). Thus, Ak = B2Ar (B1, n,p, k).

(b) Constructing Dk from Ak (see Algorithm 3.5)
We first copy the first column and qth column of Ak to the first column and

qth column of Dk respectively. Then, for the remaining columns, we copy ti th
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Algorithm 3.2: B1rc (step (c) of generating B1)

input: set S,T , array X[2 : n − 1], integer n;1

output: matrix B0;2

temp variable set H , integer c, d , array q[0 : n − 2];3

Let H := {0,1, . . . , n − 3};4

for i := 0 to n − 3 do /* place all cards of X[2] in B1 */5

Let c ∈ X[2]; X[2] := X[2] − {c};6

/* pick a card out of X[2] */
Let d ∈ H ; H := H − {d};7

b1
sd , ti

:= c;8

/* card c is placed in sdth row and tith column */
q[i] := d ;9

/* q[i] keeps the index of row card c appears in */
end10

/* for every other party Pk, all cards of X[k] are

placed in B1 */
for i := 0 to n − 3 do11

for k := 3 to n − 1 do12

Let c ∈ X[k]; X[k] := X[k] − {c};13

if n is odd then14

/* card c chosen from X[k] is placed in tith
column */

d := (q[i] + odk) mod (n − 2);15

else16

d := (q[i] + edk) mod (n − 2);17

end18

b1
sd ,ti

:= c;19

/* card c is placed in sdth row and tith column */
end20

end21

column of Ak to tj th column of Dk , j := (i − (k − 1) + n − 2) mod (n − 2).
Thus, Dk = A2Dr (A,n, q, k).

(c) Constructing Fk and Bk (see Algorithm 3.6)
We first swap cards of hP1 with cards of hPk

in Fk . Thus, Fk = D2BFr (D,

Y [k], hPk
, n,p), then,Bk := Fk .

A hand matrix satisfies covering rule (3.1) if and only if each fake hand contained
in the matrix shares cards with hand of the party who receives it. So, covering rule
guarantees other parties can identify the hand of the announcer by removing fake
hands. In the following, we prove that matrix Bh generated according to the picking
rule in row case satisfies formula (3.1).
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Algorithm 3.3: B1rd (step (d) of generating B1)

input: matrix B0, arrays Y [2 : n − 1], Z[2 : n − 1], integer n1

output: matrix B1;2

temp variable: set H , integer c, d, k, i;3

Let H := {0,1, . . . , n − 3}; Let c ∈ Y [2]; Let i ∈ H ;4

b1
p,ti

:= c; /* in redundant row, card of Y [2] is placed in5

tith column */
/* for every other party Pk, card of Y [k] is placed

into redundant row */
for k := 3 to n − 1 do6

Let c ∈ Y [k];7

if n is odd then8

/* card c of Y [k] is placed in redundant row */
d := (i + odk) mod (n − 2);9

else10

d := (i + edk) mod (n − 2);11

end12

b1
p, td

:= c; /* in redundant row, card c is placed in13

tdth column */
end14

Let H := {0,1, . . . , n − 3}; Let c ∈ Z[2]; Let i ∈ H ;15

b1
si ,q

:= c; /* in redundant column, card of Z[2] is placed16

in sith row */
/* for every other parity Pk, card of Z[k] is placed

into redundant column */
for k := 3 to n − 1 do17

Let c ∈ Z[k];18

if n is odd then /* card c of Z[k] is placed in redundant19

column */
d := (i + odk) mod (n − 2);20

else21

d := (i + edk) mod (n − 2);22

end23

b1
sd ,q := c; /* in redundant column, card c is placed in24

sdth row */
end25

Lemma 1 In row case, matrix Bh (1 ≤ h ≤ n−2) generated according to the picking
rule satisfies formula (3.1).

Proof A. Proof of B1 satisfying formula (3.1)
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Algorithm 3.4: B2Ar (constructing Ak from B1)

input: matrix B1, integer n,p, k;1

output: matrix A;2

temp variable: integer i, j ;3

A(R1) := B1(R1);4

/* copy the first row of B1 to the first row of Ak */

A(Rp) := B1(Rp);5

/* copy pth row of B1 to pth row of Ak */
for i := 0 to n − 3 do6

/* construct the remaining rows of Ak */
j := (i − (k − 1) + n − 2) mod (n − 2);7

A(Rsj ) := B1(Rsi );8

/* copy sith row of B1 to si−k+1th row of Ak */
end9

Algorithm 3.5: A2Dr (constructing Dk from Ak)

input: matrix A, integer n,q, k;1

output: matrix D;2

D(C1) := A(C1); /* copy the first column of Ak to the3

first column of Dk */
D(Cq) := A(Cq);4

/* copy qth column of Ak to qth column of Dk */
for i := 0 to n − 3 do5

/* construct the remaining columns of Dk */
j := (i − (k − 1) + n − 2) mod (n − 2);6

D(Ctj ) := A(Cti );7

/* copy tith column of Ak to ti−k+1th column of Dk */
end8

1. By the picking rule, we placed cards of X[i] (2 ≤ i ≤ n − 1) in B1 so, apart
from the sharing column, each remaining column holds one card of X[i]. We have

∀i∀j
[
(2 ≤ i ≤ n − 1 ∧ 0 ≤ j ≤ n − 3) → X[i] ∩ [C1

tj
] �= φ

]

2. ∀ti , tj ∈ T , each of columns C1
ti

and C1
tj

holds exactly one card of X[2]. Sup-

pose b1
su,ti

∈ [C1
ti
] ∩ X[2] and b1

sv,tj
∈ [C1

tj
] ∩ X[2]. By the picking rule, for each of

the remaining parties Pk (3 ≤ k ≤ n − 1), there exist two cards, b1
sx ,ti

and b1
sy ,tj

, of

X[k] such that b1
sx ,ti

∈ [C1
ti
] and b1

sy ,tj
∈ [C1

tj
]; where x and y satisfy the following

conditions:
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Algorithm 3.6: D2BFr (constructing Fk and Bk)

input: matrix D, set Y , set h, integer n,p;1

output: matrix F,B;2

temp variable: i, j, g;3

F := D; /* copy Dk to Fk */4

for j := 0 to n − 3 do5

/* locate the card of Y [k] in redundant row */
if fp,tj ∈ Y then6

break;7

end8

end9

g := fp,tj ; fp,tj := f1,1;10

for i := 1 to n do /* fill the sharing column with card g */11

fi,1 := g;12

end13

/* swap the card of P1 with card of Pk in every other
column */

for j := 2 to n do14

for i := 0 to n − 3 do15

/* locate the card of hPk
in jth column */

if fsi ,j ∈ h then /* card of Pk is in jth column */16

break;17

end18

end19

g := fsi ,j ; fsi ,j := f1,j ; f1,j := g;20

/* swap card fsi ,j with card f1,j */
end21

B := F ; /* copy Fk to Bk */22

(a) if n is odd, x = (u + odk) mod (n − 2) and y = (v + odk) mod (n − 2).
(b) if n is even, x = (u + edk) mod (n − 2) and y = (v + edk) mod (n − 2).

Since u �= v so x �= y. We have,

∀i∀j
[
(2 ≤ i ≤ n − 1 ∧ 0 ≤ j ≤ n − 3) → X[i] ∩ [R1

sj
] �= φ

]

3. Since n − 2 cards in the redundant row (resp. column) respectively come from
Y [2], . . . , Y [n − 1] (resp. Z[2], . . . ,Z[n − 1]). Thus we have

∀i
[
(2 ≤ i ≤ n − 1) → Y [i] ∩ [R1

p] �= φ ∧ Z[i] ∩ [C1
q ] �= φ

]

By 1, 2, 3 above, apart from announcer P1, the intersection of hand of any remaining
party and the set of cards of any row (resp. any column), excluding the hand row
(resp. the sharing column) of B1 is not empty. Therefore, formula (3.1) holds for B1.

B . Proof of Bk (2 ≤ k ≤ n − 2) satisfying formula (3.1)



J Comb Optim (2010) 19: 501–530 515

∀ti , tj ∈ T (resp. ∀su, sv ∈ S), apart from P1 and Pk , each of remaining parties Pr

(2 ≤ r ≤ n − 1 and r �= k) has two cards b1
su,ti

∈ X[r] and b1
sv,tj

∈ X[r] (su, sv ∈ S

and u �= v (resp. ti , tj ∈ T and i �= j )). According to the picking rule, they appear in
Dk respectively as dk

sx,td
and dk

sy,te
, where

(a) x = (u − k + n − 1) mod (n − 2), y = (v − k + n − 1) mod (n − 2),
(b) d = (i − k + n − 1) mod (n − 2) and e = (j − k + n − 1) mod (n − 2).

Since e �= d (resp. x �= y), we have ∀i∀j [(2 ≤ i ≤ n ∧ 1 ≤ j ≤ n − 1) → [Dk(Ci)] ∩
hPj

�= φ] (resp. ∀i∀j [(2 ≤ i ≤ n∧ 2 ≤ j ≤ n− 1) → [Dk(Ri)] ∩hPj
�= φ]). So, after

hP1 and hPk
are swapped in Fk , Bk(= Fk) satisfies

∀i∀j
[
(2 ≤ i ≤ n ∧ 1 ≤ j ≤ n − 1 ∧ j �= k) → [Ck

i ] ∩ hPj
�= φ ∧ [Rk

i ] ∩ hPj
�= φ

]

So, apart from announcer Pk , the intersection of hand of any remaining party and the
set of cards of any row (resp. any column), excluding the hand row (resp. the sharing
column) of Bk is not empty. Therefore, formula (3.1) holds for Bk . �

3.1.2 Construction of Bk in column case

In column case, the second column we call hand column holds all n cards of hPk
. The

first column we call sharing column is filled with a card from hPk+1 which we call
sharing card. As shown in Fig. 2, the announcer’s hand is hPk

= {bk
1,2, b

k
2,2, . . . , b

k
n,2},

and the sharing card is bk
1,1, where bk

1,1 = bk
2,1 = · · · = bk

n,1. The intruder’s card can

be placed in any of the remaining places. We assume that the intruder holds card bk
p,q .

Accordingly, we call the row and column containing this card respectively redundant
row and redundant column. The remaining part of Bk holds the other n2 − 2n − 1
cards. In principle, to guarantee a successful matrix for the communication based on
R(n), the above matrix has to satisfy the property (called covering property for column
case): each row and each column, apart from the sharing column and hand column,
contains a card from each hand of all parties except for the announcer. In this way,
any row of Bk is a possible hand of the announcer, and apart from the sharing column,
any column is also a possible hand of announcer. Let Rk

i (resp. [Rk
i ] ) represent the

Fig. 2 Hand matrix of Pk in column case
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ith row (resp. set of cards from Rk
i ), and Ck

j (resp. [Ck
j ]) the j th column (resp. set of

cards from Ck
j ) of matrix Bk . Thus, the covering property can be given as follows

∀i∀j
[
(1 ≤ i ≤ n − 1 ∧ i �= k ∧ 1 ≤ j ≤ n ∧ 3 ≤ l ≤ n)

→ hPi
∩ [Rk

j ] �= φ ∧ hPi
∩ [Ck

l ] �= φ
]

(3.2)

Similar to row case, the cards dealer needs to be equipped with picking rule to ob-
tain hand matrix in column case. The cards dealer first generates B1 for P1, then
constructs Bh for Ph (2 ≤ h ≤ n− 2) based on Bh−1. Note that, in column case, con-
struction of Bh depends on Bh−1 not on B1. The picking rule for column case can be
formalized as follows.

A. Constructing B1

(a) Firstly, we choose a card from hP2 as the sharing card to fill the sharing col-
umn. Then we place the cards of hP1 in the hand column in any order. Secondly we
randomly place intruder’s card in one of the remaining places of B1. Suppose in-
truder’s card is b1

p,q , so pth row and qth column are respectively redundant row and
redundant column. As shown in Fig. 2, apart from the sharing column, hand column
and redundant row, indices of the remaining rows from top to bottom are respectively
denoted by s0, s1, . . . , sn−2, and indices of the remaining columns from left to right
are respectively denoted by t0, t1, . . . , tn−3. For convenience, let S := {s0, . . . , sn−2}
and T := {t0, . . . , tn−4}. The indices can be generated using Algorithm 3.7. Thus,
(S,T ) = B1a(p, q,n).

Algorithm 3.7: B1a (step (a) of generating B1)

input: integer p,q,n;1

output: set S,T ;2

temp variable integer i;3

for i := 1 to n do4

if i < p then5

si−1 := i;6

else if i=p then /* skip the pth row */7

skip;8

else9

si−2 := i;10

end11

if i > 2 and i < q then12

ti−3 := i;13

else if i=q then /* skip the qth column */14

skip;15

else if i > 2 then16

ti−4 := i;17

end18

end19



J Comb Optim (2010) 19: 501–530 517

(b) Apart from parties P1 and P2, we randomly divide each hand of the remaining
parties Pk (3 ≤ k ≤ n− 1) into two parts such that hPk

= X[k]∪Y [k], |X[k]| = n− 1
and |Y [k]|=1.

(c) Let X[2] = hP2 − {b1
1,1}. We place all n − 1 cards of X[2] into the remaining

places of B1 so that any sth row, s ∈ S, and any t th column, t ∈ T ∪ {q}, can be
occupied, namely [R1

s ] ∩ X[2] �= φ and [C1
t ] ∩ X[2] �= φ. Thus, in any sth row there

exists a card from X[2]. Suppose the card is in uth column of sth row. For each of the
remaining parties Pk (3 ≤ k ≤ n − 1) we randomly pick a card from X[k] and place
it in vth (v = (u − 3 + k − 2) mod (n − 2) + 3) column in sth row. Formally, it is
described in Algorithm 3.8. Thus, B0 = B1c (X,Y,n).

(d) Since there exists only one card in Y [2], we place it randomly in any column
within the redundant row. We assume the card is in ti th column, ti ∈ T , in the redun-

Algorithm 3.8: B1c (step (c) of generating B1)

input: array X[3 : n − 1], Y [3 : n − 1], integer n;1

output: matrix B0;2

temp variable set H , integer c, d , array q[0 : n − 2];3

Let H := {3, . . . , n};4

Let d ∈ H ; c ∈ X[2];5

/* chose card c from X[2] and place it in sn−2th row */

X[2] := X[2] − {c}; b1
sn−2,d

:= c; q[n − 2] = d ;

for i := 0 to n − 3 do6

/* place n − 2 remaining cards of X[2] in B1 */
Let c ∈ X[2]; X[2] := X[2] − {c};7

/* pick a card out of X[2] */
Let d ∈ H ; H := H − {d};8

b1
si ,d

:= c;9

/* card c is placed in sith row and dth column */
q[i] := d ;10

/* q[i] keeps the index of column card c appears
in */

end11

/* for every other party Pk, all cards of X[k] are

placed in B1 */
for i := 0 to n − 2 do12

for k := 3 to n − 1 do13

Let c ∈ X[k]; X[k] := X[k] − {c};14

d := (q[i] − 3 + k − 2) mod (n − 2) + 3;15

b1
si ,d

:= c;16

/* card c is placed in sith row and dth column */
end17

end18
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Algorithm 3.9: B1d (step (d) of generating B1)

input: matrix B0, array Y [3 : n − 1],integer n;1

output: matrix B1;2

temp variable: set H , integer c, d, k, i;3

Let H := {0,1, . . . , n − 3};4

Let c ∈ Y [2]; Let i ∈ H ;5

b1
p, ti

:= c; /* in redundant row, card of Y [2] is placed in6

tith column */
/* for every other party Pk, card of Y [k] is placed

into redundant row */
for k := 3 to n − 1 do7

Let c ∈ Y [k];8

d := (i + k − 2) mod (n − 3);9

b1
p, td

:= c; /* in redundant row, card c is placed in10

tdth column */
end11

dant row. For each of the remaining parties Pk (3 ≤ k ≤ n− 1), we place the only one
card from Y [k] into tuth (u = (i + k − 2) mod (n − 3)) column in the redundant row.
Formally, it is described in Algorithm 3.9. Thus, B1 = B1d (B0, Y,n).

B. Constructing Bk , 2 ≤ k ≤ n − 2.
Different from row case, the construction of Bk depends on Bk−1 rather than B1.

So, the generation of hand matrix Bk is in a inductive way. The base condition is
construction of B1 which we have introduced. So, in the following, we give the in-
duction method in which the existence of Bk−1 is assumed for construction of Bk .
For convenience, we need three auxiliary matrices Ak = (ak

i,j )n×n, Dk = (dk
i,j )n×n

and Fk = (f k
i,j )n×n. In the same way as Bk , indices of rows and columns of ma-

trices Ak,Dk and Fk can respectively be represented by s0, s1, . . . , sn−2 and t0,
t1, . . . , tn−3. Let Ak(Ri), Dk(Ri) and Fk(Ri) (resp. Ak(Ci), Dk(Ci) and Fk(Ci ))
be ith rows (resp. columns) of matrices Ak , Dk and Fk respectively. Let [Dk(Ri)]
represent the set of cards from Dk(Ri), and [Dk(Cj )] the set of cards from Dk(Cj ).
The procedure for constructing Bk is as follows.

(a) Constructing Ak−1 from Bk−1 (see Algorithm 3.10). We first copy pth row of
Bk−1 to pth row of Ak−1. Then, for the remaining rows, we copy si th row of Bk−1 to
sj th row of Ak−1, j := (i −1+n−1) mod (n−1). Thus, Ak−1 = B2A (Bk−1, n,p).

(b) Constructing Dk−1 from Ak−1 (see Algorithm 3.11). Firstly, we copy the first
column and 2nd column of Ak−1 to the first column and 2nd column of Dk−1 respec-
tively. Then, for pth row of Dk−1, we first copy card ak−1

p,q to Dk−1 as card dk−1
p,q , then

for the remaining n−3 places in pth row of Dk−1, we copy card ak−1
p,ti

to Dk−1 as card

dk−1
p,tj

, j := (i − 1 + n − 3) mod (n − 3). Finally, for each si th row (si ∈ S) of Dk−1,
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Algorithm 3.10: B2A (constructing Ak−1 from Bk−1)

input: matrix B , integer n,p;1

output: matrix A;2

temp variable: i, j ;3

A(Rp) := B(Rp);4

/* copy pth row of Bk−1 to pth row of Ak−1 */
for i := 0 to n − 2 do5

/* construct the remaining rows of Ak−1 */
j := (i − 1 + n − 1) mod (n − 1);6

A(Rsj ) := B(Rsi );7

/* copy sith row of Bk−1 to si−1th row of Ak−1 */
end8

Algorithm 3.11: A2D (constructing Dk−1 from Ak−1)

input: matrix A, integer n,p,q;1

output: matrix D;2

temp variable: i, j ;3

D(C1) := A(C1);4

/* copy 1st column of Ak−1 to 1st column of Dk−1 */
D(C2) := A(C2);5

/* copy 2nd column of Ak−1 to 2nd column of Dk−1 */
dp,q := ap,q ;6

/* copy card ak−1
p,q of AK−1 to Dk−1 as card dk−1

p,q */

/* place the remaining n − 3 cards in pth row of Ak−1

to pth row of Dk−1 */
for i := 0 to n − 4 do7

j := (i − 1 + n − 3) mod (n − 3);8

dp,tj := ap,ti ;9

/* copy card ak−1
p,ti

of Ak−1 to Dk−1 as card ak−1
p,ti−1

*/

end10

for i := 0 to n − 2 do11

/* place cards for n − 1 remaining rows of Dk−1 */
for j := 3 to n do12

u := (j − 3 − 1 + n − 2) mod (n − 2) + 3;13

dsi ,u := asi ,j ;14

/* copy card ak−1
si ,j

of Ak−1 to Dk−1 as card dk−1
si ,j−1 */

end15

end16
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Algorithm 3.12: D2BF (constructing Fk−1 and Bk)

input: matrix D, set Y,h, integer n, k;1

output: matrix B,F ;2

temp variable: integer i, j, g;3

F := D; /* copy Dk−1 to Fk−1 */4

for j := 0 to n − 4 do5

/* locate the card of Y [k] in redundant row */
if fp,tj ∈ Y then6

break;7

end8

end9

g := fp,tj ; fp,tj := fp,2; fp,2 := f1,1;10

for i := 1 to n do /* fill the sharing column with card g */11

fi,1 := g;12

end13

/* swap the card of Pk−1 with card of Pk in every
other row */ for i := 0 to n − 2 do

for j := 3 to n do14

/* locate the card of hPk
in sith row */

if f k−1
si ,j

∈ h then /* card of Pk is in jth column */15

break;16

end17

end18

g := fsi ,j ; fsi ,j := fsi ,2; fsi ,2 := g;19

/* swap card f k−1
si ,j

with card f k−1
si ,2

*/

end20

Bk := Fk−1; /* copy Fk to Bk */21

we copy card ak−1
si ,j

to Dk−1 as card dk−1
si ,u

, u := (j − 3 − 1 + n − 2) mod (n − 2) + 3.

Thus, Dk−1 = A2D(Ak−1, n,p, q).
(c) Constructing Fk−1 and Bk (see Algorithm 3.12). We first swap cards of

hPk−1 with cards of hPk
in Fk−1. Thus, Fk−1 = D2BF (Dk,Y [k], hPk

, n, k), then
Bk := Fk−1.

We prove that hand matrix Bh (1 ≤ h ≤ n − 2) generated by the picking rule in
column case satisfies formula (3.2).

Lemma 2 In column case, matrix Bh (1 ≤ h ≤ n − 2) generated by the picking rule
satisfies formula (3.2).

Proof The proof is similar to row case. �
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3.2 Deleting rule

After the cards dealer generates n − 2 hand matrices, he dispatches these matrices
to corresponding parties as their announcements, namely Bk to party Pk . According
to the rule of R(n), n − 1 parties make announcement one by one. And after each
announcement Bh (1 ≤ h ≤ n − 2), apart from announcer Ph, any other party Pk

(1 ≤ k ≤ n − 1, k �= h) compares his hand with the announcement to determine the
announcer’s hand. Similarly, the intruder also compares his hand with the announce-
ment to probe announcer’s hand. In the communication protocol, a deleting rule for
parties is required to decrypt the announcer’s hand from matrix Bh, and might be
used for the intruder to detect the announcer’s hand.

Suppose the current announcer is Ph (1 ≤ h ≤ n−2). The idea behind the deleting
for Pk is that party Pk compares his hand with each row and each column (excluding
the sharing column) of Bh, and records them into set HPk

if the row or column does
not intersect with his hand. The formal description of the deleting rule is similar to
Algorithm 2.3. Note that if

|HPk
| = 1 (3.3)

then Pk is aware of announcer’s hand.
Similarly, the intruder can also compare his hand with each row and each column

(excluding the sharing column) of Bh, and records them into set Hin if the row or
column does not intersect with his hand. However, different from the deleting rule
for parties, the intruder further obtains set Hintr of cards extracted from members
of Hin. Subsequently, intruder checks if

|Hin| > 1 (3.4)

and

hin = {0,1, . . . , n2 − n} − Hintr (3.5)

If so, the intruder may learn nothing about announcer’s hand.
As a matter of fact, R(3) is a trivial problem of R(n). Because once Anne sent

the matrix to Bill by means of announcement, no matter what hand Bill holds,
the hand matrix features that apart from the first column and the row or column
containing Anne’s hand, every other row and column contain at least a card of
Bill. This is much like what we call covering property for R(n). The covering
property is important for hand matrix to guarantee that other parties are aware of
hand of the announcer by the deleting rule. After hth announcement, by the delet-
ing rule, the intruder can only remove the redundant row and redundant column
from Bh. So, from the intruder’s view, other hands contained in the hand matrix
are actually candidates of hand of party Ph. For convenience, we call the set can-
didate set. We use HSh to denote candidate set for party Ph. So, in row case we
have HSh = {[Rh

1 ], [Rh
s0

], . . . , [Rh
sn−3

], [Ch
t0
], . . . , [Ch

tn−3
]}, in column case we have

HSh = {[Rh
s0

], . . . , [Rh
sn−2

], [Ch
2 ], [Ch

t0
], . . . , [Ch

tn−4
]}. So, after (n − 2)th announce-

ment, the intruder can obtain n − 2 hand sets: HSk (1 ≤ k ≤ n − 2). Since any two
parties do not allow to share a card, the intruder may obtain a group of hand sets,
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G = {{h1, h2, . . . , hn−2} ∈ HS1 ×· · ·×HSn−2|∀i∀jhi ∩hj = φ, i �= j and 1 ≤ i, j ≤
n − 2}. Note that any hand set from G can be regarded as a candidate of card deal.

Note that if |G| = 1 the intruder knows the card deal, and further learns the hand of
any party. Even |G| > 1, the intruder may also know these cards a party does not hold
though the intruder is not aware of the real card deal. For example, 1 < |G| < 2n − 3
means for each HSk there are some candidates which are excluded by the intruder.
And the remaining candidates cannot cover all cards excluding the intruder’s card.
So, the intruder knows what cards are not in hPk

. Based on the above discussion, we
know if

|G| = 2n − 3 (3.6)

the intruder is not aware of the real card deal and hence of any information about
hand of each party.

Although R(3) is a trivial problem of R(n), we do not consider the candidate sets
in the safety definition. Because in R(3), there is only one hand matrix (announced
by Anne) communicated among parties. The intruder (Crow) can obtain just one can-
didate set HS1. Thus, the intruder figures out G = HS1 and |G| = 3. So, he does not
know the real card deal. Regarding safety for R(n), we must take candidate set into
account.

Definition 2 (Safe communication ) A communication for R(n), with the first n − 2
announcements generated by picking rule, is safe if formulas (3.3), (3.4), (3.5) and
(3.6) are satisfied.

Actually, the picking rule for choosing sharing card is merely for simplicity. Of
course, the sharing card can be picked out from hand of any party. If we go this
way, the order of swap of cards in the redundant row of Fk−1 must be accordingly
modified in order to produce qualified hand matrix Bk . Furthermore, we use hand
matrix just for clearly presenting the construction of hand set in each announcement.
In fact, hand matrix can be smoothly converted back to hand set for each party to
announce. It is harder for the intruder to obtain any information about hand of any
party from hand set than hand matrix. We believe there may exist other solutions for
Generalized Russian Cards problem. However, using hand matrix approach we gave,
the communication is safe. In the following, we prove the safety for Generalized
Russian Cards problem in row case and column case respectively.

3.3 Safety proof for R(n) in row case

We first prove the following lemmas.

Lemma 3 ∀s ∀t [(2 ≤ s, t ≤ n−2∧s �= t) → (ods −s+n−1) mod (n−2) �= (odt −
t +n−1) mod (n−2)∧(eds −s+n−1) mod (n−2) �= (edt − t +n−1) mod (n−2)].

Proof Let ogi = (odi −i+n−1) mod (n−2) and egi = (edi −i+n−1) mod (n−2).
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(1) if n is odd, ogi is defined as follows:

ogi =

⎧⎪⎨
⎪⎩

n − 3 i = 2

i − 3 3 ≤ i ≤ n+1
2

i − 3 n+1
2 + 1 ≤ i ≤ n − 2

When i = 2, ogi = n − 3; when i ∈ [3, n+1
2 ], ogi ∈ [0, n−5

2 ]; when i ∈ [n+1
2 + 1,

n − 2], ogi ∈ [n−3
2 , n − 5]. Note that [0, n−5

2 ], [ n−3
2 , n − 5], {n − 4} and {n − 3}

are a partition of [0, n − 3]. Thus, in the case in which n is odd, ∀s ∀t [(2 ≤ s, t ≤
n − 2 ∧ s �= t) → (ods − s + n − 1) mod (n − 2) �= (odt − t + n − 1) mod (n − 2)].

(2) if n is even, egi is defined as follows:

egi =

⎧⎪⎨
⎪⎩

n − 3 i = 2

n − 2i + 1 3 ≤ i ≤ n
2

2n − 2i − 2 n+2
2 ≤ i ≤ n − 2

When i = 2, egi = n − 3; when i ∈ [3, n
2 ], egi ∈ [1, n − 5]; when i ∈ [n+2

2 , n − 2],
egi ∈ [2, n − 4]. Let W1 = {k | 2 ≤ k ≤ n − 4 and k is even}, W2 = {k | 1 ≤ k ≤
n − 5 and k is odd} and W3 = {n − 3}. We have Wi ∩ Wj = φ(1 ≤ i, j ≤ 3, i �= j).
Thus, in the case in which n is even, ∀s∀t[(2 ≤ s, t ≤ n − 2 ∧ s �= t) → (eds − s +
n − 1) mod (n − 2) �= (edt − t + n − 1) mod (n − 2)]. �

Armed with Lemma 3, we can prove that for any pair of two hand matrixes, si th
(0 ≤ i ≤ n − 3) rows share no cards as well as tj th (0 ≤ j ≤ n − 3) columns share no
cards.

Lemma 4 In row case, ∀h∀k∀i[(1 ≤ h, k ≤ n−2∧h �= k∧0 ≤ i ≤ n−3) → [Rh
si
]∩

[Rk
si
] = φ ∧ [Ch

ti
] ∩ [Ck

ti
] = φ].

Proof 1. ∀h∀k∀i[(1 ≤ h, k ≤ n − 2 ∧ h �= k ∧ 0 ≤ i ≤ n − 3) → [Ch
si
] ∩ [Ck

si
] = φ].

A card b1
su,tv

in B1, appears as card dh
sx,ty

in Dh, and card dk
si ,tj

in Dk (su ∈ S,
tv ∈ T , 2 ≤ k,h ≤ n − 2 and h �= k), where x = (u − h + n − 1) mod (n − 2), y =
(v − h + n − 1) mod (n − 2), i = (u − k + n − 1) mod (n − 2) and j = (v − k + n −
1) mod (n − 2). Since u �= x �= i, u �= i, v �= y �= j and v �= j we have

∀i∀h∀k
[
(0 ≤ i ≤ n − 3 ∧ 1 ≤ h, k ≤ n − 2 ∧ h �= k)

→ [Dh(Cti )] ∩ [Dk(Cti )] = φ
]

(3.7)

According to the picking rule, there exists a card b1
p,tr

∈ Y [2] (tr ∈ T ) in re-
dundant row. And for any pair of other parties (excluding P1), Ph and Pk , there
exist two cards in the redundant row: b1

p,tx
∈ Y [h] and b1

p,ty
∈ Y [k]. If n is

odd x = (r + odh) mod (n − 2) and y = (r + odk) mod (n − 2), and if n is
even x = (r + edh) mod (n − 2) and y = (r + edk) mod (n − 2). In addition,
the two cards appear respectively as cards f h

p,ti
in Fh and f k

p,tj
in Fk , where
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i = (x − h + n − 1) mod (n − 2) and j = (y − k +n− 1) mod (n− 2). According to
Lemma 3 we have i �= j . So, after hP1 and hPh

are swapped in Fh, and hP1 and hPk

in Fk , we have ∀i[(0 ≤ i ≤ n − 3) → [Ch
ti
] ∩ [Ck

ti
] = φ]. Thus,

∀i∀h∀k[(0 ≤ i ≤ n − 3 ∧ 1 ≤ h, k ≤ n − 2 ∧ h �= k) → [Ch
ti
] ∩ [Ck

ti
] = φ]

2. ∀h∀k∀i[(1 ≤ h, k ≤ n − 2 ∧ h �= k ∧ 0 ≤ i ≤ n − 3) → [Rh
si
] ∩ [Rk

si
] = φ].

Same to the way in which we obtain formula (3.7), we have

∀i∀h∀k
[
(0 ≤ i ≤ n − 3 ∧ 1 ≤ h, k ≤ n − 2 ∧ h �= k)

→ [Dh(Rsi )] ∩ [Dk(Rsi )] = {b1
1,1}

]

According to the picking rule, apart from the sharing column, in each of remaining
columns C1

e (2 ≤ e ≤ n) of B1, there exists a card of P2 such that b1
sr ,e

∈ X[2]. In
addition, for any pair of other parties (excluding P1) Ph and Pk , there exist two cards
in C1

e such that b1
su,e ∈ X[h] and b1

sv,e
∈ X[k]. If n is odd u = (r + odh) mod (n − 2)

and v = (r + odk) mod (n − 2), and if n is even u = (r + edh) mod (n − 2) and
v = (r + edk) mod (n − 2). The two cards appear respectively as cards f h

si ,x
in Fh

and f k
sj ,y in Fk , where i = (u − h + n − 1) mod (n − 2) and j = (v − k + n −

1) mod (n − 2). According to Lemma 3 we have i �= j . So, hP1 and hPh
are swapped

in Fh, and hP1 and hPk
in Fk , we have ∀i [(0 ≤ i ≤ n − 3) → [Rh

si
] ∩ [Rk

si
] = φ].

Thus,

∀i∀h∀k
[
(0 ≤ i ≤ n − 3 ∧ 1 ≤ h, k ≤ n − 2 ∧ h �= k)

→ [Rh
si
] ∩ [Rk

si
] = φ

]
�

With Lemmas 1 and 4 we can prove the safety for R(n) in row case.

Theorem 2 (Safe communication for R(n)) Any card deal for R(n), the communi-
cation based on Bk (1 ≤ k ≤ n − 2) generated by the picking rule in row case is
safe.

Proof Let S = {s0, . . . , sn−3} and T = {t0, . . . , tn−3}.
1. After all n − 1 announcements, all parties learn each other’s hand.

According to Lemma 1, Bk (1 ≤ k ≤ n − 2) satisfies formula (3.1). So, after
kth announcement, for each of other parties Ph (1 ≤ h ≤ n − 1 and k �= h), we
have hPh

∩ [Rk
s ] �= φ and hPh

∩ [Ck
t ] �= φ, s ∈ S ∪ {p} and t ∈ T ∪ {q}. By the

deleting rule, party Ph obtains HPh
= {[Rk

1]}, so |HPh
| = 1 (3.3). Since [Rk

1] =
hPk

, Ph learns hPk
. In the same way, after all n − 2 announcements, apart from

hPn−1 all other hands hP1 , hP2 , . . . and hPn−2 are known by P1,P2, . . . and Pn−1.
Since Pn−1 knows hP1 , hP2 , . . . , hPn−2 and hPn−1 , he can figure out intruder’s hand

hin = {0,1, . . . , n2 − n} − ⋃n−1
i=1 hpi

. Further, in (n − 1)th announcement, Pn−1

announces intruder’s card. Thus, the other parties can learn hn−1. Therefore, after
all n − 1 announcements, all parties learn each other’s hand.
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2. After all n−1 announcements, the intruder knows nothing about any party’s hand.
After each announcement Bk (1 ≤ k ≤ n − 2), since hin ∩ [Rk

p] �= φ and hin ∩
[Ck

q ] �= φ, by the deleting rule, the intruder obtains Hin = {[Rk
1], [Rk

s0
], . . . , [Rk

sn−3
],

[Ck
t0
], . . . , [Ck

tn−3
]}. However, he is unable to learn any card the announcer

holds because of |Hin| > 1 (3.4). Further, he is also unable to learn any
cards the announcer does not hold, because Hintr = [Rk

1] ∪ [Rk
s0

] ∪ · · · ∪
[Rk

sn−3
] ∪ [Ck

t0
] ∪ · · · ∪ [Ck

tn−3
] = {0, . . . , n2 − n} − hin. So formula (3.5) holds.

In addition, after each announcement Bk , the intruder obtains set HSk =
{[Rk

1], [Rk
s0

], . . . , [Rk
sn−3

], [Ck
t0
], . . . , [Ck

tn−3
]}(|HSk| = 2n − 3) of candidates

for hPk
. So, after (n−2)th announcement, the intruder can obtain n−2 hand sets:

HSh(1 ≤ h ≤ n − 2). According to Lemma 3, [Ri
s] ∩ [Rj

s ] = φ ∧ [Ci
t ] ∩ [Cj

t ] =
φ(1 ≤ i, j ≤ n − 2, i �= j, s ∈ S and t ∈ T ). The intruder figures out a set G =
{{[R1

1], . . . , [Rn−2
1 ]}, {[R1

s0
], . . . , [Rn−2

s0
]}, . . . , {[R1

sn−3
], . . . , [Rn−2

sn−3
]}, {[C1

t0
], . . . ,

[Cn−2
t0

]}, . . . , {[C1
tn−3

], . . . , [Cn−2
tn−3

]}} of candidates for card deal. Since |G| =
2n − 3 (3.6), the intruder is unable to learn the card deal. Therefore, the intruder
knows nothing about any party’s hand.

Therefore, the communication in row case for R(n) is safe. �

3.4 Safety proof for R(n) in column case

Similar to the safety proof for row case, we fist prove that for any pair of two hand
matrixes, both their si th (0 ≤ i ≤ n − 3) rows and their tj th (0 ≤ j ≤ n − 4) columns
share no cards.

Lemma 5 In column case, ∀h∀k∀i∀j [(1 ≤ h, k ≤ n−2∧h �= k∧0 ≤ i ≤ n−2∧0 ≤
j ≤ n − 4) → [Rh

si
] ∩ [Rk

si
] = φ ∧ [Ch

tj
] ∩ [Ck

tj
] = φ].

Proof The proof is similar to Lemma 4. �

With Lemmas 2 and 5 we can prove the safety for R(n) in column case.

Theorem 3 (Safe communication for R(n)) Any card deal for R(n), the communica-
tion based on Bk (1 ≤ k ≤ n − 2) generated by the picking rule in column case is
safe.

Proof The proof is similar to Theorem 2. �

Time complexity The cards dealer constructs a matrix for each of n − 2 parties in
O(n2) time units, so, generation of announcements is at most in O(n3) time units.
With each announcement, n− 2 parties identify hand of the announcer from an n×n

hand matrix using deleting rule. There are n − 2 possible announcers in total, so, the
time complexity of this process is at most O(n3). The intruder constructs a candidates
set for each announcer using deleting rule. This process is in O(n3) time units. Then,
the intruder compares these n − 2 candidates set to form a group G of hand sets
in O(n3) time units. Therefore, the time complexity of communication for R(n) is
O(n3).
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4 Example

To illustrate how our approach works for safe communication, we study R(5). The
procedure for constructing Bh (1 ≤ h ≤ 3) in row case is presented in detail. Twenty-
one cards are randomly dispatched by the cards dealer to five players so that each
party holds five cards and the intruder holds only one card. Without loss of generality,
we assume the card deal is hP1 = {3,4,8,10,12}, hP2 = {0,9,11,14,17}, hP3 =
{1,5,15, 16,20}, hP4 = {2,6,7,13,18} and hin = {19}. By using the picking rule,
the card dealer can construct Bh(1 ≤ h ≤ 3) step by step. We only consider R(5) in
Row Case.

1. Constructing B1

(a) As shown in Fig. 3 (1), we choose card 8 from hP1 as sharing card to fill the
first column. And we place the remaining cards 10,3,4,12 in the first row. Then,
we randomly place intruder’s card 19 as b1

4,3, so 4th row and 3rd column are
redundant row and redundant column respectively. In addition, we obtain indices
s0 = 2, s1 = 3, s2 = 5, t0 = 2, t1 = 4 and t2 = 5.

(b) We randomly divide each hand of parties P2, P3, P4 into three parts: hP2 =
X[2] ∪ Y [2] ∪ Z[2] = {9,11,14} ∪ {17} ∪ {0}, hP3 = X[3] ∪ Y [3] ∪ Z[3] =
{1,15,16} ∪ {20} ∪ {5} and hP4 = X[4] ∪ Y [4] ∪ Z[4] = {2,6,13} ∪ {18} ∪ {7}.

(c) We first place cards of X[2] = {9,11,14} into B1. As shown in Fig. 3 (2), 9 is
placed as b1

3,2, 11 as b1
2,4 and 14 as b1

5,5, so that each of rows s0, s1 and s2 as well
as each column of t0, t1 and t2 corresponds to one card from X[2]. According
to the placement of X[2], we then place cards of X[3] = {1,15,16} and X[4] =
{2,6,13} in B1 as shown in Fig. 3 (3). For instance, in t0th (=2nd) column,
since card 9 from X[2] is in s1th (=3rd) row and (1 + od3) mod (5 − 2) = 0
(od3 = (2 × 3 − 4) = 2), we choose card 1 from X[3] and place it in s0th (=2nd)
row and t0th column.

Fig. 3 Construction of B1
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(d) As shown in Fig. 3 (4), we randomly place card of Y [2] = {17} in the redundant
row (4th row) and t2th column, and card of Z[2] = {0} in the redundant column
(3th column) and s1th row. According to the placement of Y [2], we then place
Y [3] = {20} and Y [4] = {18} in B1 as shown in Fig. 3 (5). For example, since
card 17 is in t2th column and (2 + od3) mod (5 − 2) = 1, we place the only card
20 from Y [3] in t1th column within the redundant row. Further, as shown in Fig. 3
(6), according to the placement of Z[2], we place Z[3] = {5} and Z[4] = {7} in
B1. For instance, since card 0 is in s1th row and (1 + od3) mod (5 − 2) = 0, we
place the only card 5 from Z[3] in s0th row within the redundant column.

2. Constructing B2 and B3

(a) As shown in Fig. 4 (1) (2), since (0 − (2 − 1) + 5 − 2) mod (5 − 2) = 2, we copy
s0th row of B1 to A2 as its s2th row. In the same way, we copy s1th row of B1 to
A2 as its s0th row, and s2th row of B1 to A2 as its s1th row. In addition, we copy
1st and 4th rows of B1 to A2 as its 1st and 4th rows respectively. As shown in
Fig. 4 (4) (5), since (0 − (3 − 1) + 5 − 2) mod (5 − 2) = 1, we copy s0th row of
B1 to A3 as its s1th row. In the same way, we copy s1th row of B1 to A3 as its
s2th row, and s2th row of B1 to A3 as its s0th row. Besides, we copy 1st and 4th
rows of B1 to A3 as its 1st and 4th rows respectively.

(b) As shown in Fig. 4 (2) (3), in a similar way as (a), we copy t0th column of A2

to D2 as its t2th column, t1th column of A2 to D2 as its t0th column and t2th
column of A2 to D2 as its t1th column. Moreover, we copy 1st and 3rd columns
of A2 to D2 as its 1st and 3rd column respectively. As shown in Fig. 4 (5) (6), we
copy t0th column of A3 to D3 as its t1th column, t1th column of A3 to D3 as its
t2th column and t2th column of A3 to D3 as its t0th column. Moreover, we copy
1st and 3rd columns of A2 to D3 as its 1st and 3rd columns respectively.

Fig. 4 Generation of A2, A3, D2 and D3
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Fig. 5 Generation of B2 and B3 from F 2 and F 3

Fig. 6 Safe communication for R(5)

(c) Let F 2 := D2. As shown in Fig. 5 (1) (2), we try to swap all cards in hP1 with
cards in hP2 in F 2. To do so, we first swap card 8 in the first column with card 17
in the fourth row. Then, we swap card 4 with card 11 in 2nd column, card 12 with
card 0 in 3rd column, card 10 with card 14 in 4th column, and card 3 with card
9 in 5th column. Finally, let B2 := F 2. In the same way, we obtain B3 := F 3 as
shown in Fig. 5 (3) (4).

After B1, B2 and B3 are generated, P1 firstly announces B1, as shown in
Fig. 6. On receiving it, according to the deleting rule P2 knows announcer’s
hand hP1 . In the same way, P3 and P4 are aware of hP1 from B1. However,
for the intruder, he can only remove the redundant row and redundant column.
Thus, the intruder can create a set for P1 as candidates: HS1 = {{8,3,12,4,10},
{8,1,5,11,13}, {8,9,0,2,15}, {8,6,7,16,14}, {3,1,9,18,6}, {4,11,2,20,16},
{10,13,15,17,14}}. Since the union of all hands from the set covers all cards but
card 19, so the intruder cannot learn which card does not belong to announcer’s
hand hP1 . Then P2 announces B2. In the same way, P1, P3 and P4 are aware of
hP2 from B2; and the intruder can create a set for P2: HS2 = {{17,11,0,14,9},
{17,2,12,15,3}, {17,16,7,10,6}, {17,4,5,13,1}, {11,2,16,20,4}, {14,15,10,

8,13}, {9,3,6,18,1}} without learning anything about the announcer’s hand hP2 .
Further, P3 announces B3. Similarly, P1, P2 and P4 are aware of hP3 from B3;
and the intruder can create a set for P3: HS3 = {{20,15,5,1, 16}, {20,14,7,6,4},
{20,13, 12,3,11}, {20,10,0,9,2}, {15,14,13,17,10}, {1,6,3,18, 9}, {16,4,11,

8,2}} without learning which card does not belong to announcer’s hand hP3 . Finally,
P4 figures out the intruder’s hand, since he has known other parties’ hands hP1 , hP2

and hP3 . He announces that intruder’s card is 19. Then, on receiving the announce-
ment, P1, P2 and P3 can figure out hP4 because among them they have known each
other’s hand and intruder’s hand. Therefore, all the parties learn each other’s hand.
However, for the intruder, from HS1, HS2 and HS3 he obtains seven candidates of
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card deal:

G = {{{8,3,12,4,10}, {17,11,0,14,9}, {20,15,5,1,16}, {2,6,7,13,18}},
{{8,1,5,11,13}, {17,2,12,15,3}, {20,14,7,6,4}, {0,9,10,16,18}},
{{8,9,0,2,15}, {17,16,7,10,6}, {20,13,12,3,11}, {1,4,5,14,18}},
{{8,6,7,16,14}, {17,4,5,13,1}, {20,10,0,9,2}, {3,11,12,15,18}},
{{3,1,9,18,6}, {11,2,16,20,4}, {15,14,13,17,10}, {0,5,7,8,12}},
{{4,11,2,20,16}, {14,15,10,8,13}, {1,6,3,18,9}, {0,5,7,12,17}},
{{10,13,15,17,14}, {9,3,6,18,1}, {16,4,11,8,2}, {0,5,7,12,20}}}

Since |G| = 2 × 5 − 3 = 7, the intruder cannot learn the card deal. More-
over, he can figure out all candidates of hP4 being {2,6,7,13,18}, {0,9,10,

16,18}, {1,4,5,14,18}, {3,11,12,15,18}, {0,5,7,8,12}, {0,5,7,12,17} and {0,5,

7,12,20}. Since the union of these candidates covers all cards but card 19, the in-
truder cannot learn which card does not belong to P4. For the same reason the intruder
has no idea about which card does not belong to P1, P2 or P3 as well. After the com-
munication, each party knows each other’s hand, but the intruder learns nothing about
any party’s hand. Therefore, the communication for R(5) illustrated above is safe.

5 Conclusion

We discussed original Russia Cards problem R(3) with 3 players and 7 cards and gen-
erated it to R(n) with n players and n(n−1)+1 cards. The picking rule was developed
to construct hand set while the deleting rule was designed to decide card deal. Based
on R(n), an unconditionally secure protocol further be developed to tackle n parties
communication without public keys. However how to work out a paradigm for using
the protocol for communication is a challenge for us in the future. In addition, the ver-
ification of the paradigm with the protocol based on R(n) is also required. To do so,
we will employ Propositional Projection Temporal Logic (Cong and Zhenhua 2007;
Zhenhua et al. 2008a, 2008b; Zhenhua and Koutny 2004) to express the properties
and use Promela (Holzmann 2003) to describe the behavior of the protocol. Thus, the
model checker SPIN (Holzmann 2003) can be used to check the properties.
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