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Abstract This paper deals with the fitness landscape analysis of the k-coloring prob-
lem. We study several standard instances extracted from the second DIMACS bench-
mark. Statistical indicators are used to investigate both global and local structure of
fitness landscapes. An approximative distance on the k-coloring space is proposed
to perform these statistical measures. Local search operator trajectories on various
landscapes are then studied using the time series analysis. Results are used to better
understand the behavior of metaheuristics based on local search when dealing with
the graph coloring problem.

Keywords k-coloring · Fitness landscape · Distance · Distribution of solutions ·
Time series

1 Introduction

Metaheuristics are widely used to solve various combinatorial optimization prob-
lems. The main reason for the interest in these techniques is their genericity. Indeed,
a metaheuristic constitutes a general framework which can be applied to different op-
timization problems and thus present the ability to be adapted to a specific problem.
Generally speaking, metaheuristics use move operators to “navigate” from a solution
to another one in a search space and they stop if a satisfactory solution is found or if a
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stopping criterion is satisfied. In addition, each metaheuristic framework provides its
own technique to prevent the stagnation in local optima. Experiments performed on
many instances of problems classified NP-hard, show the efficiency of these methods.

However, metaheuristics have the major disadvantage of a non guaranteed con-
vergence. Their efficiency depends on many factors, such as the considered instance,
the chosen cost function and the neighborhood operator. The research in the field of
metaheuristics is focused on the adaptation of the framework to different combinator-
ial optimization problems without explaining why these search techniques perform so
well. This insights us to stipulate that it is essential to study the search space structure,
related to a given optimization problem, before developing a resolution method.

In this paper, the fitness landscape analysis is used in the study of the search
space structure of the k-coloring problem. The fitness landscape is obtained by as-
signing to each point in the solution space a fitness value. Thus, the fitness land-
scape depends on the neighborhood operator, the fitness function and also on the
considered instance. In this work, we perform the fitness landscape analysis for var-
ious k-coloring instances. In combinatorial optimization, the concept of fitness land-
scape has been used to understand the search process behavior of many problems
such as in the resolution of the travelling salesman problem (Fonlupt et al. 1999;
Boese 1995), the quadratic assignment problem (Merz and Freisleben 2000) or the
knapsack problem (Travares et al. 2008).

This paper is organized as follows. In the next section, the fitness landscape analy-
sis is discussed in more detail. Section 3 presents the parameters of the k-coloring fit-
ness landscape and defines a distance on the k-coloring space. In Sect. 4, we present
the experimental protocol. Results of the descriptive study of coloring distributions
are discussed in Sect. 5. In Sect. 6, we show the use of the time series analysis in
the study of k-coloring landscapes. Section 7 summarizes the measures used in our
k-coloring fitness landscape analysis. We conclude in Sect. 8 and we propose some
perspectives of this research.

2 Fitness landscape analysis

The concept of fitness landscape was originally introduced to understand evolutionary
processes which are driven by specific operators (such as mutation and crossover).
For the complete description of the model see Jones and Forrest (1995).

2.1 The landscape model

A fitness landscape L is defined as a 3-tuple:

L = (R,φ,f ), (1)

where:

• R corresponds to the set of potential solutions that can be manipulated by the
search procedure. The choice of the contents of this set constitutes the first step in
solving a search problem. Solutions are then codified adequately.
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• φ is an operator defined as φ : R × R → [0,1]. If v,w ∈ R, then p = φ(v,w)

corresponds to the probability that v is transformed into w by a single applica-
tion of the stochastic procedure represented by φ. In the evolutionary context, the
neighborhood operator corresponds to classical genetic operators, i.e. crossover,
selection and mutation.

In our fitness landscape analysis, we define the neighborhood operator as a func-
tion φ : R → R, such that φ(v) = w means that the solution w is produced from v,
by the application of the operator φ.

• f is a fitness function attaching to each genotype a value. In biology, the term
fitness derives from the term “survival of the fittest” in the “natural selection”.

To be able to deduce from the fitness landscape analysis, two properties have to be
verified. First, the operator defining the neighborhood relation takes the same cardi-
nality in input as it produces in output, so the resulting landscape is said to be walk-
able by the operator. Second, a landscape has to be connected, that is, there exists a
path in the landscape graph between any pair of vertices.

2.2 Related works

The fitness landscape is a concept that is derived from the evolutionary theory. In the
combinatorial optimization field, Fonlupt et al. (1999) work on the fitness landscape
of the symmetric and Euclidean TSP. They show that the landscape is a massif central,
i.e, a valley of local solutions with global solutions located at its bottom. Furthermore,
the fitness distance correlation analysis performed on many instances, shows a large
positive correlation between fitness and distance for the 2-opt operator if compared
to the city swap operator.

Bachelet (1999) uses many statistical measures to study the fitness landscape of
the QAP instances. This analysis reveals that most problems are unstructured: many
instances have highly rugged landscapes and local minima are totally uncorrelated.
Merz and Freisleben (2000) performed similar study by the use of other statistical
measures to classify the QAP instances.

Many attempts have already been performed to analyze the search space of the
graph coloring problem. In the following we present three different approaches in the
search space analysis of the k-coloring problem.

2.2.1 A topological study

Hertz et al. (1994) proposed to study the performance of the tabu search algorithm in
the resolution of the k-coloring problem. They start their analysis by generating the
whole set of local optima solutions. Then, they provide statistical measures on the set
of local solutions to illustrate the “topology” of the solution space.

This topological study on the whole set of local optima limits the size of problems
that can be handled. In fact, it is difficult to enumerate all local optima for graphs
with more than 20 vertices.



J Comb Optim (2011) 21: 306–329 309

2.2.2 Distance measures on the solution space

Weinberg (2004) tried to give a classification of coloring instances according to two
basic indicators: the entropy and the diameter. Furthermore, two distance measures
between colorings are proposed, one is exact and the other is approximative. The
second measure is used in the fitness landscape analysis basically to compute the
diameter of the search space.

2.2.3 Frozen sets

Another related work on the search space analysis is that performed by Hamiez and
Hao (2001) and Culberson (2000). They focused their study on the solution properties
of the graph coloring problem. They discovered the existence of a particular set of
vertices, that are always in the same color class, when solutions are generated. This
set is called the frozen set.

The authors found that in practice, a coloring method can detect these frozen sets
quickly. This implies that the resolution method effort is focused on the remaining
pairs of nodes (that are not classified frozen).

Also, they enumerate the proportion of frozen sets for many instances, they found
that it differs according to the considered instance. This should explain the fact that,
for some graphs, solutions are multiple and different. While for others, solutions share
common coloring information.

2.3 Measures on the fitness landscape

In our study, we propose some indicators to get an idea as complete as possible of the
considered landscape. We distinguish between three types of measures:

• descriptive statistical measures that operate on solution distributions,
• the fitness distance indicator that attempts to study the potential relationship be-

tween fitness and distance to global solutions,
• correlation measures which aim at analyzing the ruggedness of landscapes.

To apply many of these measures we need a metric, related to the neighborhood
operator, that provides the distance between any two solutions.

Let d(si, sj ) be the distance between two solutions si and sj in the search space.
It corresponds to the number of neighborhood operator applications to obtain the
solution sj from the solution si . In topology, the distance is defined as follows.

Definition 1 (Distance) Let E be a set, we call distance on E, any mapping d : E ×
E −→ R+, such that:

• d(x, y) = 0 if and only if x = y (separative property).
• For all x, y ∈ E, d(x, y) = d(y, x) (symmetrical property).
• For all x, y, z ∈ E, d(x, y) + d(y, z) ≥ d(x, z) (triangular property).
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2.3.1 Descriptive statistical measures

In statistics, descriptive measures are commonly used to study distribution features
such as the central tendency, the dispersion of individuals and the distribution shape.
In what follows, we will adapt some of these measures to combinatorial optimization
on search space.

Let P be a finite population of n solutions generated randomly. We associate to
each solution si a fitness value denoted by fi .

Normality assessment To show if a distribution is representative of the whole pop-
ulation, the idea is to measure the “shape” of the distribution relatively to the normal
distribution. Accordingly, we use two measures: the skewness and the kurtosis statis-
tics.

• The sample skewness is a measure of the lack of symmetry of a distribution. This
statistic is given by the third central moment

γ1 = μ3

s3
f

, with μ3 =
∑n

i=1(fi − f̄ )3

n − 1
. (2)

Where, sf =
√∑n

i=1(fi−f̄ )2

n−1 denotes the sample standard deviation. Since the nor-
mal distribution is symmetrical, it has a skewness value of 0. A positive skew value
indicates rightward skewness, a negative skew value indicates leftward skewness.

• The sample kurtosis measure is given by the fourth central moment:

γ2 = μ4

s4
f

− 3, where μ4 =
∑n

i=1(fi − f̄ )4

n − 1
. (3)

A light-tailed distribution has fewer values in the tails than the normal distribution,
and will have negative kurtosis. A heavy-tailed distribution has more values in the
tails than the normal distribution, and will have positive kurtosis.

Diversity measures Measures on solution distributions can be classified into two
categories: partition diversity measures and fitness diversity measures.

• Partition diversity: To measure the dispersion of solutions in the landscape, we
use the mean of distances between all possible pairs of solutions d(si, sj ) in the
landscape. Given n the number of individuals in a population P , d̄ is given by:

d̄ = 2

n(n − 1)

∑

1

∑

j<i

d(si, sj ). (4)

• Fitness diversity: The variability in point altitudes in the search space provides
an approximative idea about the landscape “relief”. To measure this diversity, we
use the sample coefficient of variation cv which is given by the sample standard
deviation sf divided by the sample mean f̄

cv = sf

f̄
where f̄ =

∑n
i=1 fi

n
. (5)
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2.3.2 Fitness distance correlation analysis

The fitness distance correlation (FDC) measures how much the fitness of a point cor-
relates with its distance to a global optimum. The question is: when will a search
algorithm be effective at finding the global optimum? Jones and Forrest (1995) sug-
gest that the relationship between fitness (in an evolutionary context) and distance to
a global optimum will have a strong effect on search difficulty.

To perform the fitness distance analysis, we need a sample of fitness values F =
{f1, f2, . . . , fn} and the corresponding set of distances to the optimal solutions D =
{d1, d2, . . . , dn}. The correlation coefficient is given by:

r = cov(F,D)

sf sd
, (6)

where cov(F,D) = 1
n

∑n
i=1(fi − f̄ )(di − d̄) and sd =

√∑n
i=1(di−d̄)2

n−1 .
The FDC analysis is founded on the following conjunctures:

1. Large positive correlations indicate that the problem is easy to be optimized since
as the fitness decreases, the distance to the global optimum decreases also.

2. Large negative correlations indicate that the problem is “misleading” and the op-
erator will guide the search away from the global optimum.

3. Near-zero correlations indicate that we should do a closer examination of the rela-
tion between fitness and distance through the use of a scatter plot of fitness versus
distance.

One major limitation of the FDC analysis for real problems is that its computation
requires the knowledge of the global optimum and the computation of the distance
between the solutions, this cannot be done for a large variety of combinatorial opti-
mization problems.

Another limitation of the fitness distance analysis is that all global optima have to
be very close, otherwise, we can find different correlation results according to global
solutions dispersions.

2.3.3 Correlation structure

The ruggedness of a landscape can be quantified by the correlation between adjacent
configurations. The idea is to generate a random walk on the landscape via neighbor-
ing points. At each step, the fitness of the encountered solution is recorded. This way,
a time series of fitness f1 . . . fn values is generated.

Autocorrelation function To measure the ruggedness, Hordijk (1995) proposed the
autocorrelation function ρi , which is estimated by:

ri =
∑T −i

t=1 (yt − ȳ)(yt+i − ȳ)
∑T

t=1(yt − ȳ)2
. (7)

If ri is close to one, then there is much correlation between two values i steps
apart; if it is close to zero, then there is hardly any correlation.
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Autocorrelation coefficient Angel and Zissimopoulos (1997) proposed another
measure: the ruggedness coefficient. It is given by:

ξ = 1

1 − ρ1
. (8)

This measure is based on the autocorrelation function of the nearest neighbor (ρ1).
The larger the correlation, the flatter the landscape is.

Box and Jenkins method (Box and Jenkins 1970) Once the time series of the “fit-
nesses” is obtained, a model can be built using the Box-Jenkins approach and thus we
can make forecasts about future values, or simulate process as the one that generated
the original data.

An important assumption should be considered here: the landscape has to be sta-
tistically isotropic, i.e., the time series of fitness forms a stationary random process.
This means that the random walk is “representative” of the entire landscape, and thus
the correlation structure of the time series can be regarded as the correlation structure
of the whole landscape.

Hordijk (1995) used the time series analysis to determine the global structure of
the fitness landscape of genetic operators. The purpose of this statistical approach is
to find an ARMA model which adequately represents the data generating process.
Hordijk found that the walk follows an AR(1) model and it is in the form:

yt = c + φ1yt−1 + at , (9)

where at is a white noise which is a stationnary process such that the mean E(at ) = 0,

the variance V (at ) = σ 2 and ρk = corr(at , at−k) = 0. This correlation structure im-
plies that the fitness at a particular step in a random walk generated on this landscape,
totally depends on the fitness one step earlier. Knowing the fitness, two steps earlier,
does not give any extra information for the expected value of fitness at the current
step. Furthermore, the value of the parameter φ1 is the correlation coefficient between
the fitness of two points one step apart in a random walk.

3 The k-coloring landscape parameters

Now, we will focus our study on the fitness landscape of the graph coloring prob-
lem. It is a key problem in combinatorial optimization, since it can modelize many
theoretical and practical problems. Given a graph G with vertex set V and edge set
E, a proper coloring of G is an assignment of colors to its vertices so that no two
adjacent vertices in G have the same color. If the number of vertices k is fixed in
advance, a proper k-coloring is a partition of V into k independent color classes.

The k-coloring problem can be seen as a decision problem, the question to be
answered is whether for some positive integer k a proper k-coloring exists. It is well
known that the k-coloring problem for general graphs is NP-complete and only for a
few special cases polynomial time algorithms are known (Galinier 1999).
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3.1 Representative space

It corresponds to the space of solutions and defines the set of points to be visited
during the search process. Given a graph G with N nodes and k the number of colors,
a k-coloring C corresponds to a set of k subsets representing color classes.

To avoid the solution symmetry in our analysis, we consider one solution as the set
of colorings generating the same partition of vertices.

3.2 Fitness function

The goal of the search process, in our study, is to obtain a proper k-coloring, given
a graph G and k colors to be assigned to each node. Our objective is to minimize the
number of violated constraints, thus the cost function is given by:

f (C) =
k∑

i=1

|E(Ci)|, (10)

where E(Ci) is the set of edges of G having both endpoints in the same color class Ci .
This function corrresponds to the value or height to be assigned to each point of the
landscape.

3.3 Neighborhood operator

To move from a point to another one in the landscape, we need a neighborhood oper-
ator. In our investigation of the graph coloring landscape, we use the operator φ that
changes the color of a node with another color. Thus, at each move a node is removed
from a color class to be assigned to another one.

3.4 A distance on the k-coloring space

To perform the landscape analysis, we need an appropriate metric that measures the
distance between solutions. In the definition of this distance, we have to take into
account three basic considerations:

• This metric has to be related to the neighborhood operator since it computes the
number of neighborhood operator applications, to obtain a solution, if we start with
another one.

• The computation time of the distance has to be fast, since it will be computed for
large instances.

• If we consider the hamming distance, each node is regarded individually with its
color. Rather, we have to consider a node as a member of a color class. Thus,
the hamming distance doesn’t provide the adequate response of how far two k-
colorings are. This idea is illustrated in Fig. 1, where the two colorings are similar,
although, the hamming distance is equal to 4.

Consequently, we propose a distance based on partitions. The principle of this
metric is to compute the hamming distance between color classes.
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Fig. 1 The Hamming distance between the coloring (a) and (b) is equal to 4, although they are the same

3.4.1 Distance between color classes

A color class corresponds to the set of nodes of the graph having the same color. The
purpose is to define a mapping that computes the distance between two node sets.

Definition 2 Given two sets A and B , we define a mapping ds on the space of color
sets, as follows:

ds(A,B) = |A ∪ B| − |A ∩ B|. (11)

That is, ds computes the number of nodes that has disappeared or appeared when
moving from A to B . Thus we have for instance:

• ds({1,2}, {1}) = 1: the node 2 disappeared when moving from the first set to the
second one (or appeared when moving from the second set to the first one).

• ds({1,2,3}, {1,2,4}) = 2: the node 3 disappeared and the node 4 appeared, when
moving from the first set to the second one.

Proposition 1 The mapping ds is a distance.

Proof It is obvious that ds is symmetrical and separable. In addition, ds verifies the
triangular property, since we have:

|B| ≥ |A ∩ B| + |B ∩ C| and |A| + |C| ≥ |A ∪ C|,
then

|A| + 2|B| + |C| ≥ 2|A ∩ B| + 2|B ∩ C| + |A ∪ C|.
So,

(|A| + |B| − |A ∩ B|) + (|B| + |C| − |B ∩ C|) ≥ |A ∩ B| + |B ∩ C| + |A ∪ C|
and

(|A ∪ B| − |A ∩ B|) + (|B ∪ C| − |B ∩ C|) ≥ |A ∪ C| ≥ |A ∪ C| − |A ∩ C|.
Finally, ds(A,B) + ds(B,C) ≥ ds(A,C).
It follows that the metric ds is a distance. This distance can be used to measure the

distance between two k-colorings. �
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3.4.2 An approximative distance

Computing the distance between two k-colorings C1 and C2 can be seen as finding a
minimum cost perfect matching in a weighted complete bipartite graph, where each
node set corresponds to a k-coloring and each edge between two nodes V 1

i and V 2
j is

weighted by the distance ds(V
1
i , V 2

j ).
A perfect matching of a graph G = (V ,E) is a subset M ⊆ E such that no two

edges in M are adjacent and each node is incident to one edge in M . Since we use
the same number of colors k, the graph that we use is bipartite and complete with 2k

nodes and we can find a perfect matching by applying a hungarian method, with a
complexity O(k3) (Kuhn 1956). If we take into account the calculation of distances
ds between color classes, we have a total complexity of O(k3 + N2).

Despite the hungarian method is polynomial, it is still too time consuming for
a fitness landscape study. In fact, in our descriptive analysis, we have to compute
the distances between all pairs of solutions in several large distributions of large in-
stances.

Hence, we propose a greedy method to measure the distance between two k-
colorings. The method is given by the following algorithm which leads to an approx-
imative distance da .

Algorithm Partition based distance.

data: C1 = (V 1
1 , . . . , V 1

k ) and C2 = (V 2
1 , . . . , V 2

k ) .
result: da(C1,C2).
begin

da(C1,C2) ←− 0
cpt ←− 0
compute all the distances between each pair of color classes from C1 and C2
repeat until (cpt = k)

ds(V
1
i , V 2

j ) ←− the smallest distance
da(C1,C2) ←− da(C1,C2) + ds(V

1
i , V 2

j )

remove V 2
j from C2

remove V 1
i from C1

cpt ←− cpt + 1
return (da(C1,C2)/2)

end

The algorithm starts by computing all possible distances ds between color classes
coming from C1 and C2. Then, at each iteration, the smallest distance is added to the
total distance da(C1,C2) and the color classes V 1

i and V 2
j are removed respectively

from C1 and C2. The procedure stopped when the number of color classes is reached.
Consider the example of two 3-coloring of a graph with 13 vertices {a, . . . ,m}.

• C1 = ({a}, {b, c}, {d, e, . . . ,m})
• C2 = ({a, d, e, f }, {g}, {b, c,h, i, . . . ,m})
The bipartite graph of Fig. 2 gives the distances ds as weights or costs of edges.
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Fig. 2 The distance between
two k-colorings corresponds to
minimum cost perfect matching

The proposed algorithm will first match V 1
1 with V 2

2 , then V 2
1 with V 1

2 and finally
V 1

3 with V 2
3 for an approximative distance of 7, while the exact distance is 6 and is

obtained by matching V 1
1 with V 2

1 , then V 2
1 with V 2

2 and finally V 1
3 with V 2

3 .
The complexity of the algorithm is O(k2 +N2), where O(N2) is the time required

to compute all distances ds between nodes (color classes). The algorithm selects the
minimal distance between k2 possible ds , then the corresponding pair of nodes is
removed to restart the selection in the remaining (k − 1)2 distances, and so on. This
leads to a complexity of O(k2).

In what follows, we use the proposed algorithm to compute the approximative
distances between colorings. To detect the structure of the k-coloring landscape we
use two basic measures. We first perform descriptive statistics on distributions of
solutions. Next we use the time series analysis to study local search trajectories on
the landscape.

4 Experimental protocol

Three families of graphs were chosen for our computational testing: Leighton graphs,
flat graphs and random graphs. The instances are extracted from the second DIMACS
Challenge.

Leighton instances are generated by a procedure which constructs graphs of
known chromatic number. The flat graphs are proposed in Culberson (1996), they
are generated in such a way as to reduce the variance of the degree of vertices (the
number of adjacent nodes). As the flatness degree increases, the variation in degree
may also increase; this variation should always be less than that of an equi-partite
graph. The DSJC graphs are random, they are used in Johnson et al. (1993).

Columns 1 to 5, in Table 1, show for each studied graph, respectively, its name,
the number of vertices, the number of edges, its chromatic number (or its best known
lower bound when the chromatic number is unknown) (Desrosiers et al. 2004) and
the best coloring found in the literature.
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Table 1 The experimental
protocol Instances Nodes Edges χ Best k

dsjc125-1 125 1472 ≥5 5

dsjc125-5 125 7782 ≥10 17

dsjc250-9 125 13922 ≥30 44

dsjc250-1 250 64336 ≥8 8

dsjc250-5 250 31336 ≥11 28

dsjc250-9 250 55794 ≥35 72

dsjc500-1 500 24916 ≥12 12

dsjc500-5 500 125248 ≥16 49

dsjc500-9 500 224874 ≥42 127

flat300-28-0 300 21695 28 31

le450-5a 450 5714 5 5

le450-5b 450 5734 5 5

le450-5c 450 9803 5 5

le450-5d 450 9757 5 5

le450-15a 450 8168 15 15

le450-15b 450 8169 15 15

le450-15c 450 16680 15 15

le450-15d 450 16750 15 15

le450-25a 450 8260 25 25

le450-25b 450 8263 25 25

le450-25c 450 17343 25 25

le450-25d 450 17425 25 25

5 Descriptive statistical measures

Let P a population of n k-colorings generated randomly. We consider the correspond-
ing fitness values and we propose statistical measures proposed in Sect. 3 to get, as
possible, a complete idea about the landscape structure.

We start our descriptive investigation by the generation of an initial population of
random colorings, for each instance. Then we apply a local descent on each individual
to get a population of local optima.

Statistics are performed on 100 solutions generated randomly and on the 100 cor-
responding local optima. Statistical results are gathered in Table 2. Columns 1–6
show for each instance, respectively, its name, the number of colors used, the mean
of distances, the coefficient of variation, the skewness statistic and the kurtosis statis-
tic.

5.1 Normality assessment

For almost all instances, we note that the skewness value is near zero. This means
that fitness distributions are symmetrical. Also, the results show that all the kurtosis
statistics are practically equal to zero if they are negative and they are near zero if
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they are positive. This implies that the peakness of the distribution of fitness, rela-
tively to almost all the instances, is practically similar to the peakness of the normal
distribution.

Results of both kurtosis and skewness statistics, show, on the one hand, that the
majority of fitness values are similar, which can be interpreted by the fact that alti-
tudes are of the same level. On the other hand, we can stipulate that our investigation
is adequate, statistically, since the normality conditions are assessed.

5.2 Stagnation phenomena

Results in Table 2 show that if the number of nodes increases, the diversity of solu-
tions measured by the mean of distances d̄ increases, regardless the number of color
classes k. Also, we note that d̄ is conserved when we generate the corresponding local
optima. That is, if we generate an initial random population, we are rapidly trapped
in local optima and thus the corresponding solutions aren’t far from the initial ones.
This can be interpreted by the presence of a multitude of non deep valleys in the
landscape.

Furthermore, the coefficient of variation values are small near zero for almost all
instances. This shows that the fitness values both in initial and local population are
gathered near their means. This confirms the fact that locally altitudes have the same
level. We can conclude then that locally the landscape structure of the graph coloring
problem can be seen as a set of rugged plateaux.

This structure can explain the “stagnation phenomena” which is already detected
in the resolution of the k-coloring problem, as in Galinier (1999) and in Galinier and
Hertz (2004). They noticed that the objective function decreases dramatically in the
early stages of the search and the search procedure generally uses most of its time
trying to eliminate the last conflicting nodes.

Indeed, Fig. 3 shows that when coloring the le450-15c graph, the tabu search drops
rapidly then stagnates. It requires four restarting points to reach the region where an
optimal solution is detected. It is clear that if we omit the re-starting procedure, the
search will stagnate for long time in the same region.

5.3 Frozen sets

Table 2 shows that if the graph size is maintained constant, the mean of distances
remains basically the same for leightonian graphs. This can be interpreted as follows:
even if the number of color classes changes, the same sets of nodes seem to be al-
ways together (frozen sets). Whereas, d̄ changes for random graphs according to the
instance. This can be explained by the absence of frozen sets, when random graphs
are colored, or by their little proportion.

Hamiez and Hao (2001) and Culberson (2000), in their study on the solution prop-
erties of the graph coloring problem, showed the existence of a particular set of ver-
tices that are always in the same color class when solutions are generated. This set is
called the frozen set. In addition, Culberson (2000) concluded that these frozen same
sets can be detected rapidly by greedy algorithms. This insights us to use random
initial solutions when dealing with random graphs and to use a greedy method in the
generation of initial solutions for leightonian graphs.
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Fig. 3 The trajectory of the multi-starting tabu search algorithm in coloring le450-15c graph with 16
colors

To confirm our assumptions, we compare the behavior of the tabu search by the
use of the greedy method DSATUR as initial solution generating method and its
behavior when using random initial solution. We perform the tests on a leightonian
graph (le450-5c) and a random graph (DSJC125-5).

Figure 4 clearly shows that the use of DSATUR as initial solution generation
method improves the results of tabu search. However, for random graphs in Fig. 5, the
use of DSATUR does not improve the effectiveness of the search in finding optimal
solutions.

In this sense, many authors, as in Galinier and Hertz (2004), noticed that the use
of a greedy method to generate initial solutions can be avoided since, in many cases,
random initial solutions lead to similar results in time and qualities. But they do
not explain this behavior; nor for which graphs it holds. They just concluded it by
experiments.

6 Time series analysis

The aim of the use of the time series tool in our study is to modelize the walk or the
trajectory performed by our neighborhood operator. This can give an idea about the
landscape ruggedness. In the following, we begin by describing in details the Box and
Jenkins procedure performed on the random instance of DSJC125-1 colored with five
colors. Then we summarize results of the time series analysis on the set of instances
used in the descriptive study of the previous section.
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Fig. 4 The comparison of the search trajectory when using the DSATUR or random generation of initial
solutions for the le450-5c graph

Fig. 5 The comparison of the search trajectory when using the DSATUR or random generation of initial
solutions for the DSJC125-5 graph
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Fig. 6 The scatter plot of “observed” fitnesses

6.1 A detailed case study: the DSJC125-1 instance

This analysis starts by the generation of a random point (a random coloring of the
graph) and by recording the corresponding fitness. The walk is then performed by
the application of the neighborhood operator at each step of this walk. During this
process, the fitness of the resulting points are computed and recorded. Once the time
series of fitnesses is generated, we can apply the Box and Jenkins approach to provide
a statistical model that represents the data-generating process.

6.1.1 Identification

This step aims at the determination of the model (or models) which can be used to
represent the observed data. For this reason, we observe the scatter plot of Fig. 6. It
shows that the series is stationary since observations are gathered around a constant
mean value.

Furthermore, in Fig. 7, the correlogram (representation of the autoregressive func-
tions or ACFs) is given together with the two-standard-error bound of 2√

T
or ± 0.06

for the walk length T = 1000. The correlogram taper off to zero, so an AR(p) or an
ARMA(p,q) should be most appropriate here. In this case we say that the ACFs die
slowly because the values of the past carry over to affect the present.

Also, we compute the so-called Q or the Box-Ljung or portmanteau statistic which
is based on the composite hypothesis that all the ACFs are equal to zero. Results on
the DSJC125-1 instance show that all the Q-statistic are different from zero.
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Fig. 7 The autocorrelation functions for the DSJC125-1 instance

To choose among the AR(p) and the ARMA(p,q) models, the partial correlo-
gram, that presents the partial autoregressive functions or PACFs, is represented in
Fig. 8. This plot shows that the first partial autocorrelation is equal to one and thus
well outside the two standard error bound of ±0.06. Whereas the other PACs are
almost all within this bound.

Hence, the partial correlogram cuts off after one time lag and the AR(1) model is
the appropriate choice to modelize the walk on the DSJC125-1 landscape.

6.1.2 Estimation

In general an AR(1) is given as:

ft = c + φ1ft−1 + at ,

where the constant c is the mean of the time series. Estimation results are given
by Table 3, where the constant c = 7.688306 and the correlation coefficient φ1 =
0.872706, so the model is as follows:

ft = 7.688306 + 0.872706ft−1 + at .

Also, Table 3 shows that all parameters are significant (t-statistic 
 2). Furthermore
the measure of “goodness of fit” R2 is equal to 0.764931, so the estimated model is
capable of explaining the observed data.
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Fig. 8 The partial autocorrelation functions for the DSJC125-1 instance

Table 3 Estimation results for
the DSJC125-1 instance walk Variable Coefficient Std. error t-statistic

C 7.688306 0.095821 80.23624

φ1 0.872706 0.006845 127.5042

6.1.3 Diagnostic checking

To check if the estimated model is appropriate to be used, the model is fitted with the
data and the autocorrelations of the residuals are computed. These residuals should
be white noise, so all the autocorrelations should not be significantly different from
zero.

The correlogram of the residuals in Fig. 9 shows that the first 200 autocorrelation
functions of residuals are all within the two-standard-error bound. Thus, the first order
autoregressive model has removed the significant autocorrelation in the data.

6.1.4 Model interpretation

This time series analysis performed on the DSJC125-1 instance is also applied to the
other instances cited in Table 2. Results show that all the landscape instances can be
modelized by an AR(1). That is, the correlation structure has the form:

ft = c + φ1ft−1 + at . (12)



J Comb Optim (2011) 21: 306–329 325

Fig. 9 The first 200 residual autocorrelations for the DSJC125-1 instance

The t-statistics of the all the estimated parameters are significant (t-statistic > 2).
Furthermore, the value of R2, a measure of goodness of fit of the model, indicates a
high explanatory and predictive value of models.

The AR(1) model stipulates that the fitness, at a particular step, (ft ) in a ran-
dom walk totally depends on the fitness one step earlier (ft−1), and some stochastic
variable. In these landscape models, the parameter (φ1) is the correlation coefficient
between the fitness of two points one step apart. The results show that it is high for
all the instances.

6.2 An advanced study of correlograms

To give a more detailed analysis of the landscape correlation structure, we choose
to observe correlograms in the same graphic to compare the correlation length of
different landscapes.

Hordijk (1995) defines the correlation length as the largest time lag i for which
the correlation between two points i steps apart is still statistically significant. That
is, the quicker the correlogram drops to zero, the less the correlation length is.

First, we plot the correlograms by varying the size (we maintain the connectivity
constant), we choose for this purpose the correlograms of three random instances
with the same connectivity and various sizes: the DSJC125-1, the DSJC250-1 and
the DSJC500-1 instances.

The corresponding correlograms in Fig. 10 all taper off to zero, but we see clearly
that the correlation length increases as the size of the graph increases. What is ex-
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Fig. 10 Correlograms corresponding to random instances with different sizes

pected, since the larger the graph is, the more difficult it is to influence its fitness
value in only one step.

Then, we vary the graph type. The correlograms of Fig. 11 show that the correla-
tion length differs according to the graph type.

Results show clearly that the correlation length depends on the treated instance.
This correlation length gives us an idea about the “flatness degree” of a given land-
scape. This can be useful in the determination of the length of the seach walk in local
search methods. In Table 4, we provide results on the correlation length correspond-
ing to the different tested instances, they are obtained by the use of S-PLUS statistical
software.

7 Summary of landscape analysis

To get an idea as complete as possible about the k-coloring landscape, we have used
many statistical indicators. These measures are gathered in Table 5.

Analysis results showed that for almost all the proposed instances, landscapes
present a multitude of valleys and peaks and that local optima are distributed over the
whole search space. Furthermore, altitudes of the peaks and depths of valleys seem
to be regular. This should explain why local search techniques, that contain various
strategies to escape from local solutions (valleys), are recommended. Also, diversity
analysis showed the existence of frozen sets for leightonian graphs.

In addition, the time series analysis reveals that all the landscapes can be mod-
elized by an AR(1), which means that in a current point, we can’t see over the point
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Fig. 11 Correlograms of different type of instances

Table 4 Correlation lengths
corresponding to different
k-coloring instances

Graph k Correlation length

Le450-5c 5 130

Le450-15c 15 214

Le450-25a 25 838

Le450-25b 25 396

Le450-25c 25 249

Flat300-28-0 28 202

DSJC125-1 5 65

DSJC125-5 17 151

DSJC125-9 44 370

DSJC250-5 28 678

DSJC250-9 55 150

DSJC500-1 12 452

DSJC500-5 55 847

following it immediately. The comparative study of the fitness time series, indicates
basically that the correlation length depends on the specified instance, which implies
different degree of flatness of the corresponding landscapes.



328 J Comb Optim (2011) 21: 306–329

Table 5 Summary of measures used in the k-coloring landscape analysis

Statistical tools Descriptive study Time series analysis

Data k-coloring distribution Search trajectory

Measures d̄ c.v. skew/kurt Box-Jenkins Correlograms

Landscape Partition Fitness Normality Correlation Correlation

features diversity diversity assessment structure comparison

8 Conclusion

The main objective of our research in this paper was the study of the fitness land-
scape of the graph coloring problem. For this purpose, we have proposed to use some
descriptive tools to analyze several solution distributions. Also, we have used the
Box and Jenkins approach aiming at modelizing trajectories generated by the adopted
neighborhood operator. This is done for many instances of the second DIMACS chal-
lenge.

During our statistical investigation, we needed to define a distance between any
two colorings C1 and C2, it computes the number of neighborhood operator appli-
cations, to obtain C1 from C2. Then, we have proposed a polynomial algorithm to
approximate this distance.

As research perspectives, the results of this work can be fruitful in the elabora-
tion of efficient search methods for the k-coloring problem. Also, we can perform
a comparative study of different k-coloring landscapes by varying the neighborhood
operator and/or the fitness function. This approach can also be applied to other group-
ing problems such as clustering and graph partitioning.
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