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Abstract It is well known that if G is a multigraph then χ ′(G) ≥ χ ′∗(G) :=
max{�(G),�(G)}, where χ ′(G) is the chromatic index of G, χ ′∗(G) is the frac-
tional chromatic index of G, �(G) is the maximum degree of G, and �(G) =
max{2|E(G[U ])|/(|U | − 1) : U ⊆ V (G), |U | ≥ 3, |U | is odd}. The conjecture that
χ ′(G) ≤ max{�(G) + 1, ��(G)�} was made independently by Goldberg (Discret.
Anal. 23:3–7, 1973), Anderson (Math. Scand. 40:161–175, 1977), and Seymour
(Proc. Lond. Math. Soc. 38:423–460, 1979). Using a probabilistic argument Kahn
showed that for any c > 0 there exists D > 0 such that χ ′(G) ≤ χ ′∗(G) + cχ ′∗(G)

when χ ′∗(G) > D. Nishizeki and Kashiwagi proved this conjecture for multigraphs
G with χ ′(G) > 	(11�(G) + 8)/10
; and Scheide recently improved this bound to
χ ′(G) > 	(15�(G) + 12)/14
. We prove this conjecture for multigraphs G with
χ ′(G) > 	�(G) + √

�(G)/2
, improving the above mentioned results. As a con-
sequence, for multigraphs G with χ ′(G) > �(G) + √

�(G)/2 the answer to a 1964
problem of Vizing is in the affirmative.
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1 Introduction

Let G be a multigraph. A k-edge-coloring of G is an assignment of k colors to the
edges of G so that no two adjacent edges receive the same color. The chromatic index
of G, denoted by χ ′(G), is the smallest k for which G admits a k-edge-coloring. As
it is NP -hard to determine χ ′(G) (see Holyer 1980), a good estimate of χ ′(G) has
been the focus of extensive research.

Let �(G) denote the maximum degree of G. Clearly χ ′(G) ≥ �(G). A classical
theorem of Shannon (1949) asserts that χ ′(G) ≤ 3�(G)/2. Vizing (1964) and Gupta
(1967) proved that χ ′(G) ≤ �(G)+μ(G), where μ(G) is the maximum multiplicity
of an edge of G; and Kierstead (1984) studied the graphs G for which χ ′(G) =
�(G) + μ(G). This Vizing–Gupta result implies that if G is a simple graph then
χ ′(G) ∈ {�(G),�(G) + 1}.

Another lower bound for χ ′(G) is the fractional chromatic index defined below.
Let

�(G) = max

{
2|E(G[U ])|

|U | − 1
: U ⊆ V (G), |U | ≥ 3, and |U | is odd

}
,

where G[U ] is the subgraph of G induced by U . Observe that if U ⊆ V (G) and |U |
is odd, then every matching in G[U ] has size at most (|U | − 1)/2. Consequently
χ ′(G) ≥ �(G); and hence χ ′(G) ≥ max{�(G),�(G)}. The number χ ′∗(G) :=
max{�(G),�(G)} is the fractional chromatic index of G (see Edmonds 1965;
Schrijver 2003 and Seymour 1979), which is the solution to a linear program. The
fractional chromatic index can be determined in polynomial time by using the el-
lipsoid algorithm; since the corresponding separation problem is equivalent to the
weighted matching problem, see Theorem 28.6 in (Schrijver 2003).

In the 1970s, Goldberg (1973), Andersen (1977), and Seymour (1979) indepen-
dently (and in different forms) made the following conjecture.

Conjecture 1.1 For any multigraph G, χ ′(G) ≤ max{�(G) + 1, ��(G)�}.

Note that Conjecture 1.1, if true, would imply that χ ′(G) ≤ 1 + χ ′∗(G) for all
multigraphs G. When studying conjectures of Tutte and Fulkerson about factoriza-
tions of cubic graphs, Seymour (1979) also made the following conjecture which is
slightly weaker than Conjecture 1.1, but still achieves what Vizing’s theorem does for
simple graphs.

Conjecture 1.2 For any multigraph G, χ ′(G) ≤ 1 + max{�(G), ��(G)�}.

Conjecture 1.2 has an equivalent formulation in terms of r-graphs. Let r be a
positive integer. A multigraph G = (V ,E) is called an r-graph if G is r-regular and,
for every X ⊆ V with |X| odd, the number of edges between X and V − X is at least
r (in particular, |V | is even). Seymour (1979) proved that Conjecture 1.2 is equivalent
to the conjecture that if G is an r-graph then χ ′(G) ≤ r + 1.

Over the past three decades Conjecture 1.1 has been studied extensively, see,
for instance (Goldberg 1984; Hochbaum et al. 1986; Marcotte 1986, 1990, 1990;
Nishizeki and Kashiwagi 1990; Seymour 1990; Plantholt and Tipnis 1991; Kahn



J Comb Optim (2011) 21: 219–246 221

1996; Caprara and Rizzi 1998; Plantholt 1999; Sanders and Steurer 2008; Favrholdt
et al. 2006; Scheide 2007). (For more related work and references, we refer the
reader to Kahn 1996; Jensen and Toft 1994; Schrijver 2003, and Favrholdt et
al. 2006.) Let G be a multigraph. Goldberg (1973, 1984) showed that χ ′(G) ≤
max{	(9�(G) + 6)/8
, ��(G)�}. Nishizeki and Kashiwagi (1990) proved that

χ ′(G) ≤ max{	 11�(G)+8
10 
, ��(G)�}; a shorter proof of this theorem can be found

in Tashkinov (2000). This bound has recently been improved to max{	(13�(G) +
10)/12
, ��(G)�} by Favrholdt et al. (2006), and further to max{	(15�(G) +
12)/14
, ��(G)�} by Scheide (2007). Conjecture 1.1 was proved by Seymour (1990)
for K4-free graphs, by Marcotte (1990, 1990) for multigraphs with no K−

5 -minors,
and by Plantholt and Tipnis (1991) for multigraphs with sufficiently high maxi-
mum degree (relative to |V (G)| and μ(G)). Sanders and Steurer (2008) showed
that for any ε > 0 there is a polynomial time algorithm (dependent on ε) for edge-
coloring any multigraph G using at most (1 + ε)χ ′(G) + O(1/ε) colors. Also,
Plantholt (1999) proved that χ ′(G) ≤ χ ′∗(G) + 1 + √|V (G)| log |V (G)|/10 when
|V (G)| is sufficiently large, and pointed out that his proof does not give a polyno-
mial time coloring algorithm. On the other hand, using a sophisticated probabilis-
tic argument, Kahn (1996) proved that for any c > 0 there exists D > 0 such that
χ ′(G) ≤ χ ′∗(G) + cχ ′∗(G) when χ ′∗(G) > D.

The purpose of this paper is to establish the following result.

Theorem 1.3 For any multigraph G, χ ′(G) ≤ max{�(G) + √
�(G)/2, ��(G)�}.

This result was obtained independently by Scheide (2007) using a different ap-
proach. Note that Theorem 1.3 holds trivially when �(G) ≤ 2. So throughout the rest
of this paper, we may assume �(G) ≥ 3 when needed.

As an immediate consequence of Theorem 1.3, Conjecture 1.1 holds for multi-
graphs G with χ ′(G) > 	�(G) + √

�(G)/2
. When �(G) is large, Theorem 1.3
improves the above mentioned result of Scheide. Since χ ′∗(G) ≥ �(G), χ ′(G) ≤
χ ′∗(G) + √

χ ′∗(G)/2. Hence, our result also implies the above mentioned results of
Kahn and of Plantholdt (when �(G) ≤ |V (G)| log |V (G)|).

Let G be a graph whose edges are properly colored. Following (Jensen and Toft
1994), an interchange with respect to (distinct) colors α and β consists in swapping
the colors on the edges in a component of the subgraph of G induced by all edges
with color α or β . In 1964, Vizing (1964) (also see Jensen and Toft 1994) asked the
following “interchange” problem.

Problem 1.4 Is it true that if χ ′(G) ≥ �(G) + 2 then given any edge-coloring of a
multigraph G one can obtain an optimal edge-coloring through a sequence of inter-
changes?

Our proof of Theorem 1.3 implies that the answer to Problem 1.4 is in the affirma-
tive for multigraphs G with χ ′(G) ≥ �(G) + √

�(G)/2.

Corollary 1.5 Let G be a multigraph with χ ′(G) ≥ �(G) + √
�(G)/2. Then given

any edge-coloring of G one can obtain an optimal edge-coloring through a sequence
of interchanges.
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The proof technique we use is a generalization of Vizing’s recoloring technique
via interchanges. Recall Vizing’s “fan sequence” (or “star”) argument for proving that
χ ′(G) ∈ {�(G),�(G) + 1} when G is a simple graph. Take a partial edge-coloring
of G using �(G) + 1 colors (partial means that there may be uncolored edges), and
pick an uncolored edge, say ab1. From the edge ab1, grow a fan (also known as star).
Each time, we add a colored edge abi (i ≥ 2) whose color is missing at bi−1 (i.e., not
used by any edge incident with bi−1). Since the graph is simple, this process must
stop and give some “augmenting set” {a, b1, . . . , bk} (namely, two of its vertices have
a common missing color). By applying an appropriate recoloring argument (a se-
quence of interchanges), we may produce a partial edge-coloring in which there is a
color, say α, missing at both a and b1, and we may then augment the set of colored
edges by coloring ab1 with α. Continuing this process until all edges are colored, we
obtain a (�(G) + 1)-edge-coloring of G. This recoloring scheme works because the
graph is simple and because there are colors missing at every vertex.

When studying extremal graphs for the above mentioned Vizing–Gupta bound,
Kierstead (1984) used a similar process by growing a path instead of a star.

Tashkinov’s approach in (Tashkinov 2000) for edge-coloring multigraphs gener-
alizes the recoloring techniques of Vizing and Kierstead. Instead of growing a star
or a path, a tree is grown from an uncolored edge ab; each time an edge is added to
the tree, the color of that edge must be missing at some previous vertex in the tree.
If the vertex set of the tree is “augmenting” then the edge-coloring can be modified
through a complex recoloring procedure so that the edge ab may be colored (without
introducing a new color). If the growing process stops and the tree is not augmenting,
then Tashkinov shows that the tree is small enough so that a case analysis can be
carried out (but for this to work one needs at least (11�(G) + 8)/10 colors).

To prove Theorem 1.3, we need to grow a tree that is more complex than Tashki-
nov’s, called VKT-trees (VKT stands for Vizing–Kierstead–Tashkinov). We start with
Tashkinov’s process. The key is to grow the tree when Tashkinov’s process stops. In
other words, when there is no choice we add to our tree an edge whose color is not
missing at previous vertices of the tree. (Similar idea was also discussed in Favrholdt
et al. 2006.) However, we need to pick such an edge carefully (called “connecting”
edge). As we shall see, when we have at least �(G) + √

�(G)/2 colors, the number
of connecting edges is less than

√
�(G)/2, and we can grow the tree in a way so that

a recoloring argument can be used either to color more edges (without introducing a
new color) or to show that the number of colors used so far is less than ��(G)� (and
hence we are free to introduce a new color).

The VKT-trees will be defined in Sect. 2, where we also prove several simple
properties about these trees. In particular, we show that if a VKT-tree cannot be grown
further, then the number of colors used so far is less than ��(G)�. We also introduce
two partial orderings on VKT-trees, to be used as measurements of VKT-trees after
interchanges. In Sect. 3, we prove several recoloring lemmas using VKT-trees. We
also show that when the number of colors is sufficiently large, one can choose colors
satisfying certain properties (to be used to avoid certain colors during a recoloring
process). In Sect. 4, we prove recoloring lemmas that transfer “bad” augmenting pairs
to “good” ones, and use them to deal with VKT-trees containing augmenting pairs. In
Sect. 5, we show how to deal with VKT-trees with no augmenting pairs, and complete
the proofs of Theorem 1.3 and Corollary 1.5.



J Comb Optim (2011) 21: 219–246 223

2 VKT-trees

We begin with a few concepts and notation. Let G be a graph. For S ⊆ V (G), we
use G − S to denote the graph obtained from G by deleting S and the edges of G

incident with S, and we use [S,G − S] to denote the set of edges of G with exactly
one end in S. For S ⊆ E(G), G − S is the graph obtained from G by deleting S. If
S = {s}, then we simply write G − s instead of G − {s}. For S ⊆ V (G) ∪ E(G),
we use G[S] to denote the subgraph of G with V (G[S]) = (S ∩ V (G)) ∪ {u :
u is incident with an edge in S} and E(G[S]) = (S ∩ E(G)) ∪ {uv ∈ E(G) : {u,v} ⊆
S ∩ V (G)}. When S ⊆ V (G) or S ⊆ E(G), G[S] is just the subgraph of G induced
by S in the usual sense. If S = {x1, . . . , xp} then we also write G[x1, . . . , xp] instead
of G[S]. For any subgraph T of G, we write G[T ] instead of G[V (T )], G − T in-
stead of G − V (T ), and [T ,G − T ] instead of [V (T ),G − V (T )]. For H ⊆ G and
S ⊆ E(G), we use H + S to denote the subgraph of G obtained from H by adding S

and all incident vertices. When S = {s}, we simply write H + s.
Let G be a graph and C a set of colors. A partial edge-coloring of G using colors

from C is a function c : S → C , where S ⊆ E(G), such that for any e, f ∈ S, c(e) �=
c(f ) whenever e and f are adjacent in G. The set S is usually denoted by EG(c),
or E(c) when G is understood. If |C| = k, then c is called a partial k-edge-coloring
of G. When E(c) = E(G), then c is just an edge-coloring of G in the usual sense.
Throughout this paper, the letter c (with or without subscripts or superscripts) will
be used to name partial edge-colorings; and lowercase Greek letters (with or without
subscripts) will be used to denote colors.

Let G be a graph and let c be a partial edge-coloring of G, using colors from
the collection of colors C . For any distinct α,β ∈ C , we define Gc(α,β) := G[{e ∈
E(c) : c(e) ∈ {α,β}}]; and write G(α,β) := Gc(α,β) when c is understood. The
components of G(α,β) are paths or cycles. For any component D of Gc(α,β), we
say that the partial edge-coloring c′ of G is obtained from c by an interchange on
D (or interchanging D) if c′(e) = c(e) for all e ∈ E(c) − E(D), c′(e) = α for all
e ∈ E(D) with c(e) = β , and c′(e) = β for all e ∈ E(D) with c(e) = α. For any
x ∈ V (G), we use MC,c(x) to denote the set of colors in C that are not used by any
edge incident with x. Usually, C will be fixed; so we often write Mc(x) instead of
MC,c(x), which stands for the set of colors missing at x. For a subgraph H of G, we
write Mc(H) := ⋃

x∈V (H) Mc(x) and c(H) = {c(e) : e ∈ E(H)}.

Definition 2.1 Let G be a graph, and let c be a partial edge-coloring of G. The
nonempty set S ⊆ V (G) is said to be nonaugmenting with respect to c if, for any
distinct x, y ∈ S, Mc(x) ∩ Mc(y) = ∅; and augmenting with respect to c otherwise.
(This concept was implicit in (Vizing 1964) and (Goldberg 1984).) We say that the
set S ⊆ V (G) is critical with respect to c if

(i) for any color α ∈ Mc(S), no edge in [S,G − S] uses the color α, and
(ii) for any color α /∈ Mc(S), at most one edge in [S,G − S] uses the color α.

Proposition 2.2 Let G be a graph, let c be a partial k-edge-coloring of G, and
let S ⊆ V (G). Suppose Mc(S) �= ∅ and S is both nonaugmenting and critical (with
respect to c). Then �(G[S]) ≥ k.
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Proof Let α be an arbitrary color used by c. Suppose α ∈ Mc(S). Then, because S

is critical with respect to c, no edge in [S,G − S] uses color α. Since S is nonaug-
menting with respect to c, α ∈ Mc(x) for a unique x ∈ S. Therefore, G[S] − x has a
perfect matching whose edges are all colored with α. In particular, |S| is odd.

Now assume α /∈ Mc(S). Then because S is critical with respect to c and |S| is odd,
exactly one edge in [S,G − S] uses color α. Let uv be the unique edge in [S,G − S]
such that u ∈ S and c(uv) = α. Then G[S] − u has a perfect matching whose edges
are colored α.

Therefore, we see that E(G[S]) contains a union of k edge-disjoint matchings of
size (|S| − 1)/2. So �(G[S]) ≥ k. �

We say that (G,ab, c) is a triple if G is a connected graph, c is a partial edge-
coloring of G, and ab ∈ E(G) − E(c). If, in addition, c is a partial k-edge-coloring,
then (G,ab, c) is said to be a k-triple. We now define the VKT-trees to be used to
prove Theorem 1.3. Note that condition (ii) in this definition describes which edge
can be added in order to grow our tree when Tashkinov’s process stops. By a path
from a vertex u to an edge e, we mean a path from u to an end of e but not containing
the other end of e.

Definition 2.3 Let (G,ab, c) be a triple, and let T be a tree in G with edges
e1, . . . , em. We say that (T , c) is a VKT-tree in (G,ab, c) with edge ordering
e1, . . . , em if

(i) e1 = ab, {e2, . . . , em} ⊆ E(c), and, for each 1 ≤ i ≤ m, Ti := T [e1, . . . , ei] is a
tree, and

(ii) if c(ei) /∈ Mc(Ti−1) (for each 2 ≤ i ≤ m), then
(a) c(e) /∈ Mc(Ti−1) for all e ∈ E(c) ∩ [Ti−1,G − Ti−1],
(b) at least two edges in [Ti−1,G − Ti−1] use the color c(ei), and
(c) if S0(T , c) denotes the maximal sequence (e1, . . . , ek) such that c(ej ) ∈

Mc(Tj−1) for 2 ≤ j ≤ k, and if V0(T , c) denotes the set of vertices incident
with edges in S0(T , c), then there exist xi ∈ V0(T , c) and αi ∈ Mc(xi)−c(Ti)

such that G[Ti] ∩ Gc(αi, c(ei)) contains a path from xi to ei .

If, in addition, c(e) /∈ Mc(T ) for each e ∈ E(c)∩ [T ,G−T ], then (T , c) is said to be
complete. Any edge ei with c(ei) /∈ Mc(Ti−1) is said to be connecting in (T , c). Note
that whenever c(ei) /∈ Mc(Ti−1), V0(T , c) ⊆ V (Ti−1). A pair of distinct vertices, say
{x, y}, in (T , c) is said to be divided if there is a connecting edge ei such that x, y

belong to different components of T − ei ; and is undivided otherwise. For notational
simplicity, we also write T0 := ∅ and c(e1) ∈ Mc(T0).

Note that because of (a) the path in G[Ti] ∩Gc(αi, c(ei)) is contained in G[Ti−1].
Before introducing further concepts related to VKT-trees, we make two simple ob-
servations, which should help the reader digest the concept of VKT-trees. The first
observation says that any “rooted” subtree of a VKT-tree is also a VKT-tree.

Lemma 2.4 Let (G,ab, c) be a triple, and let (T , c) be a VKT-tree in (G,ab, c) with
edge ordering e1, . . . , em. Then, for each 1 ≤ s ≤ m, (Ts, c) is also a VKT-tree in
(G,ab, c), and any edge of Ts is connecting in (Ts, c) iff it is connecting in (T , c).



J Comb Optim (2011) 21: 219–246 225

Proof Clearly, T1 (with only one edge e1) satisfies Definition 2.3(i), and Defini-
tion 2.3(ii) does not apply to T1. So (T1, c) is a VKT-tree in (G,ab, c). Now as-
sume s ≥ 2. Note that for each 1 ≤ i ≤ s, Ti is a subtree of T . Since e1 /∈ E(c) and
{e2, . . . , es} ⊆ E(c), (Ts, c) satisfies Definition 2.3(i).

To show that Definition 2.3(ii) holds for (Ts, c), we pick an arbitrary edge ei ,
2 ≤ i ≤ s, and assume c(ei) /∈ Mc(Ti−1). Then S0(Ts, c) = S0(T , c) and V0(Ts, c) =
V0(T , c). Since (T , c) is a VKT-tree in (G,ab, c), it follows from Definition 2.3(ii)
that (a) for any e ∈ E(c) ∩ [Ti−1,G − Ti−1], we have c(e) /∈ Mc(Ti−1), (b) at least
two edges in [Ti−1,G − Ti−1] use the color c(ei), and (c) there exist xi ∈ V0(T , c) =
V0(Ts, c) and αi ∈ Mc(xi) − c(Ti) such that G[Ti] ∩ Gc(αi, c(ei)) contains a path
from xi to ei .

So (Ts, c) is also a VKT-tree in (G,ab, c). Clearly, any edge of Ts is connecting
in (Ts, c) iff it is connecting in (T , c). �

The next observation shows when a VKT-tree may be extended by adding an edge.

Lemma 2.5 Let (G,ab, c) be a triple, let (T , c) be a VKT-tree in (G,ab, c) with
edge ordering e1, . . . , em, and let e ∈ E(c) ∩ [T ,G − T ]. Suppose either

(a) c(e) ∈ Mc(T ), or
(b) c(e) /∈ Mc(T ), (T , c) is complete, at least two edges in [T ,G − T ] use the

color c(e), and there exist x ∈ V0(T , c) and α ∈ Mc(x) − c(T + e) such that
G[T + e] ∩ Gc(α, c(e)) contains a path from x to e.

Then (T + e, c) is a VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, e, and any
edge of T is connecting in (T , c) iff it is connecting in (T + e, c).

Proof Because e ∈ E(c)∩[T ,G−T ], T +e with edge ordering e1, . . . , em, e satisfies
Definition 2.3(i). To prove that (T + e, c) also satisfies Definition 2.3(ii), choose an
arbitrary edge ei with 1 ≤ i ≤ m + 1 where em+1 = e, and assume c(ei) /∈ Mc(Ti−1).

Since (T , c) is a VKT-tree in (G,ab, c), the following holds when i ≤ m: For
any f ∈ E(c) ∩ [Ti−1,G − Ti−1] we have c(f ) /∈ Mc(Ti−1); at least two edges
in [Ti−1,G − Ti−1] use the color c(ei); and there exist xi ∈ V0(T , c) and αi ∈
Mc(xi) − c(Ti) such that G[Ti] ∩ Gc(αi, c(ei)) contains a path from xi to ei . So
Definition 2.3(ii) holds when i ≤ m.

If (a) occurs then Definition 2.3(ii) does not apply to em+1; and in this case,
(T +e, c) is a VKT-tree in which e is not connecting. If (b) occurs then S0(T +e, c) =
S0(T , c) and V0(T + e, c) = V0(T , c), and Definition 2.3(ii) holds for em+1. There-
fore, (T + e, c) is a VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, e. Clearly,
any edge of T is connecting in (T , c) iff it is connecting in (T + e, c). �

Note that if (a) occurs then e is not connecting in (T + e, c); and if (b) occurs then
e is connecting in (T + e, c). We now extend the concept of nonaugmenting set to
VKT-trees.

Definition 2.6 Let (G,ab, c) be a triple, and let (T , c) be a VKT-tree in (G,ab, c).
We say that (T , c) is augmenting if there exist two distinct vertices x, y of T forming
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an augmenting pair in (T , c), i.e., Mc(x) ∩ Mc(y) �= ∅. The augmenting pair {x, y}
is said to be good if there exists α ∈ Mc(x) ∩ Mc(y) such that α is not used by
any connecting edge in (T , c). We say that (T , c) is nonaugmenting if (T , c) is not
augmenting.

The following observation is a direct consequence of Definition 2.6 and Lem-
ma 2.4.

Lemma 2.7 Let (G,ab, c) be a triple and let (T , c) be a nonaugmenting VKT-tree
in (G,ab, c) with edge ordering e1, . . . , em. Then for any 1 ≤ s ≤ m, (Ts, c) is a
nonaugmenting VKT-tree in (G,ab, c).

We shall see in Sect. 5 that the existence of an augmenting pair in (T , c) will enable
us to augment the set of colored edges (without introducing a new color) through a
sequence of interchanges, or to augment (T , c) in a certain way.

Next we extend the concept of critical set to VKT-trees.

Definition 2.8 Let (G,ab, c) be a triple and let (T , c) be a VKT-tree in (G,ab, c).
We say that (T , c) is critical if

(i) (T , c) is complete, and
(ii) for any α /∈ Mc(T ), precisely one edge in E(c) ∩ [T ,G − T ] uses the color α.

The next lemma describes a situation where a new color should be introduced.

Lemma 2.9 Let (G,ab, c) be a k-triple and let (T , c) be a VKT-tree in (G,ab, c).
Suppose (T , c) is both nonaugmenting and critical. Then k < �(G[T ]) ≤ χ ′(G).

Proof By definition, �(G[T ]) ≤ �(G) ≤ χ ′(G). Note that V (T ) is both nonaug-
menting and critical. So by Proposition 2.2 and since ab is not colored, �(G[T ] −
ab) ≥ k. Hence, �(G[T ]) > k. �

We now introduce further concepts about VKT-trees, which are needed to define
two partial orderings of VKT-trees.

Definition 2.10 Let (G,ab, c) be a triple and let (T , c) be a VKT-tree in G with edge
ordering e1, . . . , em. The vertex incident with em but not in Tm−1 is called the top
of (T , c). Let 0 ≤ r ≤ m with r minimum such that T [er+1, . . . , em] is a path. Define
C(T , c) := Tr (the center of (T , c)), and B(T , c) := T [er+1, . . . , em] (the branch of
(T , c)). The VKT-tree (T , c) can be divided into segments according to its connecting
edges:

• If there is no connecting edge in (T , c) then S0(T , c) = (e1, . . . , em) and let
S(T , c) = ∅;

• otherwise let ei1, . . . , ein be the connecting edges in (T , c) (2 ≤ i1 < · · · < in ≤ m),
then S0(T , c) = (e1, . . . , ei1−1); and we define
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– S(T , c) := (e1, . . . , ein),
– Sj (T , c) := (eij , . . . , eij+1−1) for 1 ≤ j ≤ n − 1, and
– Sn(T , c) := (ein , . . . , em).

For 0 ≤ j ≤ n, we call Sj (T , c) the j th segment of (T , c). We also call Sn(T , c) the
last segment of (T , c), and ein the last connecting edge in (T , c).

We conclude this section by defining two partial orders <1 and <2 on VKT-trees
in triples. These partial orders will be used to measure whether we have “reduced”
or “augmented” a given VKT-tree (T , c) to a new VKT-tree (T ′, c′). The sequence
(a1, . . . , am) is a truncation of the sequence (b1, . . . , bn) if m ≤ n and ai = bi for
all 1 ≤ i ≤ m; and if m < n then (a1, . . . , am) is said to be a proper truncation of
(b1, . . . , bn).

Definition 2.11 Let (G,ab, c) and (G,ab, c′) be two triples such that E(c) = E(c′),
and c and c′ use the same set of colors. Let (T , c) and (T ′, c′) be VKT-trees in
(G,ab, c) and (G,ab, c′), respectively.

• We write (T ′, c′) <1 (T , c) if either
(i) C(T ′, c′) is a proper subgraph of C(T , c), or

(ii) C(T , c) = C(T ′, c′) and B(T ′, c′) is a proper subgraph of B(T , c).
• We write (T , c) <2 (T ′, c′) if there exists an integer p ≥ 0 such that

(i) Sp(T , c) is not the last segment of (T , c),
(ii) Sj (T , c) = Sj (T

′, c′) for 0 ≤ j ≤ p − 1, and
(iii) Sp(T , c) is a proper truncation of Sp(T ′, c′).

Note that when (T , c) <2 (T ′, c′), (T , c) must have a connecting edge (since
Sp(T , c) is not the last segment of (T , c)); and for any edge in

⋃p

j=0 Sj (T
′, c′), it

is connecting in (T ′, c′) iff it is connecting in (T , c). It is easy to verify that <1 and
<2 induce partial orderings on VKT-trees in triples. The partial order <1 is implicitly
used in (Tashkinov 2000). Note that when (T ′, c′) <1 (T , c), T ′ need not be a subtree
of T , but C(T ′, c′) is always a truncation of (T , c).

3 Interchange lemmas

In this section we prove several lemmas concerning the effect on VKT-trees when
interchanges are performed. Our first interchange lemma is a simple observation,
which describes a situation where an interchange preserves connecting edges.

Lemma 3.1 Let (G,ab, c) be a triple, and let (T , c) be a VKT-tree in (G,ab, c) with
edge ordering e1, . . . , em. Let α,β be distinct colors used by c, let A be a component
of Gc(α,β) such that A ⊆ G − Tm−1, and let c′ be the partial edge-coloring of G

obtained from c by interchanging A. Then

(1) (T , c′) is a VKT-tree in (G,ab, c′) with edge ordering e1, . . . , em, and
(2) any edge of T is connecting in (T , c′) iff it is connecting in (T , c).
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Proof Clearly, (T , c′) = (T , c), with edge ordering e1, . . . , em, satisfies Defini-
tion 2.3(i). Since A ⊆ G − Tm−1, Mc′(x) = Mc(x) for all x ∈ V (Tm−1) and c′(e) =
c(e) for all e /∈ G − Tm−1. Thus, Definition 2.3(ii)(a) and Definition 2.3(ii)(b)
hold whenever c′(ei) /∈ Mc′(Ti−1). Moreover, for 1 ≤ i ≤ m, c′(ei) ∈ Mc′(Ti−1) iff
c(ei) ∈ Mc(Ti−1). So (2) holds, S0(T , c) = S0(T , c′), and V0(T , c) = V0(T , c′).

To show that (T , c′) also satisfies Definition 2.3(ii)(c), assume c′(ei) /∈ Mc′(Ti−1).
Then c(ei) /∈ Mc(Ti−1). Since (T , c) is a VKT-tree, there exist xi ∈ V0(T , c′) =
V0(T , c) and αi ∈ Mc′(xi) − c′(Ti) = Mc(xi) − c(Ti) such that G[Ti] ∩ Gc′(αi,

c′(ei)) = G[Ti] ∩ Gc(αi, c(ei)) contains a path from xi to ei . So Definition 2.3(ii)(c)
holds for (T , c′). Hence (T , c′) is a VKT-tree in (G,ab, c′), and (1) holds. �

The following lemma will enable us to avoid certain parts of a VKT-tree when
performing interchanges.

Lemma 3.2 Let (G,ab, c) be a triple, and let (T , c) be a VKT-tree in (G,ab, c) with
edge ordering e1, . . . , em. Suppose x ∈ V0(T , c) and α ∈ Mc(x) − c(T ). Then one of
the following holds.

(1) For each connecting edge es in (T , c) and for each color β /∈ Mc(Ts−1), the
component of Gc(α,β) containing x contains all edges in [Ts−1,G − Ts−1] with
color β .

(2) There exists a partial k-edge-coloring c′ of G obtained from c by an interchange
and there is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

Proof Suppose (1) fails. Then there exist some connecting edge es in (T , c), a color
β /∈ Mc(Ts−1), and an edge e ∈ [Ts−1,G − Ts−1] such that c(e) = β , and e is not
contained in the component of Gc(α,β) containing x. We choose such es that s is
minimum. Thus, if 1 ≤ i < s and ei is a connecting edge in (T , c), then for any
γ /∈ Mc(Ti−1) and for any f ∈ [Ti−1,G−Ti−1] with c(f ) = γ , f is contained in the
component of Gc(α,γ ) containing x.

Let D denote the component of Gc(α,β) containing e, and let c′ denote the partial
k-edge-coloring of G obtained from c by interchanging D.

Suppose es is the first connecting edge in (T , c). Then since β /∈ Mc(Ts−1),
β /∈ c(Ts−1). So {α,β} ∩ c(Ts−1) = ∅. Hence for 1 ≤ i ≤ s − 1, c′(ei) = c(ei) ∈
Mc(Ti−1) − {α,β} = Mc′(Ti−1) − {α,β}. So by repeatedly applying Lemma 2.5(a),
(Ts−1, c

′) is a VKT-tree in (G,ab, c′) (with no connecting edge). Since c′(e) = α ∈
Mc(x) = Mc′(x) ⊆ Mc′(Ts−1), it follows from Lemma 2.5(a) that (Ts−1 + e, c′) is a
VKT-tree in (G,ab, c′) (with no connecting edge), and (2) holds with T ′ := Ts−1 +e.

Thus we may assume that et is the connecting edge in (T , c) immediately preced-
ing es . Then by the minimality of s and since α ∈ Mc(V0(T , c)), D ⊆ G − Tt−1.
So by Lemma 3.1, (Tt , c

′) is a VKT-tree in (G,ab, c′), and any edge of Tt−1 is
connecting in (Tt−1, c

′) iff it is connecting in (T , c). Since et and es are consec-
utive connecting edges in (T , c), c(ej ) ∈ Mc(Tj−1) for t + 1 ≤ j ≤ s − 1. Since
β /∈ Mc(Ts−1) and α /∈ c(T ), {α,β} ∩ {c(ej ) : t + 1 ≤ j ≤ s − 1} = ∅. Then c′(ej ) =
c(ej ) ∈ Mc(Tj−1)−{α,β} = Mc′(Tj−1)−{α,β} for t +1 ≤ j ≤ s −1. So by repeat-
edly applying Lemma 2.5(a), we see that (Ts−1 + e, c′) is a VKT-tree in (G,ab, c′);
and (2) holds with T ′ := Ts−1 + e. �
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The next lemma says that if the last edge of an augmenting VKT-tree is connecting,
then this VKT-tree can be augmented through <2.

Lemma 3.3 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be

a VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c),
and assume that m ≥ 2, (Tm−1, c) is nonaugmenting, and y is in an augmenting pair
in (T , c). Then one of the following holds.

(1) em is not a connecting edge in (T , c).
(2) There is a partial k-edge-coloring c′ of G obtained from c by a sequence of at

most two interchanges and there is a VKT-tree (T ′, c′) in (G,ab, c′) such that
(T , c) <2 (T ′, c′).

Proof Suppose em is a connecting edge in (T , c). Let x ∈ V0(T , c) and αm ∈ Mc(x)−
c(T ) such that G[T ] ∩ Gc(αm, c(em)) contains a path, say Pm, from x to em.

We may assume αm ∈ Mc(y). For otherwise, let α ∈ Mc(y) ∩ Mc(Tm−1) −
{αm} (since (Tm−1, c) is nonaugmenting and y is contained in an augmenting pair
in (T , c)). Since em is connecting in (T , c), no edge in [Tm−1,G − Tm−1] uses the
colors α or αm. Thus the component A of Gc(α,αm) containing y is contained in
G − Tm−1. Let c′ denote the partial edge-coloring of G obtained from c by inter-
changing A. By Lemma 3.1, (T , c′) is a VKT-tree in (G,ab, c′) with edge order-
ing e1, . . . , em, and αm ∈ Mc′(y) ∩ Mc′(x). Since A ⊆ G − Tm−1, Pm is a path in
G[T ] ∩ Gc′(αm, c′(em)) from x to em, and we may simply use c′ instead of c.

Therefore, since αm ∈ Mc(y), Pm is a component of Gc(αm, c(em)). So there is
a component of Gc(αm, c(em)), say D, intersecting [Tm−1,G − Tm−1] and disjoint
from Pm. We may assume that whenever ei is a connecting edge in (T , c) and i < m,
Pm contains all edges in [Ti−1,G − Ti−1] with the color c(em); for, otherwise, by
Lemma 3.2, (2) holds. Thus E(D ∩ T ) = ∅.

Let c′ denote the partial edge-coloring obtained from c by interchanging D. Since
E(D ∩ T ) = ∅ and either D is a cycle or both ends of D are contained in G − Tm−1,
c′(ei) = c(ei) for 1 ≤ i ≤ m, and Mc′(v) = Mc(v) for all v ∈ V (Tm−1).

If no ei , i < m, is connecting in (T , c), then clearly (Tm−1, c
′) is a VKT-tree

without connecting edges. Now suppose that there exists a maximum s such that s <

m and es is a connecting edge in (T , c). Then c′(ej ) ∈ Mc′(Tj−1) for s + 1 ≤ j ≤ m.
Since Pm contains all edges in [Ts−1,G−Ts−1] with the color c(em), D ⊆ G−Ts−1.
Hence, by Lemma 3.1, (Ts, c

′) is a VKT-tree in (G,ab, c′), and any edge of Ts is
connecting in (Ts, c

′) iff it is connecting in (T , c). By Lemma 2.5(a), we see that
(Tm−1, c

′) is a VKT-tree in (G,ab, c′).
Let e ∈ E(D) ∩ [Tm−1,G − Tm−1]. Then c′(e) = αm ∈ Mc′(xm). So by Lem-

ma 2.5(a), (Tm−1 + e, c′) is a VKT-tree in (G,ab, c′). Clearly, (T , c) <2 (Tm−1 +
e, c′); and so (2) holds with T ′ := Tm−1 + e. �

The next result is a key lemma, which shows the effect that certain interchanges
have on the location of augmenting pairs. This will be used to augment the set of
colored edges (through <1) or to “augment” a VKT-tree (through <2). The condi-
tions {α,β}∩Mc′(x)∩Mc′(z) �= ∅ and {α,β}∩Mc′(y)∩Mc′(z) �= ∅ in (1) and (3) in
the lemma will ensure that when χ ′(G) ≥ �(G) + √

�(G)/2 we can avoid certain
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colors in our recoloring process. Also note that the VKT-tree (Tq, c′) in (1) satisfies
(Tq, c′) <1 (T , c); but it is stated in this explicit form for the convenience of applica-
tions (this comment applies to several other lemmas as well).

Lemma 3.4 Let (G,ab, c) be a triple, let (T , c) be a VKT-tree in (G,ab, c) with
edge ordering e1, . . . , em, and let y be the top of (T , c). Let x ∈ V (Tt − Tt−1) and
z ∈ V (Ts − Ts−1), where s �= t and 1 ≤ s, t ≤ m − 1, and let q := max{s, t}. Suppose
α ∈ Mc(x) ∩ Mc(y) and β ∈ Mc(z) such that β �= α and {α,β} ∩ c(Tq) = ∅. Then
one of the following holds.

(1) There exists a component A of Gc(α,β) such that |V (A) ∩ {x, z}| = 1, and if c′
denotes the partial edge-coloring of G obtained from c by interchanging A, then
{α,β} ∩ Mc′(x) ∩ Mc′(z) �= ∅, (Tq, c′) is a VKT-tree in (G,ab, c′), and any edge
of Tq is connecting in (Tq, c′) iff it is connecting in (T , c).

(2) There exists a partial edge-coloring c′ of G obtained from c by an interchange
and there is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

(3) There exists a component A of Gc(α,β) such that V (A) ∩ {x, y, z} �= ∅ and
|V (A) ∩ {x, z}| �= 1, and if c′ denotes the partial edge-coloring of G obtained
from c by interchanging A, then {α,β} ∩ Mc′(y) ∩ Mc′(z) �= ∅, (T , c′) is a VKT-
tree in (G,ab, c′) with edge ordering e1, . . . , em, and any edge of T is connecting
in (T , c′) iff it is connecting in (T , c).

Proof Let A be a component of Gc(α,β) intersecting {x, y, z}, and let c′ denote
the partial edge-coloring of G obtained from c by interchanging A. Note that
Mc′(v) − {α,β} = Mc(v) − {α,β} for all v ∈ V (G). Hence for any 1 ≤ i ≤ m,
Mc′(Ti) − {α,β} = Mc(Ti) − {α,β}. Since V (A) ∩ {x, y, z} �= ∅, A is a path, pos-
sibly trivial. We claim that

(a) for 1 ≤ i ≤ q , c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1), and
(b) if |A ∩ {x, z}| �= 1 then, for 1 ≤ i ≤ m, c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1).

To prove this claim, we choose an arbitrary edge ei , 1 ≤ i ≤ m. First, assume
c(ei) /∈ {α,β}. Then c′(ei) = c(ei), c(ei) ∈ Mc(Ti−1) iff c(ei) ∈ Mc(Ti−1) − {α,β},
and c′(ei) ∈ Mc′(Ti−1) iff c′(ei) ∈ Mc′(Ti−1) − {α,β}. Therefore, since Mc(Ti−1) −
{α,β} = Mc′(Ti−1) − {α,β}, c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1). Now assume
c(ei) ∈ {α,β}. Then i ≥ q + 1 (by assumption). In particular, (a) holds. To see that
(b) holds, let us assume |A ∩ {x, z}| �= 1. Then {α,β} ⊆ Mc′({x, z}) ⊆ Mc′(Tq).
Since i ≥ q + 1, c′(ei) ∈ {α,β} ⊆ Mc′(Tq) ⊆ Mc′(Ti−1). So c(ei) ∈ Mc(Ti−1) iff
c′(ei) ∈ Mc′(Ti−1), completing the proof of this claim.

Since {α,β} ∩ c(Tq) = ∅ and {α,β} ⊆ Mc(Tq), no connecting edge in (T , c) uses
the color α or β . Hence, if ei is a connecting edge in (T , c), then for any e ∈ E(c) ∩
[Ti−1,G − Ti−1], c(e) = c(ei) implies c′(e) = c(e). Thus

(c) (T , c′) with edge ordering e1, . . . , em satisfies Definition 2.3(ii)(b).

Next, we show that we may assume that A may be chosen so that

(d) (T , c′) with edge ordering e1, . . . , em satisfies Definition 2.3(ii)(c).
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Since (T , c) is a VKT-tree in (G,ab, c), for each connecting edge ei there exist xi ∈
V0(T , c) and αi ∈ Mc(xi) − c(Ti) such that G[Ti] ∩ Gc(αi, c(ei)) contains a path
from xi to ei .

Clearly, if α,β /∈ Mc(V0(T , c)) then, since no connecting edge in (T , c) uses α

or β , for each connecting edge ei , G[Ti] ∩ Gc′(αi, c
′(ei)) = G[Ti] ∩ Gc(αi, c(ei))

contains a path from xi to ei ; and in this case, we may choose A to be any component
of Gc(α,β) with V (A) ∩ {x, y, z} �= ∅.

If {α,β} ⊆ Mc(V0(T , c)), then for any connecting edge ei , no edge in [Ti−1,G −
Ti−1] uses α or β; and hence, we may choose A to be the component of Gc(α,β)

containing y (so A ⊆ G − Ti−1 whenever ei is a connecting edge, and (d) holds).
Now suppose α ∈ Mc(v) (with v ∈ V0(T , c)) and β /∈ Mc(V0(T , c)). By Lem-

ma 3.2, either (2) holds, or for each connecting edge ei in (T , c), the component of
Gc(α,β) containing v contains all edges in [Ti−1,G − Ti−1] with color β . We thus
may assume the latter. Then we may choose A to be the component not containing v

but containing one of {x, y} such that A ⊆ G − Ti−1 for all connecting edges ei ; and
(d) holds.

The case when β ∈ Mc(V0(T , c)) and α /∈ Mc(V0(T , c)) is similar. So we may
assume (d).

Having taken care of Definition 2.3(ii)(b) and Definition 2.3(ii)(c) for (T , c′), we
now divide the remainder of this proof into two cases.

Case 1 |A ∩ {x, z}| = 1.

Then either Mc′(x) = Mc(x) and (Mc(z) − {β}) ∪ {α} ⊆ Mc′(z), or Mc′(z) =
Mc(z) and (Mc(x) − {α}) ∪ {β} ⊆ Mc′(x). Hence, {α,β} ∩ Mc′(x) ∩ Mc′(z) �= ∅.

Clearly, (Tq, c′) satisfies Definition 2.3(i). Suppose for all 1 ≤ i ≤ q with c′(ei) /∈
Mc′(Ti−1) and for all e ∈ E(c′) ∩ [Ti−1,G − Ti−1], we have c′(e) /∈ Mc′(Ti−1). (In
fact, we need only to check for those e with c′(e) ∈ {α,β}.) Then (Tq, c′) satisfies
Definition 2.3(ii)(a). Hence by (c) and (d), (Tq, c′) is a VKT-tree in (G,ab, c′). By (a),
any edge of Tq is connecting in (Tq, c′) iff it connecting in (T , c). So (1) holds.

We may therefore assume that there exist some i (1 ≤ i ≤ q) and e ∈ E(c′) ∩
[Ti−1,G − Ti−1] such that c′(ei) /∈ Mc′(Ti−1) and c′(e) ∈ Mc′(Ti−1). Choose min-
imum such i. Then by (c) and (d), (Ti−1, c

′) is a VKT-tree in (G,ab, c′). So
by Lemma 2.5(a), (Ti−1 + e, c′) is a VKT-tree in (G,ab, c′), with edge ordering
e1, . . . , ei−1, e. By (a), any edge of Ti−1 +e is connecting in (Ti−1 +e, c′) iff it is con-
necting in (T , c). Thus (T , c) <2 (Ti−1 +e, c′). Hence, (2) holds with T ′ := Ti−1 +e.

Case 2 |A ∩ {x, z}| �= 1.

When |A ∩ {x, z}| = 2, we have (Mc(z) − {β}) ∪ {α} = Mc′(z) and (Mc(x) −
{α}) ∪ {β} = Mc′(x), which implies α ∈ Mc′(y) ∩ Mc′(z). When |A ∩ {x, z}| = 0,
we have y ∈ A. In this case, (Mc(y) − {α}) ∪ {β} ⊆ Mc′(y), Mc′(z) = Mc(z), and
Mc′(x) = Mc(x), which implies β ∈ Mc′(y)∩Mc′(z). In either case, we have {α,β}∩
Mc′(y) ∩ Mc′(z) �= ∅.

Clearly, (T , c′) with edge ordering e1, . . . , em satisfies Definition 2.3(i). Suppose
for all 1 ≤ i ≤ m with c′(ei) /∈ Mc′(Ti−1) and for all e ∈ E(c′) ∩ [Ti−1,G − Ti−1] we
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have c′(e) /∈ Mc′(Ti−1). Then (T , c′) satisfies Definition 2.3(ii)(a). So by (c) and (d),
(T , c′) is a VKT-tree in (G,ab, c′). By (b), any edge of T is connecting in (T , c′) iff
it is connecting in (T , c). Hence, (3) holds.

So we may assume that there exist some i (1 ≤ i ≤ m) and e ∈ E(c′) ∩ [Ti−1,

G − Ti−1] such that c′(ei) /∈ Mc′(Ti−1) and c′(e) ∈ Mc′(Ti−1). (Again, we need
only to check for those e with c′(e) ∈ {α,β}.) Choose minimum such i. Then by (c)
and (d), (Ti−1, c

′) is a VKT-tree in (G,ab, c′). So by Lemma 2.5(a), (Ti−1 + e, c′)
is a VKT-tree in (G,ab, c′), with edge ordering e1, . . . , ei−1, e. By (b), any edge
of Ti−1 + e is connecting in (Ti−1 + e, c′) iff it is connecting in (T , c). Clearly,
(T , c) <2 (Ti−1 + e, c′). Hence, (2) holds with T ′ := Ti−1 + e. �

When we apply Lemmas 3.4, we often want to avoid a certain color, say γ , by
choosing α and β such that γ /∈ {α,β}. This will be possible when we have at least
�(G) + √

�(G)/2 colors; and the next two lemmas will help us achieve this goal.

Lemma 3.5 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be a

VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, and assume that (Tm−1, c) is
nonaugmenting. Then

(1) (T , c) has less than
√

�(G)/2 connecting edges, and
(2) if 2 ≤ t ≤ m − 1 then |Mc(Tt ) − c(T )| ≥ 	√�(G)/2
 + 1.

Proof To prove (1), let s denote the number of connecting edges in (T , c). If s = 0
then (1) holds (note that we assume �(G) ≥ 3). So we may assume s ≥ 1. Since
(Tm−1, c) is nonaugmenting, each segment of (T , c) must be incident with at least
three vertices, except possibly the last segment which is incident with at least two
vertices. So |V (Tm−1)| ≥ 2s + 1. Therefore, k ≥ |Mc(Tm−1)| > (2s + 1)(k − �(G))

(since ab is not colored and (Tm−1, c) is nonaugmenting). This implies that k <

�(G) + �(G)/(2s). If s ≥ √
�(G)/2 then k < �(G) + √

�(G)/2, a contradiction.
So s <

√
�(G)/2, and (1) holds.

Suppose (2) fails. Then all but at most
√

�(G)/2 colors in Mc(Tt ) are used by
some edge in (T , c). Hence, since (Tm−1, c) (and thus (Tt , c)) is nonaugmenting and
ab is not colored,

m − 1 ≥ (t + 1)(k − �(G)) + 2 − √
�(G)/2 ≥ 3(k − �(G)) + 2 − √

�(G)/2

and

|Mc(Tm−1)| ≥ m(k − �(G)) + 2.

So

k ≥ |Mc(Tm−1)| ≥
(
3(k − �(G)) + 3 − √

�(G)/2
)
(k − �(G)) + 2.

Therefore, 3(k − �(G))2 − (
√

�(G)/2 − 2)(k − �(G)) − (�(G) − 2) ≤ 0. Solving
for k − �(G), we deduce k − �(G) <

√
�(G)/2, a contradiction. �

Lemma 3.6 Let (G,ab, c) be a k-triple, let (T , c) be a VKT-tree in (G,ab, c)

with edge ordering e1, . . . , em, and assume that (Tm−1, c) is nonaugmenting. Let
x ∈ V (Tt+1 − Tt ) where 1 ≤ t ≤ m − 2. Then
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(1) if α ∈ Mc(x) and α is not used by any connecting edge in (T , c), then α /∈
c(Tt+1), and

(2) if k ≥ �(G) + √
�(G)/2 then Mc(x) − c(Tt+1) �= ∅.

Proof To prove (1), let us assume for a contradiction that there exists some s,
1 ≤ s ≤ t + 1, such that c(es) = α. Clearly, s �= 1 and s �= t + 1. Hence 2 ≤ s ≤ t .
Since α is not used by any connecting edge in (T , c), α = c(es) ∈ Mc(Ts−1). Let
z ∈ V (Ts−1) such that α ∈ Mc(z). Then {x, z} is an augmenting pair in (Tm−1, c),
a contradiction.

Now suppose Mc(x) ⊆ c(Tt+1). Then by (1), each edge of Tt+1 with color α ∈
Mc(x) must be a connecting edge in (T , c). Therefore, there are at least k − �(G) ≥√

�(G)/2 connecting edges in (T , c), contradicting Lemma 3.5(1). �

4 Working with augmenting pairs

In this section, we prove lemmas concerning VKT-trees with augmenting pairs. First,
we show how to produce a good augmenting pair from any given augmenting pair.

Lemma 4.1 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be a

VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, and let y be the top of (T , c).
Assume m ≥ 2, (Tm−1, c) is nonaugmenting, and y is in an augmenting pair in (T , c).
Then there exists a partial k-edge-coloring c′ of G obtained from c by an interchange
such that one of the following holds.

(1) There exists an integer t , 1 ≤ t ≤ m, such that (Tt , c
′) is a VKT-tree in (G,ab, c′),

(Tt−1, c
′) is nonaugmenting, the top of Tt is contained in a good augmenting pair

in (Tt , c
′), and any edge of Tt is connecting in (Tt , c

′) iff it is connecting in (T , c).
(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

Proof Let x ∈ V (Tt −Tt−1) (1 ≤ t ≤ m−1) such that {x, y} is an augmenting pair in
(T , c). Let α ∈ Mc(y) ∩ Mc(x). We may assume that α is used by some connecting
edge in (T , c), as otherwise (1) holds with t := m and c′ := c. In particular, α ∈ c(T ).
Note that |V0(T , c)| ≥ 3, because (Tm−1, c) is nonaugmenting. So by Lemma 3.5(2),
there exist z ∈ V0(T , c) and β ∈ Mc(z) − (c(T ) ∪ {α}). Let X,Y,Z denote the com-
ponents of Gc(α,β) containing x, y, z, respectively.

We may assume that whenever ei is a connecting edge, Z contains those edges in
[Ti−1,G − Ti−1] that use color α. Otherwise, by Lemma 3.2, (2) holds.

Suppose z /∈ V (X). In this case, X ⊆ G−Ti−1 whenever i ≤ t and ei is a connect-
ing edge in (T , c). (Such ei exists, since α ∈ Mc(x) and α is used by a connecting
edge in (T , c).) In particular, let p ≤ t with p maximum such that ep is a connect-
ing edge in (T , c); then X ⊆ G − Tp−1. Let c′ denote the partial k-edge coloring of
G obtained from c by interchanging X. By Lemma 3.1, (Tp, c′) is a VKT-tree in G

with edge ordering e1, . . . , ep , and any edge of Tp is connecting in (Tp, c′) iff it is
connecting in (T , c). For p < j ≤ t , we have c(ej ) ∈ Mc(Tj−1). Since β /∈ c(T ) and
α ∈ Mc(x) − Mc(Tt−1), we see that c(ej ) /∈ {α,β}; and hence, c′(ej ) ∈ Mc′(Tj−1).
Therefore, by repeatedly applying Lemma 2.5(a), (Tt , c

′) is a VKT-tree in G with
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edge ordering e1, . . . , et , and any edge of Tt is connecting in (Tt , c
′) iff it is connect-

ing in (T , c). Moreover, (Tt−1, c
′) is nonaugmenting, and β ∈ Mc′(x) ∩ Mc′(z). So

(1) holds, since β is not used by any connecting edge in (Tt , c
′).

We thus may assume z ∈ V (X). Then z /∈ V (Y ). Hence, Y ⊆ G − Ti−1 whenever
ei is a connecting edge in (T , c). So let ep be the last connecting edge in (T , c); then
Y ⊆ G − Tp−1. Let c′ denote the partial k-edge coloring of G obtained from c by
interchanging Y . By Lemma 3.1, (Tp, c′) is a VKT-tree in (G,ab, c′), and any edge
of Tp is connecting in (Tp, c′) iff it is connecting in (T , c). Note that α ∈ Mc′(x) and
β ∈ Mc′(z). So for p < j ≤ t , c′(ej ) ∈ Mc′(Tj−1). It then follows from Lemma 2.5(a)
that (T , c′) is a VKT-tree in (G,ab, c′). Since (Tm−1, c) is nonaugmenting, the end of
Y other than y is not in T ; so (Tm−1, c

′) is also nonaugmenting. Now β ∈ Mc′(y) ∩
Mc′(z) and β is not used by any connecting edge in (T , c′). Hence, y is contained in
a good augmenting pair, and (1) holds. �

The next lemma roughly says that if {x, y} is a divided augmenting pair in (T , c),
then (T , c) can be augmented with respect to the partial order <2, or c can be modi-
fied to c′ so that (T , c′) has an undivided augmenting pair.

Lemma 4.2 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be a

VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c), and
assume that m ≥ 2 and (Tm−1, c) is nonaugmenting. Let es be the last connecting
edge in (T , c), let ys be the end of es with ys /∈ Ts−1, and assume that y and a vertex
of Ts−1 form a good augmenting pair in (T , c). Then there exists a partial k-edge-
coloring c′ of G obtained from c by a sequence of at most two interchanges such that
one of the following holds.

(1) (T , c′) is a VKT-tree in (G,ab, c′) with edge ordering e1, . . . , em, (Tm−1, c
′) is

nonaugmenting, {ys, y} is an undivided, good, augmenting pair in (T , c′), and
any edge of T is connecting in (T , c′) iff it is connecting in (T , c).

(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

Proof Let x ∈ V (Ts−1) and α ∈ Mc(x) ∩ Mc(y) such that α is not used by any con-
necting edge in (T , c). Note that s ≥ 3, since V0(T , c) is nonaugmenting. We may
assume s < m, as otherwise (2) holds by Lemma 3.3.

Claim We may assume that x ∈ V0(T , c) and α /∈ c(Ts).

By Lemma 3.5(2), there exist w ∈ V0(T , c) and γ ∈ Mc(w)− c(T ). If γ ∈ Mc(y),
then this claim holds by taking x := w and α := γ . So we may assume γ /∈ Mc(y);
in particular, α �= γ .

Let Y denote the component of Gc(α,γ ) containing y; then Y ⊆ G − Ts−1 (be-
cause no edge in [Ts−1,G− Ts−1] uses the color α or γ ). Since (Tm−1, c) is nonaug-
menting, the end of Y other than y is not in T . Let c∗ denote the partial k-edge-
coloring of G obtained from c by interchanging Y . Then by Lemma 3.1, (Ts, c

∗)
is a VKT-tree in (G,ab, c∗), and any edge of Ts is connecting in (Ts, c

∗) iff it is
connecting in (T , c).
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Note that Mc∗(v) = Mc(v) for all v ∈ V (T − y), γ ∈ Mc∗(y) ∩ Mc∗(w), and γ /∈
c∗(Ts).

For any s + 1 ≤ j ≤ m, if c(ej ) /∈ {α,γ } then c∗(ej ) = c(ej ) ∈ Mc(Tj−1) =
Mc∗(Tj−1) (because es is the last connecting edge in (T , c)), and if c(ej ) ∈ {α,γ }
then c∗(ej ) ∈ {α,γ } ⊆ Mc∗({x,w}) ⊆ Mc∗(Tj−1). Hence, by repeatedly applying
Lemma 2.5(a), (T , c∗) is a VKT-tree in G with edge ordering e1, . . . , em, and es

is also the last connecting edge in (T , c∗). Since (Tm−1, c) is nonaugmenting and
Mc∗(v) = Mc(v) for all v ∈ V (T − y), (Tm−1, c

∗) is nonaugmenting. So this claim
holds by taking c := c∗ and α := γ .

By Lemma 3.6(2), there exists β ∈ Mc(ys) − c(Ts). Since (Tm−1, c) is nonaug-
menting and s < m, β �= α. Let X,Ys,Y denote the components of Gc(α,β) con-
taining x, ys, y, respectively. We may assume that there exists A ∈ {Ys,Y } such that
A ⊆ G − Ts−1; otherwise, (2) holds by Lemma 3.2 and the above claim.

Let c′ denote the partial edge-coloring of G obtained from c by interchanging A.
Then by Lemma 3.1, (Ts, c

′) = (Ts, c) is a VKT-tree in (G,ab, c′), and any edge of
Ts is connecting in (Ts, c

′) iff it is connecting in (T , c).
If A = Ys then α ∈ Mc′(ys) ∩ Mc′(x) and (Ts−1, c

′) is nonaugmenting, and (2)
holds by Lemma 3.3. So we may assume ys /∈ A. Then y ∈ A. Note that β ∈
Mc′(y) ∩ Mc′(ys) and {α,β} ⊆ Mc′({x, ys}). Let s + 1 ≤ i ≤ m. Since es is the last
connecting edge in (T , c), if c(ei) /∈ {α,β} then c′(ei) = c(ei) ∈ Mc(Ti−1)−{α,β} =
Mc′(Ti−1) − {α,β}. On the other hand, if c(ei) ∈ {α,β} then c′(ei) ∈ Mc′({x, ys}) ⊆
Mc′(Ti−1). Hence by repeatedly applying Lemma 2.5(a) (starting from (Ts, c

′)), we
see that (T , c′) is a VKT-tree in (G,ab, c′) with edge ordering e1, . . . , em. Moreover,
any edge of T is connecting in (T , c′) iff it is connecting in (T , c). Since (Tm−1, c)

is nonaugmenting and Y �= Ys , the end of A other than y is not in T . So (Tm−1, c
′) is

also nonaugmenting, and (1) holds. �

The following lemma considers VKT-trees (T , c) in which B(T , c)−C(T , c) con-
tains a good augmenting pair.

Lemma 4.3 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be

a VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c),
and let et+1 = xz (1 ≤ t ≤ m − 1) be an edge of B(T , c) − C(T , c) with x ∈ Tt and
z /∈ Tt . Assume that (Tm−1, c) is nonaugmenting, and {x, y} is a good augmenting
pair in (T , c). Then there exists a partial k-edge-coloring c′ of G obtained from c by
an interchange such that one of the following holds.

(1) There exists a VKT-tree (T ′, c′) in (G,ab, c′) with top y′ such that (T ′, c′) <1
(T , c), (T ′ −y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair
in (T ′, c′), S(T ′, c′) is a truncation of S(T , c), and any edge of T ′ is connecting
in (T ′, c′) iff it is connecting in (T , c).

(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).
(3) (T , c′) is a VKT-tree in (G,ab, c′) with edge ordering e1, . . . , em, (Tm−1, c

′) is
nonaugmenting, {y, z} is a good augmenting pair in (T , c′), and any edge of T

is connecting in (T , c′) iff it is connecting in (T , c).

Proof Let C(T , c) = Tr , where 0 ≤ r ≤ m − 1 and T0 = ∅. Then B(T , c) =
T [er+1, . . . , em]. Since et+1 ∈ B(T , c) − C(T , c), t ≥ r + 1. Since {x, y} is a good
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augmenting pair in (T , c), there exists α ∈ Mc(x) ∩ Mc(y) such that α is not used by
any connecting edge in (T , c). Because (Tm−1, c) is nonaugmenting, it follows from
Lemma 3.6(1) that α /∈ c(Tt ).

We may assume em is not a connecting edge in (T , c). Otherwise, (2) holds by
Lemma 3.3.

Suppose em = xy. Let β := c(em). Since em is not a connecting edge and {x, y} ∩
V (C(T , c)) = ∅, β ∈ Mc(Tm−2). Let A be the component of Gc(α,β) that is induced
by em, and let c′ be the partial k-edge-coloring of G obtained from c by interchanging
A. Note that β ∈ Mc′(x)∩Mc′(Tm−2) and Mc′(v) = Mc(v) for all v ∈ V (Tm−2). Also
note that A ⊆ G − Tm−2. So by Lemma 3.1, (Tm−1, c

′) is a VKT-tree in (G,ab, c′),
and any edge of Tm−1 is connecting in (Tm−1, c

′) iff it is connecting in (T , c). Clearly,
(Tm−1, c

′) <1 (T , c). Note that (Tm−2, c
′) is nonaugmenting, and S(Tm−1, c

′) is a
truncation of S(T , c). Hence (1) holds with T ′ := Tm−1 and y′ := x.

Now suppose em �= xy. Then m ≥ t + 2 and z �= y. By Lemma 3.6(2), we may
choose β ∈ Mc(z) − c(Tt+1). Since (Tm−1, c) is nonaugmenting, β �= α. Note that
c(et+1) /∈ {α,β}. So {α,β} ∩ c(Tt+1) = ∅. Therefore, we may apply Lemma 3.4 with
q := t + 1.

If Lemma 3.4(2) or Lemma 3.4(3) holds, we have (2) or (3), respectively. So
we may assume Lemma 3.4(1) holds. Then (Tt+1, c

′) is a VKT-tree in (G,ab, c′),
{x, z} is a good augmenting pair in (Tt+1, c

′), and any edge of Tt+1 is connect-
ing in (Tt+1, c

′) iff it is connecting in (Tt+1, c). Clearly, (Tt+1, c
′) <1 (T , c). Since

Mc′(v) = Mc(v) for all v ∈ V (Tt−1) and {α,β} ∩ Mc(Tt−1) = ∅, (Tt , c
′) is nonaug-

menting. So (1) holds with T ′ := Tt+1. �

The final case we need to consider is when there is a good augmenting pair in
(T , c) that consists of the top of (T , c) and a vertex of C(T , c).

Lemma 4.4 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be a

VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c), and
let x ∈ V (C(T , c)). Assume that (Tm−1, c) is nonaugmenting, and {x, y} is a good
augmenting pair in (T , c). Then there is a partial k-edge-coloring c′ of G obtained
from c by a sequence of at most seven interchanges such that one of the following
holds.

(1) There exists a VKT-tree (T ′, c′) in (G,ab, c′) with top y′ such that (T ′, c′) <1
(T , c), (T ′ −y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair
in (T ′, c′), S(T ′, c′) is a truncation of S(T , c), and any edge of T ′ is connecting
in (T ′, c′) iff it is connecting in (T , c).

(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).
(3) (T , c′) is a VKT-tree in G with edge ordering e1, . . . , em, (T − y, c′) is nonaug-

menting, y and a vertex of B(T , c′) − C(T , c′) form a good augmenting pair in
(T , c′), and any edge of T is connecting in (T , c′) iff it is connecting in (T , c).

Proof Let x ∈ V (Tt −Tt−1) and C(T , c) = Tr , where t ≤ r ≤ m−1. Then B(T , c) =
T [er+1, . . . , em]. Note that r ≥ 2, since C(T , c) �= ∅. Let w be the end of er with
w /∈ Tr−1. Since {x, y} is a good augmenting pair, there exists α ∈ Mc(x) ∩ Mc(y)

such that α is not used by any connecting edge in (T , c). Then since (Tm−1, c) is
nonaugmenting, it follows from Lemma 3.6(1) that α /∈ c(Tt ).
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Claim 1 We may assume x ∈ Tr−1, i.e., x �= w.

It suffices to show that (1) or (2) or Claim 1 holds. (This may require one inter-
change.)

If x �= w then Claim 1 holds. So we may assume x = w; hence r = t . By
Lemma 3.5(2) (when r ≥ 3), there exist z ∈ V (Tr−1) ∩ V0(T , c) and β ∈ Mc(z) −
(c(Tr+1) ∪ {α}). This also holds when r = 2, since �(G) ≥ 3 (which we assume)
and k ≥ �(G) + 2. Hence {α,β} ∩ c(Tr) = ∅, and we may apply Lemma 3.4 (with
q := r).

If Lemma 3.4(2) holds, then (2) holds.
Suppose Lemma 3.4(1) holds. Then there is a component A of Gc(α,β) such that

|V (A)∩ {w,z}| = 1, and if c′ denotes the partial k-edge-coloring of G obtained from
c by interchanging A, then (Tr , c

′) is a VKT-tree in G, {w,z} is a good augmenting
pair in (Tr , c

′), S(Tr , c
′) is a truncation of S(T , c), and any edge of Tr is connecting

in (Tr , c
′) iff it is connecting in (T , c). Moreover, c′(ei) = c(ei) for all 1 ≤ i ≤ r , and

Mc′(v) = Mc(v) for all v ∈ V (Tr−1) except possibly Mc′(z) = (Mc(z) − {β}) ∪ {α}.
Hence, since (Tm−1, c) is nonaugmenting, (Tr−1, c

′) is nonaugmenting. So (1) holds
with T ′ := Tr .

We thus may assume that Lemma 3.4(3) holds. Then there is a component A

of Gc(α,β) intersecting {w,y, z} such that |V (A) ∩ {w,z}| �= 1, and if c′ de-
notes the partial k-edge-coloring of G obtained from c by interchanging A, then
{α,β} ∩ Mc′(y) ∩ Mc′(z) �= ∅, (T , c′) is a VKT-tree in (G,ab, c′), and any edge
of T is connecting in (T , c′) iff it is connecting in (T , c). In particular, since
|V (A) ∩ {w,z}| �= 1 and (Tm−1, c) is nonaugmenting, (Tm−1, c

′) is nonaugmenting.
If |V (A)∩ {w,z}| = 2 then α ∈ Mc′(y)∩Mc′(z) and α is not used by any connecting
edge in (T , c′); and if |V (A)∩{w,z}| = 0 then β ∈ Mc′(y)∩Mc′(z) and β is not used
by any connecting edge in (T , c′). So {y, z} is a good augmenting pair in (T , c′); and
we have Claim 1 by taking c′, z as c, x, respectively.

Claim 2 We may assume that for any r + 1 ≤ j ≤ m, ej is not a connecting edge
in (T , c).

For, otherwise, let es denote the last connecting edge in (T , c) where r + 1 ≤
s ≤ m, and let ys ∈ V (Ts − Ts−1). We may assume that em is not a connecting edge,
as otherwise (2) holds by Lemma 3.3. So s < m. Since x ∈ Ts−1, we may apply
Lemma 4.2. If Lemma 4.2(1) holds then (3) holds; and if Lemma 4.2(2) holds then
(2) holds. (Note that Lemma 4.2 may require two interchanges.)

Claim 3 We may further assume x ∈ V0(T , c) ∩ V (Tr−1) and α /∈ c(Tr+1).

It suffices to show that (1) or Claim 3 holds. (This may require one interchange.)
As in the proof of Claim 1, there exist z ∈ V (Tr−1) ∩ V0(T , c) and β ∈ Mc(z) −

(c(Tr+1) ∪ {α}). By Claim 2, β is not used by any connecting edge in (T , c). So if
β ∈ Mc(y), then Claim 3 holds by choosing z,β as x,α, respectively. So we may
assume β /∈ Mc(y).
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Let Y denote the component of Gc(α,β) containing y. If Y ∩ Tr = ∅, let Y ′ := Y

and let y∗ be the end of Y other than y; otherwise, let Y ′ denote the subpath of Y

from y to y∗ ∈ V (Tr) such that V (Y ′ ∩ Tr) = {y∗}.
Suppose Y ∩ Tr �= ∅ and y∗ = w (respectively, y∗ ∈ Tr−1). Note that {α,β} ⊆

Mc(Tr−1) (by Claim 1) and each edge of Y ′ uses the color α or β . Since (Tr , c)

(respectively, (Tr−1, c)) is a VKT-tree in (G,ab, c), it follows from repeated appli-
cations of Lemma 2.5(a) that (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)) is a VKT-
tree in (G,ab, c) with edge ordering e1, . . . , er (respectively, e1, . . . , er−1) followed
by the edges of Y ′ in order from y∗ to y. Clearly, C(Tr ∪ Y ′, c) ⊆ Tr−1 (respec-
tively, C(Tr−1 ∪ Y ′, c) ⊆ Tr−1), which is properly contained in C(T , c) = Tr . So
(Tr ∪ Y ′, c) <1 (T , c) (respectively, (Tr−1 ∪ Y ′, c) <1 (T , c)). Moreover, no edge of
Y ′ is connecting in (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)). Hence, S(Tr ∪ Y ′, c)
(respectively, S(Tr−1 ∪ Y ′, c)) is a truncation of S(T , c), and any edge of Tr ∪ Y ′
(respectively, Tr−1 ∪ Y ′) is connecting in (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c))
iff it is connecting in (T , c). Since α ∈ Mc(x) ∩ Mc(y) and α is not used by any
connecting edge in (T , c), α is not used by any connecting edge in (Tr ∪ Y ′, c) (re-
spectively, (Tr−1 ∪ Y ′, c)). So {x, y} is a good augmenting pair in (Tr ∪ Y ′, c) (re-
spectively, Tr−1 ∪Y ′). Now there exists some truncation of (Tr ∪Y ′, c) (respectively,
(Tr−1 ∪ Y ′, c)) which induces a VKT-tree (T ′, c) in (G,ab, c) with top y′ such that
(T ′ − y′, c) is nonaugmenting, but y′ is contained in an augmenting pair in (T ′, c).
We may assume y′ is contained in a good augmenting pair in (T ′, c); for otherwise it
follows from Lemma 4.1 that (1) or (2) holds. Hence (1) holds with (T ′, c).

So we may assume Y ∩ Tr = ∅. Then Y ′ = Y and Y ⊆ G − Tr . Moreover, y∗ /∈ T ;
as otherwise, we have y∗ ∈ (T −y)−Tr and {α,β}∩Mc(y

∗) �= ∅, which implies that
{y∗, x} or {y∗, z} is an augmenting pair in (Tm−1, c), a contradiction. Let c′ denote the
partial k-edge-coloring of G obtained from c by interchanging Y . Note that V (Tm−1)

is nonaugmenting with respect to c′.
Since Y ⊆ G − Tr , it follows from Lemma 3.1 that (Tr , c

′) is a VKT-tree in
(G,ab, c′), and any edge of Tr is connecting in (Tr , c

′) iff it is also connecting in
(T , c).

We claim that for any r + 1 ≤ i ≤ m, c′(ei) ∈ Mc′(Ti−1). If c(ei) /∈ {α,β}, then
by Claim 2, c′(ei) = c(ei) ∈ Mc(Ti−1) = Mc′(Ti−1) (since y∗ /∈ T ). Now assume
c(ei) ∈ {α,β}. Then, since Y ⊆ G − Tr , c′(ei) ∈ {α,β} ⊆ Mc′({x, z}) ⊆ Mc′(Ti−1).

Therefore by repeatedly applying Lemma 2.5(a), we deduce that (T , c′) is a VKT-
tree in (G,ab, c′). Again since Y ⊆ G − Tr , we must have β ∈ Mc′(y) ∩ Mc′(z).
Moreover, any edge of T is connecting in (T , c′) iff it is connecting in (T , c). Hence,
Claim 3 holds with c′, z, β as c, x,α, respectively.

Claim 4 We may assume m = r + 1. (This may require one interchange.)

Suppose m ≥ r + 2. Let z be the end of er+1 with z /∈ Tr . Since k ≥ �(G) +√
�(G)/2 and by Lemma 3.6(2), we may choose β ∈ Mc(z)−c(Tr+2). If β ∈ Mc(y),

then (3) holds, with good augmenting pair {y, z} in (T , c) (by Claim 2). So we may
assume β /∈ Mc(y).

By Claim 3 and by the choice of β , {α,β} ∩ c(Tr+1) = ∅. So we may apply
Lemma 3.4 (with q := r + 1).
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If Lemma 3.4(2) holds then (2) holds. If Lemma 3.4(3) holds then (3) holds since
z /∈ C(T , c).

So we may assume that Lemma 3.4(1) holds. Then there is a component A of
Gc(α,β) such that |V (A)∩{x, z}| = 1, and if c′ denotes the partial k-edge-coloring of
G obtained from c by interchanging A, then {α,β} ∩Mc′(x)∩Mc′(z) �= ∅, (Tr+1, c

′)
is a VKT-tree in (G,ab, c′), and any edge of Tr+1 is connecting in (Tr+1, c

′) iff it
is connecting in (T , c). Moreover, Mc′(v) = Mc(v) for all v ∈ V (Tr) except possibly
Mc′(x) = (Mc(x)−{α})∪{β}. Therefore, since (Tm−1, c) is nonaugmenting, (Tr , c

′)
is nonaugmenting. Because {α,β} ∩ c(Tr+1) = ∅, {z, x} is a good augmenting pair in
(Tr+1, c

′). So (1) holds, completing the proof of Claim 4.
By Claim 3 and Claim 4, α /∈ c(T ). Let β := c(em). Then β �= α, since α ∈ Mc(y).

We may assume that em is not a connecting edge in (T , c); as otherwise (2) holds by
Lemma 3.3. So β ∈ Mc(Tr).

Claim 5 We may assume β ∈ Mc(w).

Otherwise, β ∈ Mc(Tm−2). Then by Lemma 2.5(a), (Tm−2 + em, c) is a VKT-tree
in (G,ab, c) with edge-ordering e1, . . . , em−2, em. Clearly, C(Tm−2 + em, c) ⊆ Tr−1,
which is properly contained in C(T , c) = Tr . So (Tm−2 + em, c) <1 (T , c). It is also
clear that S(Tm−2 + em, c) is a truncation of S(T , c), and any edge of Tm−2 + em is
connecting in (Tm−2 + em, c) iff it is connecting in (T , c). So (1) holds with T ′ :=
Tm−2 + em and c′ := c. Therefore we may assume β ∈ Mc(w).

We now distinguish two cases according to whether or not β is used by a connect-
ing edge in (T , c). Note that in each case we may need to apply two interchanges.

Case 3 β is not used by any connecting edge in (T , c).

Then, since (Tm−1, c) is nonaugmenting, it follows from Lemma 3.6(1) that β /∈
c(Tr). By Claim 3, α /∈ c(Tr+1). Hence we can apply Lemma 3.4 with q := r and
z := w. If Lemma 3.4(2) holds, then (2) holds.

Now suppose Lemma 3.4(1) holds. Then there is a component A of Gc(α,β)

such that |V (A) ∩ {w,x}| = 1, and if c′ denotes the partial k-edge-coloring of G

obtained from c by interchanging A, then {α,β} ∩ Mc′(w) ∩ Mc′(x) �= ∅, (Tr , c
′) is

a VKT-tree in (G,ab, c′), S(Tr , c
′) is a truncation of S(T , c), and any edge of Tr is

connecting in (Tr , c
′) iff it is connecting in (T , c). Moreover, Mc′(v) = Mc(v) for all

v ∈ V (Tr−1) except possibly Mc′(x) = (Mc(x) − {α}) ∪ {β}. Hence, since (Tm−1, c)

is nonaugmenting, (Tr−1, c
′) is nonaugmenting. Since α,β /∈ c(Tr), {w,x} is a good

augmenting pair in (Tr , c
′). So (1) holds with T ′ := Tr .

We thus may assume that Lemma 3.4(3) holds. Then there is a component A

of Gc(α,β) intersecting {w,x, y} such that |V (A) ∩ {x,w}| �= 1, and if c∗ de-
notes the partial k-edge-coloring of G obtained from c by interchanging A, then
{α,β} ∩ Mc∗(w) ∩ Mc∗(y) �= ∅, (T , c∗) is a VKT-tree in (G,ab, c∗) with edge or-
dering e1, . . . , em, and any edge of T is connecting in (T , c∗) iff it is connecting
in (T , c). Since |V (A) ∩ {x,w}| �= 1, c∗(em) ∈ Mc∗(Tm−2). Note that (Tm−1, c

∗) is
nonaugmenting. Since {α,β} ⊆ Mc∗(Tr)−c∗(Tr ), no connecting edge in (T , c∗) uses
α or β . So {y,w} is a good augmenting pair in (T , c∗).
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We only treat the case when α ∈ Mc∗(y) ∩ Mc∗(w); the case when β ∈ Mc∗(y) ∩
Mc∗(w) can be treated in the same way.

By Lemma 3.5(2) (when m ≥ 4), there exist z ∈ V (Tm−2) ∩ V0(T , c∗) and γ ∈
Mc∗(z) − (c(T ) ∪ {α}), which also holds when m = 3 (since we assume �(G) ≥ 3).
Therefore, we may apply Lemma 3.4 (with q := m − 1, and with c∗,w,γ as c, x,β ,
respectively). If Lemma 3.4(2) holds then (2) holds.

Now suppose that Lemma 3.4(1) holds. Then there is a component A of Gc∗(α, γ )

such that |V (A) ∩ {w,z}| = 1, and if c′ denotes the partial k-edge-coloring of G

obtained from c∗ by interchanging A, then {α,γ } ∩ Mc′(w) ∩ Mc′(z) �= ∅, (Tm−1, c
′)

is a VKT-tree in (G,ab, c′), S(Tm−1, c
′) is a truncation of S(T , c), and any edge of

Tm−1 is connecting in (Tm−1, c
′) iff it is connecting in (T , c∗). Note that Mc′(v) =

Mc∗(v) for all v ∈ V (Tm−2 − z), and Mc′(z) = Mc∗(z) or Mc′(z) = (Mc∗(z)−{γ })∪
{α}. Then because (Tm−1, c

∗) is nonaugmenting, (Tm−2, c
′) is nonaugmenting. Since

α,γ /∈ c(Tr), {w,z} is a good augmenting pair in (Tm−1, c
′). Hence (1) holds.

So assume that Lemma 3.4(3) holds. Then there is a component A of Gc∗(α, γ )

intersecting {w,y, z} such that |V (A) ∩ {z,w}| �= 1, and if c′ denotes the partial k-
edge-coloring of G obtained from c∗ by interchanging A, then {α,γ } ∩ Mc∗(y) ∩
Mc∗(z) �= ∅, (T , c′) is a VKT-tree in (G,ab, c′) with edge ordering e1, . . . , em, and
any edge of T is connecting in (T , c′) iff it is connecting in (T , c∗). In particu-
lar, (Tm−2, c

′) is a VKT-tree in (G,ab, c′). However, since c∗(em) ∈ Mc∗(Tm−2) −
{α,γ }, c′(em) ∈ Mc′(Tm−2). By Lemma 2.5(a), (Tm−2 + em, c′) is a VKT-tree in
(G,ab, c′) with edge ordering e1, . . . , em−2, em. Note that S(Tm−2 + em, c′) is a
truncation of S(T , c). Since |V (A) ∩ {z,w}| �= 1, we must have {z,w} ⊆ V (A) or
V (A) ∩ {w,y, z} = {y}. So Mc′(v) = Mc∗(v) for all v ∈ V (T ) − {w,y, z}, and ei-
ther Mc′(z) = Mc∗(z) and Mc′(w) = Mc∗(w) or Mc′(z) = (Mc∗(z) − {γ }) ∪ {α}
and Mc′(w) = (Mc∗(w) − {α}) ∪ {γ }. Then, since (Tm−1, c

∗) is nonaugmenting,
(Tm−1, c

′) is nonaugmenting. Since α,γ /∈ c(Tm−2 + em), {y, z} is a good augment-
ing pair in (Tm−2 + em, c′). Therefore, since (Tm−2 + em, c′) <1 (T , c∗), (Tm−2 +
em, c′) <1 (T , c); and (1) holds.

Case 4 β is used by some connecting edge in (T , c).

In particular, (T , c) has a connecting edge. So let es denote the last connecting
edge in (T , c). Then by Claims 2 and 5 and since (Tm−1, c) is nonaugmenting, β �=
c(ej ) for s + 1 ≤ j ≤ m − 1. Let A′ denote the component of Gc(α,β) containing x.

We may assume that A′ contains all edges in [Ti−1,G − Ti−1] that use color β ,
whenever ei is a connecting edge in (T , c); for, otherwise, since x ∈ V0(T , c) and
α /∈ c(T ) (by Claim 3), it follows from Lemma 3.2 that (2) holds.

Since x ∈ A′, {w,y} �⊆ V (A′). So there is a component of Gc(α,β), say A, in-
tersecting {w,y} such that A is disjoint from A′. This implies A ⊆ G − Ts−1, since
A′ uses all edges in [Ts−1,G − Ts−1] with color β and α is not used by any edge in
[Ts−1,G − Ts−1].

Let c∗ denote the partial k-edge-coloring of G obtained from c by interchang-
ing A. Then by Lemma 3.1, (Ts, c

∗) is a VKT-tree in (G,ab, c∗), and any edge of Ts

is connecting in (Ts, c
∗) iff it is connecting in (T , c). Recall that α /∈ c(T ), β �= c(ej )
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for s + 1 ≤ j ≤ m − 1, and A ⊆ G − Ts−1. Also note that both ends of A are dis-
joint from Tm−2. So c∗(ej ) ∈ Mc∗(Tj−1) for s + 1 ≤ j ≤ m− 1. Hence by repeatedly
applying Lemma 2.5(a), (Tm−1, c

∗) is a VKT-tree in (G,ab, c∗).
Suppose w /∈ A′. Then we may choose A so that w ∈ A. So (Tm−1, c

∗) is a
VKT-tree in (G,ab, c∗), (Tm−2, c

∗) is nonaugmenting, and α ∈ Mc∗(x) ∩ Mc∗(w).
Since α /∈ c(T ), β �= c(ej ) for s + 1 ≤ j ≤ m − 1, and A ⊆ G − Ts−1, we have
α /∈ c∗(Tm−1). So {x,w} is a good augmenting pair in (Tm−1, c

∗). Hence, (1) holds
with T ′ := Tm−1 and c′ := c∗.

Therefore, we may assume w ∈ A′. Then y ∈ A, c∗(em) = α ∈ Mc∗(Tm−2), and
β �= c∗(ej ) for s + 1 ≤ j ≤ m. Hence by Lemma 2.5(a), (Tm, c∗) = (T , c∗) is a VKT-
tree in (G,ab, c∗). Moreover, β ∈ Mc∗(y) ∩ Mc∗(w), (Tm−1, c

∗) is nonaugmenting,
and any edge of T is connecting in (T , c∗) iff it is connecting in (T , c).

By Lemma 3.5(2) (and since we assume �(G) ≥ 3), there exist z ∈ V0(T , c∗)
and γ ∈ Mc∗(z) − (c∗(T ) ∪ {α}). We may assume that the component of Gc∗(γ,β)

containing z, say B ′, contains all edges in [Ts−1,G − Ts−1] that use color β; for,
otherwise, since z ∈ V0(T , c∗), it follows from Lemma 3.2 that (2) holds. Therefore,
there is a component of Gc∗(γ,β), say B , intersecting {w,y} such that B ∩ B ′ = ∅.
Hence B ⊆ G − Ts−1. Let c′ denote the partial k-edge-coloring of G obtained from
c∗ by interchanging B . Then by Lemma 3.1, (Ts, c

′) is a VKT-tree in (G,ab, c′),
and any edge of Ts is connecting in (Ts, c

′) iff it is connecting in (T , c∗) (iff it is
connecting in (T , c)). Recall that γ /∈ c∗(T ) and β �= c∗(ej ) for s + 1 ≤ j ≤ m, and
note that both ends of B are disjoint from Tm−2. Hence, since es is the last connecting
edge in (T , c∗) and because B ⊆ G − Ts−1, c′(ej ) ∈ Mc′(Tj−1) for s + 1 ≤ j ≤ m.
So by Lemma 2.5(a), (Tm, c′) is a VKT-tree in (G,ab, c′). Clearly, any edge of T is
connecting in (T , c′) iff it is connecting in (T , c∗) (iff it is connecting in (T , c)).

Suppose w /∈ B ′. Then we may choose B so that w ∈ B . In this case, (Tm−1, c
′)

is a VKT-tree, (Tm−2, c
′) is nonaugmenting, and γ ∈ Mc′(z) ∩ Mc′(w). Since B ⊆

G − Ts−1 and β �= c∗(ej ) for s + 1 ≤ j ≤ m, we have γ /∈ c′(Tm−1), and so {z,w} is
a good augmenting pair in (Tm−1, c

′). Hence, (1) holds with T ′ := Tm−1.
So we may assume w ∈ B ′. Then y ∈ B . So (Tm−1, c

′) is nonaugmenting, γ ∈
Mc′(y) ∩ Mc′(z), and c′(em) = α ∈ Mc′(Tm−2). By Lemma 2.5(a), (Tm−2 + em, c′)
is a VKT-tree in (G,ab, c′). Since γ /∈ c∗(T ), B ⊆ G − Ts−1, and β �= c∗(ej ) for
s + 1 ≤ j ≤ m, we see that γ is not used by any connecting edge in (T , c′). So {y, z}
is a good augmenting pair in (Tm−2 + em, c′), and (1) holds with T ′ := Tm−2 + em. �

5 Edge-coloring

We now apply the recoloring lemmas in the previous section to prove Theorem 1.3.
First, we prove that if a VKT-tree is augmenting then we can improve it according
to <1 or <2. For a tree T and two vertices x, y of T , we use T [x, y] to denote the
unique path in T between x and y.

Lemma 5.1 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be

a VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c),
and assume that m ≥ 2, (Tm−1, c) is nonaugmenting, and y is in an augmenting
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pair in (T , c). Then there is a partial k-edge-coloring c′ of G obtained from c by a
sequence of O(V ) interchanges such that one of the following holds.

(1) There exists a VKT-tree (T ′, c′) in (G,ab, c′) with top y′ such that (T ′, c′) <1

(T , c), (T ′ −y′, c′) is nonaugmenting, y′ is in a good augmenting pair in (T ′, c′),
S(T ′, c′) is a truncation of S(T , c), and any edge of T ′ is connecting in (T ′, c′)
iff it is connecting in (T , c).

(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

Proof Let x ∈ V (Tm−1) such that {y, x} is an augmenting pair in (T , c). If {x, y} is
a good augmenting pair and x /∈ C(T , c), apply Lemma 4.3 to (T , c); and if {x, y} is
a good augmenting pair and x ∈ C(T , c), apply Lemma 4.4 to (T , c). If {x, y} is not
a good augmenting pair, apply Lemma 4.1 to (T , c), and then apply Lemma 4.3 or
Lemma 4.4 to the resulting VKT-tree.

Then there is a partial k-edge-coloring c1 of G obtained from c by a sequence of
(at most seven) interchanges such that one of the following holds.

(a) There exists a VKT-tree (T 1, c1) in (G,ab, c1) with top y1 such that (T 1, c1) <1

(T , c), (T 1 − y1, c1) is nonaugmenting, y1 is in a good augmenting pair in
(T 1, c1), S(T 1, c1) is a truncation of S(T , c), and any edge of T 1 is connect-
ing in (T 1, c1) iff it is connecting in (T , c).

(b) There is a VKT-tree (T 1, c1) in (G,ab, c1) such that (T , c) <2 (T 1, c1).
(c) (T , c1) is a VKT-tree in (G,ab, c1) with edge ordering e1, . . . , em, (Tm−1, c

1) is
nonaugmenting, y and a vertex x1 of B(T , c1) − C(T , c1) form a good augment-
ing pair in (T , c1), and any edge of T is connecting in (T , c1) iff it is connecting
in (T , c).

If (a) or (b) holds, we see that (1) or (2) holds, with T ′ := T 1 and c′ := c1. So
we may assume that (c) holds. By repeatedly applying Lemma 4.3 (starting with
(T 1, c1) and x1), we obtain a maximal sequence ((T , ct ), xt : 1 ≤ t ≤ n) such that for
each 1 ≤ t ≤ n, ct is a partial k-edge-coloring of G obtained from ct−1 by an inter-
change, (T , ct ) is a VKT-tree in (G,ab, ct ) with edge ordering e1, . . . , em, (Tm−1, c

t )

is nonaugmenting, y and a vertex xt of B(T , ct ) − C(T , ct ) form a good augmenting
pair in (T , ct ), any edge of T is connecting in (T , ct ) iff it is connecting in (T , c),
and T [xt , y] is a proper subpath of T [xt−1, y] (for 2 ≤ t ≤ n).

Note that {xn, y} ⊆ B(T , cn) − C(T , cn). By the maximality of the sequence
((T t , ct ), xt : 1 ≤ t ≤ n), it follows from Lemma 4.3 (with (T , cn), xn as (T , c), x,
respectively) that there exists a partial k-edge-coloring c′ of G obtained from cn by
an interchange such that one of the following holds.

(a′) There exists a VKT-tree (T ′, c′) in (G,ab, c′) with top y′ such that (T ′, c′) <1

(T , cn), (T ′−y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair
in (T ′, c′), S(T ′, c′) is a truncation of S(T , cn), and any edge of T ′ is connecting
in (T ′, c′) iff it is connecting in (T , cn),

(b′) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , cn) <2 (T ′, c′).

Note that S(T ′, c′) is a truncation of S(T , cn) = · · · = S(T , c1), and C(T , cn) =
· · · = C(T , c1) = C(T , c). Hence, (T , cn) <2 (T ′, c′) implies (T , c) <2 (T ′, c′), and
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(T ′, c′) <1 (T , cn) implies (T ′, c′) <1 (T , c). So we see that (a′) or (b′) implies (1)
or (2), respectively. �

We now prove that given any augmenting VKT-tree, we can either produce a better
partial edge-coloring or augment the tree in terms of <2.

Lemma 5.2 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, let (T , c) be a

VKT-tree in (G,ab, c) with edge ordering e1, . . . , em, let y be the top of (T , c), and
assume that m ≥ 2, (Tm−1, c) is nonaugmenting, and y is in an augmenting pair in
(T , c). Then there is a partial k-edge-coloring c′ of G obtained from c by a sequence
of O(V 2) interchanges such that one of the following holds.

(1) Mc′(a) ∩ Mc′(b) �= ∅.
(2) There is a VKT-tree (T ′, c′) in (G,ab, c′) such that (T , c) <2 (T ′, c′).

Proof By Lemma 5.1, there is a partial k-edge-coloring c′ of G obtained from c by a
sequence of O(V ) interchanges such that one of the following holds.

(a) There exists a VKT-tree (T 1, c1) in (G,ab, c1) with top y1 such that (T 1, c1) <1
(T , c), (T 1 −y1, c

1) is nonaugmenting, y1 is contained in a good augmenting pair
in (T 1, c1), S(T 1, c1) is a truncation of S(T , c), and any edge of T 1 is connecting
in (T 1, c1) iff it is connecting in (T , c).

(b) There is a VKT-tree (T 1, c1) in G such that (T , c) <2 (T 1, c1).

If (b) holds, then (2) holds with T ′ := T 1 and c′ := c1. Therefore, we may assume
that (a) holds. By repeatedly applying Lemma 5.1 (at most O(V ) times and starting
with (T 1, c1) and y1), we obtain a maximal sequence ((T t , ct ), yt : 1 ≤ t ≤ n) such
that for each 1 ≤ t ≤ n, ct is a partial k-edge-coloring of G obtained from ct−1 by a
sequence of O(V ) interchanges (where c0 = c), (T t , ct ) is a VKT-tree in (G,ab, ct )

with top yt , (T t −yt , c
t ) is nonaugmenting, yt is contained in a good augmenting pair

in (T t , ct ), (T t , ct ) <1 (T t−1, ct−1) where (T 0, c0) = (T , c), S(T t , ct ) is a truncation
of S(T t−1, ct−1), and any edge of T t is connecting in (T t , ct ) iff it is connecting in
(T t−1, ct−1).

If V (T n) = {a, b}, then Mcn(a) ∩ Mcn(b) �= ∅; and (1) holds with c′ := cn.
So we may assume |V (T n)| ≥ 3. Then by the maximality of the sequence

((T t , ct ), yt : 1 ≤ t ≤ n) and by Lemma 5.1, there exists a partial k-edge-coloring
c′ of G obtained from cn by a sequence of O(V ) interchanges and there is a VKT-
tree (T ′, c′) in (G,ab, c′) such that (T n, cn) <2 (T ′, c′). Hence (2) holds. �

So far we have shown how to deal with an augmenting VKT-tree. In order to prove
Theorem 1.3, we need to deal with nonaugmenting VKT-trees. For this, we introduce
another partial ordering on VKT-trees, which refines <2.

Definition 5.3 Let (G,ab, c) and (G,ab, c′) be two triples such that E(c) = E(c′),
and c and c′ use the same set of colors. Let (T , c) and (T ′, c′) be VKT-trees in
(G,ab, c) and (G,ab, c′), respectively. We write (T , c) <3 (T ′, c′) if there exists
an integer p ≥ 0 such that

• Sj (T , c) = Sj (T
′, c′) for 0 ≤ j ≤ p − 1, and

• Sp(T , c) is a proper truncation of S(T ′, c′).
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Note the difference between <3 and <2; here Sp(T , c) may be the last segment

of (T , c). Also note that any edge of
⋃p−1

j=0 Sj (T
′, c′) is connecting in (T ′, c′) iff it

is connecting in (T , c). Clearly, (T , c) <2 (T ′, c′) implies (T , c) <3 (T ′, c′); and <3

induces a partial order on the VKT-trees.
The next lemmas says that, given a nonaugmenting VKT-tree, we can either aug-

ment it (through <3) or decide that an additional color is needed.

Lemma 5.4 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2, and let (T , c)

be a nonaugmenting VKT-tree in (G,ab, c). Then one of the following holds.

(1) There is a VKT-tree (T ′, c) in (G,ab, c) with top y′ such that (T , c) <3 (T ′, c),
(T ′ − y′, c) is nonaugmenting, and y′ is contained in an augmenting pair.

(2) k < �(G).

Proof If (T , c) is critical, then (2) follows from Lemma 2.9. So we may assume that
(T , c) is not critical.

If (T , c) is not complete, then let e ∈ [T ,G − T ] such that c(e) ∈ Mc(T ). By
Lemma 2.5(a), (T + e, c) is a VKT-tree in (G,ab, c), with edge ordering as in (T , c)

followed by e. Clearly, (T , c) <3 (T + e, c); and let T 1 := T + e. If (T , c) is com-
plete, then let β denote a color that is used by at least two edges in [T ,G − T ]. By
Lemma 3.5(2) and since we may assume �(G) ≥ 3, there exist x ∈ V0(T , c) and
α ∈ Mc(x) − (c(T ) ∪ {β}). Let P denote the path in G[T ] ∩ Gc(α,β) containing x,
and let e denote the edge in [T ,G − T ] with color β and incident with P . Now by
Lemma 2.5(b), (T + e, c) is a VKT-tree in (G,ab, c), with edge ordering as in (T , c)

followed by e; and let T 1 := T + e.
If (T 1, c) is augmenting, then (1) holds; otherwise, we apply the above argument

to (T 1, c1) (in place of (T , c)). Now let ((T t , c) : 1 ≤ t ≤ n) denote the maximal
sequence of VKT-trees (with top yt ) constructed recursively using the above process,
such that (T t , c) <3 (T t+1, c) for 1 ≤ t ≤ n − 1, and (T n − yn, c) is nonaugmenting.
If (T n, c) is augmenting, then (1) holds. If (T n, c) is nonaugmenting, then by the
maximality of this sequence, (T n, c) is critical. Hence by Lemma 2.9, (2) holds. �

We now prove that given a k-triple (G,ab, c) with k ≥ �(G) + √
�(G)/2, we

can modify c to a “better” partial edge-coloring or show that a new color must be
introduced.

Lemma 5.5 Let (G,ab, c) be a k-triple with k ≥ �(G) + √
�(G)/2. Then one of

the following holds.

(1) There is a partial edge-coloring c′ obtained from c by a sequence of O(V 3)

interchanges such that Mc′(a) ∩ Mc′(b) �= ∅.
(2) k < �(G).

Proof Start with the VKT-tree (T 1, c1) induced by the edge ab, with c1 = c. If
Mc1(a) ∩ Mc1(b) �= ∅, then (1) holds with c′ := c1. So we may assume (T 1, c1) is
nonaugmenting. By Lemma 5.4, either (2) holds, or there is a VKT-tree (T 2, c2)
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in (G,ab, c2) with top y2 (and with c2 = c1) such that (T 1, c1) <3 (T 2, c2),
(T 2 − y2, c

2) is nonaugmenting, and y2 is contained in an augmenting pair.
By Lemma 5.2, either (1) holds, or there is a partial edge-coloring c3 obtained

from c2 by a sequence of O(V 2) interchanges and there exists a VKT-tree (T 3, c3)

in (G,ab, c3) such that (T 2, c2) <2 (T 3, c3). Hence (T 2, c2) <3 (T 3, c3).
So let ((T t , ct ) : 1 ≤ t ≤ n) denote the maximal sequence of VKT-trees obtained

as above, such that (T t , ct ) <3 (T t+1, ct+1) for 1 ≤ t ≤ n − 1.
If (T n, cn) is nonaugmenting, then we apply Lemma 5.4 and see that (2) holds

(by the maximality of the sequence). If (T n, cn) is augmenting, then we may apply
Lemma 5.2 and see that (1) holds. �

Proof of Theorem 1.3 Let G be a multigraph. We may assume �(G) ≥ 3 since oth-
erwise the assertion of Theorem 1.3 holds.

First, greedily color as many edges of G as possible using �(G) colors. Let c

denote the resulting partial edge-coloring of G.
If E(c) = E(G), then c gives the desired edge-coloring. So we may assume

E(c) �= E(G). Choose an arbitrary edge ab from E(G)−E(c), and apply Lemma 5.5
to the triple (G,ab, c).

If Lemma 5.5(1) holds, we obtain a partial edge-coloring c′ of G from c through
a sequence of interchanges such that Mc′(a) ∩ Mc′(b) �= ∅. Let c1 denote the par-
tial edge-coloring of G obtained from c by coloring ab with a color from Mc′(a) ∩
Mc′(b). If Lemma 5.5(2) holds, then k < �(G), and let c1 denote the partial edge-
coloring of G obtained from c by assigning to the edge ab a color not used by c.

Repeat this argument for G and c1, we obtain the desired edge-coloring of G. �

Proof of Corollary 1.5 Let G be a multigraph, and let c be any given edge-coloring
of G, using colors from the collection C . Let k := |C|.

Pick a color α ∈ C , and let Ec(α) := {e ∈ E(G) : c(e) = α}. Let c1 denote the
partial edge-coloring of G with E(c1) = E(G) − E(α), and c1(e) = c(e) for each
e ∈ E(G) − E(α). (This is for notational purpose only; we may simply view c1 as c

with α ignored.) Our objective is to show that either k = χ ′(G) (in which case, c is an
optimal edge-coloring) or use a sequence of interchanges to turn c to an edge-coloring
of G using colors from C − {α}; and by repeating this process we will produce an
optimal edge-coloring of G.

Pick an edge ab from E(α). Apply Lemma 5.5 to the (k − 1)-triple (G,ab, c1).
If Lemma 5.5(2) holds, then k − 1 < �(G); thus k = ��(G)�, and so, c is an

optimal edge-coloring of G.
So we may assume that Lemma 5.5(1) holds. Then there is a partial edge-coloring

c′
1 obtained from c1 by a sequence of interchanges such that Mc′

1
(a) ∩ Mc′

1
(b) �= ∅.

Let β ∈ Mc′
1
(a) ∩ Mc′

1
(b). Note that β ∈ C − {α}. Let c∗

1 denote the edge-coloring of
G obtained from c′

1 by coloring the edges in E(α) with color α again. Clearly, c∗
1

can be obtained from c by a sequence of interchanges. Let D denote the component
of Gc∗

1
(α,β) containing the edge ab. Then D is induced by the edge ab. Let c2

denote the edge-coloring of G obtained from c∗
1 by interchanging D. Then Ec2(α) =

Ec(α) − {ab}.
We repeat the above argument for c2 by picking an edge from Ec2(α). We either

show that c2 is an optimal edge-coloring, or obtain an edge-coloring of G using colors
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from C − {α}. If the latter occurs, we pick a color from C − {α} and repeat the whole
process again. (We omit the details.) Eventually, we obtain an optimal edge-coloring
of G. �
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