
J Comb Optim (2009) 18: 319–341
DOI 10.1007/s10878-009-9230-0

A parameterized perspective on packing paths of length
two

Henning Fernau · Daniel Raible

Published online: 23 May 2009
© Springer Science+Business Media, LLC 2009

Abstract We study (vertex-disjoint) packings of paths of length two (i.e., of P2’s) in
graphs under a parameterized perspective. Starting from a maximal P2-packing P of
size j we use extremal combinatorial arguments for determining how many vertices
of P appear in some P2-packing of size (j + 1) (if such a packing exists). We prove
that one can ‘reuse’ 2.5j vertices. We also show that this bound is asymptotically
sharp. Based on a WIN-WIN approach, we build an algorithm which decides, given
a graph, if a P2-packing of size at least k exists in time O∗(2.4483k).

Keywords Path packing · Parameterized algorithms · Extremal combinatorics

1 Introduction and definitions

Mathematical motivation

We consider a natural generalization of the well-known matching problem in graphs.
A maximum matching is a maximum cardinality set of vertex disjoint edges, i.e., a
packing with paths of length one. We are going to study packings by paths of length
two (abbreviated as P2). More formally, we consider the following problem, called
P2-PACKING:

Given: A graph G = (V ,E), and the parameter k.
We ask: Is there a set of k vertex-disjoint P2’s in G?

H. Fernau · D. Raible (�)
FB IV—Abteilung Informatik, Universität Trier, 54286 Trier, Germany
e-mail: raible@informatik.uni-trier.de

H. Fernau
e-mail: fernau@informatik.uni-trier.de

mailto:raible@informatik.uni-trier.de
mailto:fernau@informatik.uni-trier.de

320 J Comb Optim (2009) 18: 319–341

Kirkpatrick and Hell (1978), Hell and Kirkpatrick (1982) proved N P -completeness
for this problem. In fact, they showed that general MAXIMUM H -PACKING is N P -
complete. Here, H is a graph with at least three vertices in some connected com-
ponent. Notice that P2-PACKING attracts attention as it is N P -hard, whereas the
classical matching problem, which is P1-PACKING, is solvable in polynomial time.

Applications

Test cover There is a strong link to the TEST COVER (TC) problem (De Bontrid-
der et al. 2003) with applications ranging from fault testing and diagnosis, pattern
recognition to biological identification. The input to TC is a hypergraph H = (G,E)

and one wishes to identify a subset E′ ⊆ E (the test cover) such that, for any distinct
i, j ∈ V , there is an e′ ∈ E′ with |e′ ∩ {i, j}| = 1. Tests are modeled by hyperedges
e; x ∈ e means that the individual (vertex) x passes the test. TC models identifica-
tion problems: Given a set of individuals and a set of binary attributes, we search
for a minimum subset of attributes that identifies each individual distinctly. For the
special yet important case TCP2, for all e ∈ E, we have |e| ≤ 2. This means that at
most two individuals can pass a certain test. For TCP2, De Bontridder et al. (2003)
could show the following two assertions. (1) If H has a test cover of size τ , then
there is a P2-packing of size n − τ − 1 that leaves at least one vertex isolated. (2) If
H has a maximal P2-packing of size π that leaves at least one vertex isolated, then
there is a test cover of size n − π − 1. This also establishes a close relation between
TEST COVER and TOTAL EDGE COVER. So we can employ our algorithms to solve
the TCP2 case of TEST COVER by using an initial catalytic branch that determines
the one vertex that should be isolated.

Vehicle routing General packing of paths of length d (called Pd -packing) can be
motivated by a vehicle routing problem. Suppose there is a number of customers
such that to everyone the same kind of item should be delivered. Delivering is done
by the same kind of vehicle. Assume in every such vehicle exactly d items fit in.
Now we want to assign the customers to the vehicles in a way that delivery times
are minimized. We model this by a graph G: The customers are vertices and two
vertices are joined by an edge if their distance is less than some ε > 0. In practice ε

is some reasonable constant which permits to travel from one customer to the other
in short time. Now assume we can perfectly pack a set of Pd ’s in G (perfectly means
covering every vertex). Then every Pd corresponds to some vehicle. The vehicle will
start at an endpoint and serve every customer along the path. This way we minimize
the maximum time a vehicle needs to serve all its assigned customers (not regarding
travel time to the first customer site). If d is small (like d = 2 in this paper), think of
the items being whole containers of goods, but a truck could only deliver up to three
containers a time. This approach has been reported in Bazgan et al. (2005), Monnot
and Toulouse (2007), where actually a partitioning (not a packing) of the graph into
paths was asked for to model the quest for serving all customers. However, as those
problems typically arise on a dynamic day-to-day basis (where the underlying graph
also varies day by day), we might ask for such a packing that models the optimal use
of all k available trucks on a given day, leaving the remaining vertices (customers) to
be delivered the other day, with possible new deliver requests coming up (and hence
enlarging the graph again).

J Comb Optim (2009) 18: 319–341 321

Our framework: parameterized complexity

A parameterized problem P is a subset of �∗ ×N, where � is a fixed alphabet and N

is the set of all non-negative integers. Therefore, each instance of the parameterized
problem P is a pair (I, k), where the second component k is called the parameter. The
language L(P) is the set of all YES-instances of P . We say that the parameterized
problem P is fixed-parameter tractable (Downey and Fellows 1999) if there is an
algorithm that decides whether an input (I, k) is a member of L(P) in time f (k)|I |c ,
where c is a fixed constant and f (k) is a function independent of the overall input
length |I |. We will also write O∗(f (k)) for this run-time bound. Equivalently, one
can define the class of fixed-parameter tractable problems as follows: strive to find
a polynomial-time transformation that, given an instance (I, k), produces another
instance (I ′, k′) of the same problem, where |I ′| and k′ are bounded by some function
g(k); in this case, (I ′, k′) is also called a (problem) kernel.

Discussion of related work

Hassin and Rubinstein (2006) found a randomized 35
67 -approximation for finding a

maximum P2-packing. De Bontridder et al. (2003) studied deterministic approxi-
mation algorithms, considering a series of heuristics H�. H� starts from a maximal
P2-packing P and tries to improve it by replacing � P2’s by � + 1 P2’s. The corre-
sponding approximation ratios ρ� are as follows: ρ0 = 1

3 , ρ1 = 1
2 , ρ2 = 5

9 , ρ3 = 7
11

and ρ� = 2
3 for � ≥ 4.

As any P2-PACKING instance can be transformed into a 3-SET PACKING instance
one can use the algorithm of Liu et al. (2006) which needs O∗(4.613k) steps, or the
very recent algorithm of Wang and Feng (2008) running in time O(3.523k). This is
the culmination point of a sequence of papers subsequently improving on the running
time of this problem. Alternatively, we can use randomized parameterized algorithms;
Koutis (2008) has developed a randomized parameterized algorithm for this problem
that runs in time O∗(23k). The first paper to individually study P2-PACKING under a
parameterized view was Prieto and Sloper (2004). The authors were able to prove a
15k-kernel. Via a clever midpoint search on the kernel they could achieve a determin-
istic run time of O∗(3.4033k). Another special case of 3-SET PACKING studied from a
parameterized perspective is 3-DIMENSIONAL MATCHING, see Liu et al. (2006) for a
deterministic algorithm of run time O∗(2.773k). Recently, Wang et al. (2008) found a
kernel of size 7k for P2-PACKING, resulting in a deterministic O∗(2.613k)-algorithm
for this problem.

Our contributions

We mention that the presented results where partly already published in form of a
conference paper (Fernau and Raible 2008) and as a technical report (Chen et al.
2008). Actually, Fernau and Raible (2008) and Wang et al. (2008) are spin-offs of
Chen et al. (2008). The main achievements of this paper are:

(1) We present an iterative-augmentation-type algorithm which solves this prob-
lem in time O∗(2.4483k). (2) We exhibit an extremal combinatorial argument to show

322 J Comb Optim (2009) 18: 319–341

that, given a maximal P2-packing of size j and provided that a larger packing exists,
we can reuse 2.5j vertices of the known packing. This improves a similar result for
general 3-SET PACKING (Liu et al. 2006) where only 2j elements are known to be
reusable. (3) We present a graph family such that the before mentioned reusability re-
sult is asymptotically sharp. (4) Another novelty is that in this algorithm, the inductive
augmentation step is interleaved with kernelization. This pays off not only heuristi-
cally but also asymptotically by a specific form of combinatorial analysis. Thereby
we can completely skip the time consuming color-coding which was needed in Liu
et al. (2006) for 3-SET PACKING. (5) We show that WIN-WIN games can be played
with two different brute-force algorithms to finally achieve the claimed running time.
We believe that especially the idea of saving colors by extremal combinatorial argu-
ments could be applied in other situations, as well. (6) We derive a new linear kernel
result for the related problem of TOTAL EDGE COVER and can also give lower bounds
on the kernel size.

Additionally, we must admit that in the previous versions of this paper (Fernau
and Raible 2008 and Chen et al. 2008) there is a mistake. Due to complexity reasons
the search for the endpoint pairs cannot be undertaken. Thus, only a run time of
O∗(17.44k) can be claimed instead of O∗(15.285k). Nevertheless, in this paper we
achieve a run time for the problem which beats the one which was originally claimed.

Some notations and definitions

We only consider undirected graphs G = (V ,E). For a subgraph H of G, denote
by N(H) the set of vertices that are not in H but adjacent to at least one vertex
in H , i.e., N(H) = (

⋃
v∈H N({v})) \ H . The subgraph H is adjacent to a vertex v

if v ∈ N(H). A P2 in G is a path which consists of three vertices and two edges.
For any path p of this kind we consider the vertices as numbered such that p =
p1p2p3 (where the roles of p1 and p3 might be interchanged). At some points we
consider p as a tuple (p1,p2,p3) if necessary. For a path p, V (p) (E(p), resp.)
denotes the set of vertices (edges, resp.) of p. Likewise, for a set of paths P , V (P) :=⋃

p∈P V (p) (E(P) := ⋃
p∈P E(p), resp.). A vertex v is called P -midpoint if there is

a p = p1p2p3 ∈ P with p2 = v. Let M P := {p2 | ∃p ∈ P : p = p1p2p3} contain the
P -midpoints. Vertices from V (P) that are not P -midpoints are called P -endpoints.

Organization of the paper

In Sect. 2, we discuss the notion of parametric duality in the context of the
P2-PACKING problem, deriving lower and upper bounds on the kernel size of
TOTAL EDGE COVER. Section 3 presents the combinatorial results we derived for
P2-packings, in particular concerning the reusability of vertices and, more specifi-
cally, of midpoints in the attempt to construct larger packings from smaller ones. In
Sect. 4, we present the iterative augmentation algorithm, including its analysis. Sec-
tion 5 is mostly devoted to displaying examples of graph families that show that new
rules and insights are necessary to further improve our algorithm along the lines of
thought.

J Comb Optim (2009) 18: 319–341 323

2 Issues from parameterized complexity

In parameterized complexity, the (parametric) dual of a vertex-selection problem, pa-
rameterized by a bound k on the solution size (the natural parameter of the problem),
is defined by reversing the parameter, i.e., by considering kd = |V | − k instead of k

as the parameter of the problem. This notion should not be confused with the classi-
cal notion of duality known from linear programming. However, in analogy with that
area, the problem parameterized by k is then called the primal problem. For example,
the classical VERTEX COVER problem is such a vertex-selection problem. The natural
parameter k is upper-bounding the size of an acceptable solution (vertex cover). As it
is well-known, a graph G = (V ,E) has a vertex cover of size |V | − k if and only if
G has an independent set of size k. Hence, VERTEX COVER and INDEPENDENT SET

(using the natural parameterizations that bound the solution sets) are (parametric) du-
als to each other. While VERTEX COVER is in F P T , INDEPENDENT SET (on general
graphs) is likely not to be (both problems considered with the natural parameteri-
zations). Similarly, while DOMINATING SET is fixed-parameter intractable on gen-
eral graphs, its parametric dual, called NONBLOCKER, is fixed-parameter tractable
(Dehne et al. 2006). In fact, many problems which are parameterized tractable
become intractable when the parameter is “turned around” (see Fellows 2002;
Khot and Raman 2002; Prieto and Sloper 2003). However, knowing that both primal
and parametric dual are in F P T (and hence kernelizable) allows to state lower-bound
results on kernel sizes, see Chen et al. (2007), which makes such problem pairs very
interesting for parameterized complexity.

An edge cover is a set of edges EC ⊆ E that cover all vertices of a given graph
G = (V ,E). A matching is a set of edges M ⊆ E of a given graph G = (V ,E),
where each two edges e, e′ from M have no common endpoint. According to the
well-known theorem of Gallai (1959), the size of a maximum matching of a graph
G = (V ,E) plus the size of a minimum edge cover of G equals |V |. In a somewhat
generalized fashion as discussed above, this means that EDGE COVER and MATCHING

can be viewed as parametric duals. By matching techniques, the problem of finding
an edge cover of size at most k is hence solvable in polynomial time, see Micali
and Vazirani (1980). (It is known (see Plesník 1984) that even MINIMUM WEIGHTED

EDGE COVER can be optimally solved in polynomial (cubic) time.)
Fernau and Manlove (2006) discovered a similar relation of P2-PACKING to TO-

TAL EDGE COVER, which we now describe. An edge cover is called total if every
component in G[EC] has at least two edges. This type of constraint for covering
problems is motivated by modeling clustering properties within cover sets, see Fer-
nau and Manlove (2006). However, the following Gallai-type identity (Fernau and
Manlove 2006) proves that finding total edge covers of size at most k is N P -hard:
The sum of the number of P2’s in a maximum P2-packing and the size of a minimum
total edge cover equals n = |V |. The proof of the mentioned Gallai-type identity used
only the fact that the covers and packings were minimal and maximal, respectively,
with respect to (edge) set inclusion, although the statement of the identity refers to
minimum and maximum solutions, respectively. Hence, observing that the covers and
packings in question could be minimal and maximal, we can infer:

324 J Comb Optim (2009) 18: 319–341

Theorem 1 Let G = (V ,E) be a graph. G contains a P2-packing of size at least k if
and only if there is a total edge cover of size at most |V | − k in G.

Fernau and Manlove (2006) also showed that TOTAL EDGE COVER is fixed-
parameter tractable (or: lies in F P T , for short). Hence, both the P2-PACKING prob-
lem (being in the focus of this paper), asking for a set of k vertex-disjoint P2’s in
the given graph G = (V ,E), and the question to find (|V | − k) vertex-disjoint P2’s
in the given graph G = (V ,E), with parameter k, respectively, are in F P T . Equiv-
alently, both the question of finding a total edge cover of size kd in the given graph
G = (V ,E) (i.e., TOTAL EDGE COVER) and the question of finding a total edge cover
of size (|V | − kd) in G, with parameter kd , are in F P T . This is quite interesting
since there are few natural, unrestricted problems where both the primal and the dual
variant are known to lie in F P T .

We mention here that the (more general results) of Fernau and Manlove (2006) on
kernel sizes of variants of edge-cover problems can be improved for the parametric
dual (in the sense of Theorem 1) TOTAL EDGE COVER, parameterized by kd upper-
bounding the edge cover size:

Theorem 2 TOTAL EDGE COVER admits a kernel with at most 1.5kd vertices.

Proof Since we aim at a total edge cover, the largest number of vertices that can be
covered by kd edges is 1.5kd (namely, if the edge cover is a P2-packing). Hence,
if the graph contains more than 1.5kd vertices, we can reject. This leaves us with a
kernel with at most 1.5kd vertices. �

Based on the work of Prieto and Sloper (2004), the authors Chen et al. (2008),
Wang et al. (2008) exhibited the following result:

Theorem 3 (Wang et al. 2008) P2-PACKING admits a kernel with at most 7k vertices.

This also allows us to state lower bounds for the kernel sizes, based on works of
Chen et al. (2007):

Corollary 1 Trivially, P2-PACKING does not admit a kernel with less than 3k ver-
tices. TOTAL EDGE COVER does not admit a kernel with less than αakd vertices for
any αd < (7/6), unless P = N P .

Proof A P2-packing of size k is only possible in a graph with at least 3k vertices.
Due to Theorem 3 and (Chen et al. 2007, Theorem 3.1), there does not exist a ker-
nel of size αdkd for TOTAL EDGE COVER under the assumption that P
= N P if
(7 − 1)(αd − 1) < 1. �

3 Combinatorial properties of P2-packings

This section is devoted to proving the following combinatorial result by extremal
combinatorial arguments. Notice that Q(2) denotes a specific family of P2-packings

J Comb Optim (2009) 18: 319–341 325

of size (j + 1). The exact definition of Q(2) will be given later in this section, but
its understanding is not necessary to appreciate the algorithmic consequences of this
result at this stage: Having obtained (somehow) a maximal P2-packing P of size j ,
it is sufficient to find (0.5j + 3) more vertices from V \ V (P) to built a P2-packing
Q of size (j + 1), if possible.

Theorem 4 Let P be a maximal P2-packing of size j . If there is a P2-packing of size
(j + 1), then there is also a packing Q ∈ Q(2) with |V (P) ∩ V (Q)| ≥ 2.5j .

The combinatorial properties of Q will be used in the next section by the inductive
step of our algorithm for P2-PACKING. So, in our induction hypothesis we assume
that we already know a (with respect to inclusion) maximal P2-packing P . Among all
maximal P2-packings of size (j + 1), we will consider those packings that recycle as
many paths from P as possible. More formally, we consider those Q that maximize

|{p ∈ P | ∃q ∈ Q : E(p) = E(q)}|. (1)

We call the set of these packings Q(1).1 From Liu et al. (2006), we know:

Lemma 1 (Liu et al. 2006) |V (p) ∩ V (Q)| ≥ 2 for any p ∈ P and Q ∈ Q(1).

Proof If there is p ∈ P with |V (p) ∩ V (Q)| = 1, then replace the path q ∈ Q that
intersects with p by p. In the case where |V (p) ∩ V (Q)| = 0, simply replace an
arbitrary q ∈ Q \ P , that must exist by pigeon-hole, by p. In both cases, we ob-
tain a packing Q′ of the same size as Q, but recycling more paths, contradicting
Q ∈ Q(1). �

A slightly sharper version is the next assertion:

Corollary 2 If Q ∈ Q(1), then for any p ∈ P with p /∈ Q, there are q1, q2 ∈ Q,
q1
= q2, with |V (p) ∩ V (qi)| ≥ 1 (i = 1,2).

Proof Suppose it exists p ∈ P and only one q ∈ Q with |V (p) ∩ V (q)| ≥ 2
(Lemma 1). Then Q \ {q} ∪ {p} improves on property (1), contradicting Q ∈ Q(1). �

We sharpen this combinatorial bound by considering from the set Q(1) only those
P2-packings Q′ which maximize the following second property:

|E(P) ∩ E(Q′)|. (2)

The set of the remaining P2-packings will be called Q(2). So, in Q(2) are those pack-
ings from Q(1) which share the maximum number of edges from P .

In contrast to the general situation with 3-SET PACKING, paths are more concrete
objects that can be shifted or folded along the given graph. These geometric ideas

1The notation Q(1)(P) might be more appropriate, since Q(1) is depending on P , but we preferred to stay
with this simpler notation.

326 J Comb Optim (2009) 18: 319–341

Fig. 1 The black vertices and solid edges indicate the P2-packing P . The polygons contain the P2’s of
the packing Q. Dotted line are not contained in E(P)

Fig. 2 The black vertices and solid edges indicate the P2-packing P . The polygons contain the P2’s of
the packing Q. Dotted line are not contained in E(P)

will be used to finally prove our claimed combinatorial theorem. We formalize these
intuive notions of folding and shifting of paths in the following definition, which
should be easier to follow when looking at the examples provided in Fig. 1.

Definition 1

1. We call q = q1q2q3 ∈ Q foldable on p = p1p2p3 ∈ P if, for q2 ∈ V (p) ∩ V (q),
we have ps = q2, s ∈ {1,2,3}, and either ps+1 /∈ V (Q) or ps−1 /∈ V (Q), see
Fig. 1(a).

2. If q is foldable on p, then substituting q by (q \ {qi}) ∪ {ps±1} with i ∈ {1,3} and
qi /∈ V (p), will be called (qi,ps±1)-folding, see Fig. 1(b).

3. We call q = q1q2q3 ∈ Q shiftable with respect to q1 (or q3, resp.) on p =
p1p2p3 ∈ P if the following holds: q1 ∈ V (p) ∩ V (q) (or q3 ∈ V (p) ∩ V (q),
resp.) and either ps+1 /∈ V (Q) or ps−1 /∈ V (Q) where ps = q1 (or ps = q3, resp.)
and s ∈ {1,2,3}, see Fig. 1(c).

4. If q is shiftable on p with respect to t ∈ {q1, q3}, then substituting q by q \ {g} ∪
{ps+1} (or by q \ {g} ∪ {ps−1}, resp.), g ∈ {q1, q3} \ {t}, will be called (g,ps+1)-
shifting (or (g,ps−1)-shifting, resp.), see Fig. 1(d).

Lemma 2 If q = q1q2q3 ∈ Q with Q ∈ Q(2) is shiftable on p ∈ P with respect to
one of the endpoints qe, (e ∈ {1,3}), then there is some p′ ∈ P with p′
= p with
{qe′ , q2} ∈ E(p′) (e′ ∈ ({1,3} \ {e})), see Fig. 2(a).

Proof W.l.o.g., discuss e = 1. We examine the case where V (p) ∩ V (q) = {q1} and,
w.l.o.g., ps+1 /∈ V (Q). Now assume the contrary. Then by (q3,ps+1)-shifting, we
obtain a P2-packing Q′. Comparing Q and Q′ with respect to property (1), Q′ is no

J Comb Optim (2009) 18: 319–341 327

worse than Q. But Q′ improves on property (2), as we gain {ps,ps+1} without losing
an edge from P . But this contradicts Q ∈ Q(2). �

Lemma 3 If Q ∈ Q(2), then no q ∈ Q is foldable.

Proof Suppose some q ∈ Q is foldable on p and, w.l.o.g., ps+1 /∈ V (Q). Then by
(q1,ps+1)-folding q we could improve on property (2) (without weakening prop-
erty (1)), contradicting Q ∈ Q(2). �

Suppose there is a path p with |V (p) ∩ V (Q)| = 2. Then p shares exactly one
vertex pq ′ ,pq ′′ with paths q ′, q ′′ ∈ Q due to Corollary 2. In the following pq ′ and
pq ′′ will always refer to the two cut vertices of the paths q ′, q ′′ ∈ Q which cut a path
p with |V (p) ∩ V (Q)| = 2.

Lemma 4 Let Q ∈ Q(2). Consider p ∈ P with |V (p) ∩ V (Q)| = 2 and neither pq ′
nor pq ′′ are Q-endpoints. Then one of q ′, q ′′ is foldable.

Proof Let i, j ∈ {1,2,3} such that pq ′ = pi and pq ′′ = pj . Then for f ∈ {1,2,3} \
{i, j}, we have pf /∈ V (Q). W.l.o.g., {pi,pf } ∈ E(p). Then q ′ is (q ′

1,pf)-
foldable. �

Corollary 3 Let Q ∈ Q(2) and p ∈ P with |V (p) ∩ V (Q)| = 2. Then one of pq ′ ,pq ′′
must be a Q-endpoint.

Proof Assume the contrary. Then by using Lemmas 3 and 4 we derive a contradic-
tion. �

We define Pi (Q) := {p ∈ P | i = |p ∩ V (Q)|}.
Now we are ready to prove the main theorem.

Proof of Theorem 4 Suppose there is a path p ∈ P with |V (p) ∩ V (Q)| < 3. By
Corollary 2 we must have |V (p) ∩ V (Q)| = 2. By Corollary 3, w.l.o.g. pq ′ is a Q-
endpoint. For pq ′′ there are two possibilities:

(a) pq ′′ is also a Q-endpoint. Let {pf } = V (p) \ {pq ′ ,pq ′′ }. Then, w.l.o.g., {pq ′ ,pf }
∈ E(p). Therefore pq ′ is shiftable.

(b) pq ′′ is a Q-midpoint.

Claim pq ′′
= p2: Suppose the contrary. Then w.l.o.g., pq ′ = p1 and thus q ′′ is fold-
able on p by a (q ′′

1 ,p3)-folding. This contradicts Lemma 3. The claim follows.
W.l.o.g., we assume pq ′′ = p1, see Fig. 2(b). Then it follows that pq ′ = p2, as

otherwise a (q ′′
1 ,p2)-folding would contradict Lemma 3 again. From pq ′ = p2 and

p3 /∈ V (Q) we can derive that also in this case pq ′ is shiftable.

We now examine for both cases the implications of the shiftability of pq ′ . W.l.o.g.,
we suppose that pq ′ = q ′

1. Due to Lemma 2 there is a p′ ∈ P with {q ′
3, q

′
2} ∈ E(p′).

From Corollary 2, it follows that there must be a q̄ ∈ Q \{q ′} with |V (p′)∩V (q̄)| = 1,

328 J Comb Optim (2009) 18: 319–341

Fig. 3 The black vertices and solid edges indicate the P2-packing P . The polygons contain the P2’s of
the packing Q. Dotted line are not contained in E(P)

see Fig. 2(c). Hence, |V (p′) ∩ V (Q)| = 3. Note that q ′ is the only path in Q with
|V (q ′) ∩ V (p′)| = 2. Summarizing, we can say that for any p ∈ P with |V (p) ∩
V (Q)| = 2 we find a distinct p′ ∈ P (via q ′) such that |V (p′) ∩ V (Q)| = 3. So, there
is a total injection γ from P2(Q) to P3(Q). From |P2(Q) ∪ P3(Q)| = j and the
existence of γ we derive |P2(Q)| ≤ 0.5j . This implies |V (P)∩V (Q)| = 2|P2(Q)|+
3|P3(Q)| ≥ 2.5j . �

In a further step we will prove that also a considerable amount of old midpoints
(vertices in M P) will also be new midpoints (vertices in M Q). For this reason we
introduce a third priority. We only consider P2-packings Q ∈ Q(2) which maximize
the following property (3) and subsume them in Q(3).

|{q ∈ Q | ∃p,p′ ∈ P : |V (p) ∩ V (q)| = 1,p ∈ P2(Q), |E(p′) ∩ E(q)| = 1}|. (3)

Property (3) refers to maximizing situations depicted in Fig. 3(a).

Lemma 5 Let Q ∈ Q(3) such that |V (P) ∩ V (Q)| ≤ (3 − �) · j for some arbitrary
natural number j and some number � ∈ [0,0.5]. Then, |M P ∩ M Q| ≥ �j .

Note that we can assume 0 ≤ � ≤ 0.5 due to Theorem 4.

Proof We want to show the following relation: for every vertex m ∈ V (Q) \ V (P)

we find a unique midpoint m′ ∈ M P ∩ M Q.
Browsing the proof of Theorem 4 we find that there are �j paths p with |V (p) ∩

V (Q)| = 2. For every such path p we can find a path p′ =: p1′
(via q ′ =: q0) such

that not only |V (p1′
) ∩ V (Q)| = 3 but also |E(p1′

) ∩ E(q0)| = 1.
(1) Let {e} = E(p1′

) ∩ E(q0). Suppose e = {q0
2 , q0

3 } with q0
2 = p1′

2 and q0
3 = p1′

1

(see Fig. 3(a)) then p1′
2 ∈ M P ∩ M Q and the lemma follows for this case as p1′

1 is
distinct due to |E(p1′

) ∩ E(q0)| = 1.
(2) The remaining case is q0

2 = p1′
1 and q0

3 = p1′
2 . (a) Suppose now there is q1 ∈

(Q \ {q0}) with |V (q1) ∩ V (p1′
)| = 1 (Corollary 2) and V (q1) ∩ V (p1′

) ∈ M Q (see
Fig. 3(b)). Then by substituting q by q̄ := p1q

0
1q0

2 (shifting) we obtain a packing

J Comb Optim (2009) 18: 319–341 329

Q1 with |Q1| = |Q| such that the path q1 becomes foldable (see Fig. 3(c)) which
contradicts Lemma 3.

(b) Hence we must have V (q1) ∩ V (p1′
) = {q1

1 } = {p1′
3 } (see Fig. 3(d)). Consider

Q1: q1 must be shiftable on p1′
and hence there is p2′ ∈ P with |E(p2′

)∩E(q1)| = 1
and a q2 ∈ Q with |V (q2) ∩ V (p2′

)| = 1.
If we have q1

2 = p2′
2 and q1

3 = p2′
1 then Q1 improves property (3) with respect

to Q. Hence Q /∈ Q(3) which is a contradiction to the premise. Therefore we have
q1

2 = p2′
1 and q1

3 = p2′
2 . If V (q2) ∩ V (p2′

) ∈ M Q we derive a contradiction similar

to case 2(a). Hence V (q2) ∩ V (p2′
) = {q2

1 } = {p2′
3 }.

By shifting q1 (i.e., substituting q1 by q̄1 := p1′
2 q1

1q1
2 = p1′

2 p1′
3 p2′

1 ; we call this
chain-shifting) we obtain a packing Q2. By continued chain-shifting (i.e., substituting

qi by q̄i = pi′
2 qi

1q
i
3 = pi′

2 pi′
3 p

(i+1)′
1) we get a sequence of packings Q Q1 Q2 . . . from

Q(3) and paths q̄q̄1q̄2 . . . and p0′
p1′

p2′
p3′

. . . (where p0′ := p). We prove two claims
to finally determine a contradiction in case 2(b).

Claim (1) For all u ≥ 1 and 0 ≤ s < u we have q̄s
= qu.

Proof of Claim (1) Suppose the contrary that there are u ≥ 1 and 0 ≤ s < u with
q̄s = qu. Choose u as small as possible which means that qu will be the first P2 from
the sequence which will be shifted for the second time.

For a packing Qh and for any k < h we have: V (q̄k) ∩ V (pk′
) = {q̄k

1 , q̄k
2 } =

{pk′
2 ,pk′

3 } (|E(q̄k) ∩ E(pk′
)| = 1, resp.) and V (q̄k) ∩ V (p(k+1)′) = {q̄k

3 } = {p(k+1)′
1 }.

For z ≥ h we have V (qz) ∩ V (pz′
) = {qz

1} = {pz′
3 } and V (qz) ∩ V (p(z+1)′) =

{qz
2, qz

3} = {p(z+1)′
1 ,p

(z+1)′
2 } (|E(qz) ∩ E(p(z+1)′)| = 1, resp.), see Fig. 3(e) for the

case h = 2.
Let us fix Qu. (a) s = u − 1: We have V (q̄u−1) ∩ V (pu′

) = {pu′
1 } and V (qu) ∩

V (pu′
) = {pu′

3 }. Due to q̄u−1 = qu this implies pu′
1 = pu′

3 , a contradiction.

(b) s < u−1: Here we have |V (q̄s)∩V (p(s+1)′)| = 1 but also |V (qu)∩V (pu′
)| =

1. Due to q̄s = qu and the fact that qu shares with exactly one path from P exactly
one vertex, it follows p(s+1)′ = pu′

. In Qs we must have |V (qs) ∩ V (p(s+1)′)| = 2
as qs has not been chain-shifted yet. But due to the same reason we also must have
|V (qu−1)∩V (p(u)′)| = 2. But as p(s+1)′ = pu′

this means that V (qu−1)∩V (qs)
= ∅.
Due to qs
= qu−1 this contradicts the fact that Qs is indeed a P2-packing. �

Claim (2) All the elements in the sequence q̄0 . . . q̄u−1qu are pairwise different.

Proof of Claim (2) We show the claim by induction on u. For u = 1 suffices
Claim (1). Now suppose for some u Claim (2) holds. Then also q̄0 . . . q̄u−1q̄u are
pairwise different as they also form a P2-packing. Now by the preceding claim we
know that qu+1
= q̄s where 0 ≤ s < u + 1 which closes the inductive step. �

We finally can deduce a contradiction in the case 2(b). Take the packing Qn+1

where due Claim (2) the P2’s q̄0 . . . q̄nqn+1 form a packing in G and hence contain
3(n + 1) different vertices. This contradicts the fact that |V (G)| = n. �

330 J Comb Optim (2009) 18: 319–341

Fig. 4 Rule 1 and Rule 2. We use solid circles and thick lines for vertices and edges, respectively, in the
P2-packing P , and hollow circles and thin lines for vertices and edges not in P . Hence, two hollow circles
linked by a thin line represents a Q1-edge

4 The algorithm

The overall algorithm we propose has two core building blocks: kernelization and
exhaustive search (based on the combinatorial properties derived in the previous sec-
tion). Actually, both approaches are intertwined in a way that makes it necessary to
first present, in very concise way, the kernelization results obtained in other papers.
Moreover, it enables us to present the overall algorithm in a self-contained fashion.

4.1 Kernel results

Theorem 3 was obtained by optimizing the use of fat and double crowns through
local improvements, called Rule 1 (see Fig. 4(a)) and Rule 2 (see Fig. 4(b)). Given a
maximal packing P then R := V \ V (P) consists of single vertices (found in the set
Q0) and single edges (found in the set Q1).

As we will use some properties of the kernel in the analysis of forthcoming algo-
rithm we give a top level description of it.

A double crown decomposition of a graph G is a decomposition (H,C,R) of the
vertices in G such that

1. H (the head) separates C and R;
2. C = C0 ∪ C′ ∪ C′′ (the crown) is an independent set such that |C′| = |H |, |C′′| =

|H |, and there exist a perfect matching between C′ and H , and a perfect matching
between C′′ and H .

A fat crown decomposition of a graph G is a decomposition (H,C,R) of the vertices
in G such that

1. H (the head) separates C and R;
2. the induced subgraph G(C) is a collection of pairwise disjoint K2’s;
3. there is a perfect matching M between H and a subset of vertices in C such that

each connected component in G(C) has at most one vertex in M .

Lemma 6 (Prieto and Sloper 2004) A graph G with a double crown (fat crown,
resp.) (H,C,R) has a P2-packing of size k if and only if the graph G − H − C has
a P2-packing of size k − |H |.

J Comb Optim (2009) 18: 319–341 331

Lemma 6 is applied in Algorithm 1 in lines 7 and 9. Here the lines 1–12 correspond
to the kernelization algorithm of Chen et al. (2008), Wang et al. (2008), except that
in the ‘else’-part of line 12 we return the current kernelized graph Gker (and omit the
exponential part). Gker consists of a maximal P2-packing P of size j ≤ k − 1 and
of R. Now Chen et al. (2008), Wang et al. (2008) proved the following:

Lemma 7 (Chen et al. 2008; Wang et al. 2008) In line 9 of Algorithm 1 when we
return Gker we have:

1. |Q0| ≤ 2k and 2. |Q1| ≤ k.

We mention that if the bounds given in Lemma 7 are not met then it is proven that
a fat or double crown can be applied (see lines 6–7 and 8–9 in Algorithm 1). Putting
things together we have that |V (Gker)| ≤ 7k.

4.2 Combining kernel and combinatorial properties

Basically, Algorithm 1 inductively improves over its current packing P by using
exhaustive search as detailed in Algorithm 2 and justified in the preceding section.
To obtain the claimed run time bounds, it actually first kernelizes and then tries to
augment its solution by exhaustive search.

We are going to discuss three main aspects of Algorithm 2: (1) how matching
techniques can be used in the WIN-WIN-approach, (2) why the algorithm is yielding
a correct solution, and (3) how the run time is estimated.

Algorithm 1 An Algorithm for P2-PACKING.
1: P = ∅.
2: Greedily augment P by one more P2.
3: If step 2 succeeded then Goto 2.
4: Apply Rule 1. If it applied Goto 2.
5: Apply Rule 2. If it applied Goto 2.
6: if |Q0| ≥ 2|P | then
7: construct a double crown (H,C,R); k ← k − |H |; G ← G − H − C, Goto 1;
8: else if |Q1| ≥ |P | then
9: construct a fat crown (H,C,R); k ← k − |H |; G ← G − H − C; Goto 1;

10: else if k ≤ 0 then
11: return YES
12: else
13: Try to construct a P2-packing P ′ from P with |P | + 1 = |P ′| using Algo-

rithm 2.
14: if Step 13 failed then
15: return NO.
16: else
17: P ← P ′.
18: Goto 2.

332 J Comb Optim (2009) 18: 319–341

Algorithm 2 An Algorithm for augmenting a maximal P2-packing P .
1: j ← |P |.
2: for � = 0 to 0.25j do
3: for all Si ⊆ V (P), So ⊆ V \ V (P) with |Si | = (j + 1) − � and |So| = � do
4: Try to construct a P2-packing P ′ with Si ∪ So as midpoints.
5: if Step 4 succeeded then
6: return P ′.
7: for �̄ = 0.25j to 0.5j + 3 do
8: for r = �̄ to (j + 1) − �̄ do
9: for all Bo ⊆ V \ V (P), X ⊆ M P , Bi ⊆ (V (P) \ M P) with |Bo| = �̄,

|X| = r and |Bi | = (j + 1) − �̄ − r do
10: Try to construct a P2-packing P ′ with Bi ∪ Bo ∪ X as midpoints.
11: if Step 9 succeeded then
12: return P ′.
13: return failure.

4.3 Used matching techniques

We would like to point out the following fact about P2-packings. If a graph has a
P2-packing P = {p1, . . . , pk}, then it suffices to know the set of midpoints M P =
{p1

2, . . . , p
k
2} to construct a P2-packing of size k (which is possibly P) in polyno-

mial time. This fact was discovered by Prieto and Sloper (2004) and basically can
be achieved by bipartite matching techniques. Details on the mentioned matching
technique can be found in the following proposition.

Proposition 1 Let the vertex set M = {m1, . . . ,mj } contain all the midpoints of
some P2-packing P in a graph G(V,E). Then we can construct a P2-packing P ′ of
size j in polynomial time.

Proof Use the following algorithm:

– Find a maximum matching M in the auxiliary bipartite graph G′ = (V ′,E′),
where V ′ = A ∪ B is the bipartition with A = M × {1,2} and B = V \ M,
E′ = {{(u, i),w} | 1 ≤ i ≤ 2, (u, i) ∈ A,w ∈ B, {u,w} ∈ E}.

– If all elements of A are matched in M , then we have found a packing P ′ of G as
follows: P ′ = {(x, y, z) | {{(y,1), x}, {(y,2), z}} ⊆ M}.

Note that MP = {{{(p2,1),p3}, {(p2,2),p1}} | p1p2p3 ∈ P } matches A into B

in G′. Thus, P ′ must exist and is of size j . �

4.4 Correctness

The correctness of the kernelization part is shown in Chen et al. (2008), Wang et al.
(2008). If a P2-packing P ′ with |P ′| = j + 1 exists, we can partition the midpoints
M P ′ in a part which lies within V (P) and one which lies outside. We call them
Mi

P ′ := M P ′ ∩V (P) and Mo
P ′ := M P ′ ∩O , respectively with O := V (P ′)\V (P).

Theorem 4 yields |O| ≤ 0.5j + 3 and thus |Mo
P ′ | ≤ 0.5j + 3.

J Comb Optim (2009) 18: 319–341 333

Basically, we can find an integer � with 0 ≤ � ≤ 0.5j + 3 such that |Mi
P ′ | =

(j + 1) − � and |Mo
P ′ | = �. In step 2 of Algorithm 2, we run through every such

� until we reach 0.25j . For any choice of �, in step 3 of Algorithm 2, we cycle
through all possibilities of choosing sets Si ⊆ V (P) and So ⊆ V \ V (P) such that
|Si | = (j + 1) − � and |So| = �. Here Si and So are candidates for Mi

P ′ and Mo
P ′ ,

respectively. For any choice of Si and So, we try to construct a P2-packing. If we
succeed once, we can return the desired larger P2-packing.

Otherwise, we reach the point where � = 0.25j . Due to Lemma 5 we know that if
|Mo

P ′ | = �̄ then also |M P ∩ M P ′ | =: r ≥ �̄. Then due to Theorem 4 we can find an
0.25j ≤ �̄ ≤ 0.5j +3 and �̄ ≤ r ≤ (j +1)− �̄ such that |Mo

P ′ | = �̄, |M P ∩ M P ′ | = r

and |Mi
P ′ \ M P | = (j + 1) − �̄ − r . In step 8 of Algorithm 2 we cycle through all

candidate sets Bo,Bi for Mo
P ′, (Mi

P ′ \ M P) but also through X which is a candidate
for M P ∩ M P ′ . As we are already looking for �̄ + r midpoints in Mo

P ′ ∪ (M P ∩
M P ′) we only have to find (j + 1) − �̄ − r midpoints in (V (P) \ M P) ⊇ (Mi

P ′ \
M P).

4.5 Running time

The only exponential run time contribution comes from the for-loops in Algo-
rithm 2. k. For any � we execute step 3 of Algorithm 2 at most

(3j
(j+1)−�

)(
qj
�

) ∈
O

((3j
j−�

)(
qj
�

))
times, since |V (P)| = 3j and |V \ V (P)| = qj (0 ≤ q ≤ 4) due to

Theorem 3. Likewise, O
((qj

�̄

)(
j
r

)(2j

j−�̄−r

))
upper-bounds step 9 of Algorithm 2 as we

have |V \ V (P)| = qj , |M P | = j , and |V (P) \ M P | = 2j .

Lemma 8 Let A(q, z)[j] := (3j
j−zj

)(
qj
zj

)
with 0 ≤ q ≤ 4, 0 ≤ z ≤ 0.25 and z ≤ q .

Then, for all admitted values of q, z, we have A(q, z)[j] ∈ O(14.67j).

Proof We are going to show that
(3j
j−b

)(4j
b

)
<

(3j
j−(b+1)

)(4j
b+1

)
for 0 ≤ b ≤ 0.5j − 1.

We have:
(3j
j−(b+1)

)(4j
b+1

) − (3j
j−b

)(4j
b

)= (3j)!(4j)!((j−b)(4j−b)−(2j+b+1)(b+1))
(j−b)!(2j+b+1)!(b+1)!(4j−b)! .

It follows that

((j − b)(4j − b) − (2j + b + 1)(b + 1))

= 4j2 − jb7 − 2j − 2b − 1

b=0.5j−1≥ 0.5j2 + 4j + 1 > 0.

Hence, A(q, z)[j] ≤ (3j
j−zj

)(4j
zj

) ≤ (3j
0.75j

)(4j
0.25j

) ∈ O(13.77j). �

Lemma 9 Let B(q, z, s)[j] := (
qj
zj

)(
j
sj

)(2j
j−(z+s)j

)
with 0 ≤ q ≤ 4, 0.25 ≤ z ≤ 0.5,

z ≤ s ≤ 1 − z and z ≤ q . Then, for all admitted values of q, z, s, we have B(q, z, s) ∈
O(14.67j).

Proof 1. We first show B(q, z, z)[j] ≥ B(q, z, s)[j]. If we are able to prove w :=(
j
b

)(2j
j−zj−b

) − (
j

b+1

)(2j
j−zj−(b+1)

)
> 0 for any given 0.25 ≤ z ≤ 0.5 and any integer

334 J Comb Optim (2009) 18: 319–341

zj ≤ b ≤ (1 − z)j − 1 we are done. We have

w = j !(2j)!(
w′

︷ ︸︸ ︷
(b + 1)(j + zj + b + 1) − (j − b)(j − zj − b))

(b + 1)!(j − b)!(j − zj − b)!(j + zj + b + 1)! .

It follows

w′ = z(j2 + j) + 3jb − j2 + j + 2b + 1

b=zj≥ z(4j2 + 3j) − j2 + j + 1
z≥0.25≥ 7

4
j + 1 > 0.

2. Secondly, we show B(4, τ, τ)[j] ≥ B(4, z, z)[j] with 0.25 ≤ z ≤ 0.5 and τ =
0.327528803767482. Due to the relation

(
qj
pj

) ∈ O
((q

p

)pj (q
q−p

)(q−p)j) (see Fernau
2005) B(4, z, z)[j] is asymptotically upper-bounded by the expression:

⎛

⎜
⎜
⎜
⎜
⎝

=:λ(z)
︷ ︸︸ ︷
(

4

z

)z (
4

4 − z

)(4−z) (1

z

)z (
1

1 − z

)(1−z) (2

1 − 2z

)(1−2z) (2

1 + 2z

)(1+2z)

⎞

⎟
⎟
⎟
⎟
⎠

j

.

By taking the derivative of λ(z) and calculating its zeros we find that λ(z) is maxi-
mum at the point τ . Here we made use of a computer algebra system. So, the result
is correct modulo standard numerical errors.

Using subitems 1. and 2. we conclude: B(q, z, s)[j] ≤ B(q, z, z)[j] ≤ B(4,

z, z)[j] ≤ B(4, τ, τ)[j] ∈ O(14.67j). �

Theorem 5 P2-PACKING can be solved in time O(2.4483kk5.5 + k2n2).

Proof In lines 4 and 10 of Algorithm 2, we solve a bipartite matching problem which
takes O(j2.5) time due to Hopcroft and Karp (1973). By Lemmas 8 and 9 the run
times of steps 3 and 9 of Algorithm 2 are both upper-bounded by O∗(14.67j). Taking
also steps 2, 7 and 8 into account, which each need less than j steps, Algorithm 2
alone consumes O(2.4483kk4.5) time.

Considering Algorithm 1, we are able to construct a fat or double crown (C,H,R)

such that C consists either of Q1-edges or Q0-vertices (steps 7 and 9 in Algorithm 1)
in linear time (see Prieto and Sloper 2004). Both crown detections together will only
be applied k times and the total amount of time is therefore O(kn) for all invoked
crown reductions.

Rule 2 can only be applied k times and checking whether it applies takes O(kn)

steps. Greedy augmentation can be done in n steps in the following manner: If an
unpacked vertex v has two unpacked neighbors, we immediately have a new P2. If v

has only one unpacked neighbor u, check whether u has a third unpacked neighbor.
If v has no unpacked neighbor, then delete v.

The most difficult part is to estimate the time for greedy augmentation (line 2)
and Rule 1. First Rule 1 can only be applied n/2 times repeatedly as every time two

J Comb Optim (2009) 18: 319–341 335

Q0-vertices disappear, see Chen et al. (2008). We will divide the executions of line 2
into two parts: the actual augmentations by one P2 (aug), which can only happen k

times, and the non-augmentations (no-aug).
We claim that after at most n/2 + 1 no-augs without disruption of augs, we either

decrement the parameter k or P will be augmented. Note that after a no-aug we
immediately check if Rule 1 applies. If it does not apply, then either Rule 2, a double
or fat crown or the invocation of Algorithm 2 applies and the claim follows. If it
applies, we jump back to line 2. But after n/2 + 1 alternations between no-augs
and Rule 1, Rule 1 can not apply anymore and the claim follows. Hence, the time
spent for no-augs is O(kn2). Similarly we see that Rule 1 takes a total of O(k2n2)

steps. As Algorithm 2 is invoked at most k times we obtain an overall run time of
O(2.4483kk5.5 + kn + k2n + kn2 + k2n2). �

Notice the asymptotic speed-up we achieve by changing the strategy (WIN-WIN).
If we would skip the search for the old midpoints which are also new midpoints,
we would have to count � up to 0.5j + 3 in step 3. Then, we had that

(3j
0.5j

)(4j
0.5j

) ∈
O(17.44j) (for j up to k), which is also not a big improvement compared to a brute
force search for the midpoints on the 7k-kernel. Namely, this would take O∗(17.66k)

steps.
We also like to point out that Lemma 5 is crucial to obtain the run time. Namely,

without this result we would not have a lower bound |M P ∩ M P ′ | ≥ |V (P ′) ∩
V (P)| − 3. Hence, we would have to take into account expressions like B(4, z, r)[j]
where r < z. For example, if z = 0.5 and r = 0.17, then B(4, z, r)[j] ∈ O(17.44j).

5 Lower bound & subcubic graphs

The main topic of this section is to provide examples of families of (reduced) graphs
for which the obtained reusability results are optimal. Some thoughts on degree-
bounded graphs in a first subsection complement these findings.

5.1 Subcubic graphs

A graph is called subcubic if the degree of any vertex is no greater than three.
Kosowski et al. (2005) obtained a linear time algorithm that for any subcubic graph
outputs a P2-packing of size at least n

5 . For a subcubic graphs without vertices of
degree one (so called (2,3)-graphs) this results can be even improved to n

4 . We can
use this results to obtain better results for these graph classes.

Theorem 6 P2-PACKING on subcubic graphs can be solved in time O∗(1.45343k)

and on (2,3)-graphs in O∗(1.23183k).

Proof Subcubic graphs: We first compute a packing P containing 3
5n vertices as

mentioned above. If k ≤ 3
5n we are done. Otherwise we have n < 5

3k. Finding the k

midpoints then takes O
((5

3 k

k

)) ⊆ O(1.45343k) steps.

336 J Comb Optim (2009) 18: 319–341

Fig. 5 The graphs A� and B� and the non-optimal P2-packing P (dotted rectangles in (b) and the optimal
P2-packing P̃ (solid rectangles in (b)) of B3 are depicted

(2,3)-graphs: We now are able to compute a packing with at least 3
4n ver-

tices. Similarly we can compute a packing of size k if one exists in O
((4

3 k

k

)) ⊆
O(1.28393k). �

5.2 Lower bound for vertex reusability

In this section, we show that Theorem 4 is indeed sharp for general graphs and a
general maximal P2-packing P . We will expose a graph family B� such that any P2-
packing of size j + 1, where j = |P |, will asymptotically recycle at most 2.5j out of
the 3j vertices in V (P).

A lower bound example

The graph family is defined the following way: B1 = B , where B is the graph in
Fig. 5(a) and the vertices are indexed by the indicated grid. Here the vertical axis
corresponds to the first entry and the horizontal axis to the second entry. The graph
B� will emerge if we take B1 and B�−1 and connect vertex (3,1) of B�−1 with vertex
(2,4) of B1, see Fig. 5(b) for an example of B3. The vertices of B� will be indexed
according to the grid in Fig. 5(b). The parts of B� which correspond to B will be
indexed from the left to the right as B�

i .
We call a pending P2 an induced P2 which is attached to the rest of the graph G

by exactly one edge. In Fig. 5(a) the three left most vertices form a pending P2. Note
that a pending P2 is a double crown if it is attached to G via the midpoint and a fat
crown if it is attached via one of its endpoints. Therefore, the next reduction rule is
sound:

Pending Let p be a pending P2. Then delete P2 and decrease k by one.

Lemma 10 Let P ′ be a maximum P2-packing of B�. Then |P ′| = 2�.

J Comb Optim (2009) 18: 319–341 337

Proof We proceed by induction on �. For � = 1 the claim is true as two pending
applications with respect to B1 show. Let � > 1, then pick B�

1 . The reduction rule
pending applies to the P2 induced by (3,1), (3,2), (3,3) and afterwards also to the
P2 ((1,3), (2,3), (2,4)). As these two P2 will be deleted the remaining graph is a
B�−1 and an isolated K1. Now the proof follows by induction. �

We introduce another graph family A�. It is also defined recursively: A1 = A, see
Fig. 5(c) and the vertices are indexed by indicated grid. A� is generated by taking A1

and A�−1 and connecting the vertex (2,3) of A1 with the vertex (2,1) of A�−1, see
Fig. 5(d) for an example of A3. The vertices of A� will be indicated according to the
grid in Fig. 5(d). The parts of A� which correspond to A will be indexed from the
left to the right as A�

i . We prove now the next Lemma as it is used as an intermediate
step.

Lemma 11 Let P ′ be a maximum P2-packing of A�. Then |P ′| = 2�.

Proof We proceed by induction on �. For � = 1 the claim is true as two pending
applications with respect to A1 show. Let � > 1, then pick A�

1. The reduction rule
pending applies to the P2 induced by (2,2), (2,1), (3,1) and afterwards also to the
P2 ((3,2), (3,3), (2,3)). As these two P2 will be deleted the remaining graph is a
A�−1 and a K1. Now the proof follows by induction. �

Theorem 7 For the graph family B� defined above, there is a P2-packing P of size
2�−1 such that for every P2-packing P ′ of size 2� we have |V (P)∩V (P ′)| ≤ 5�−2.

Proof First we define P := τ1 ∪τ2 where τ1 := {((3,3+3i), (2,3+3i), (1,3+3i)) |
0 ≤ i ≤ � − 1} and τ2 := {((3,4 + 3j), (2,4 + 3j), (2,5 + 3j)) | 0 ≤ j ≤ � − 2}, see
Fig. 5(b) where the elements of P are framed by dotted rectangles in B3.

Let P̃ := τ̃1 ∪ τ̃2 ∪ α where τ̃1 := {((3,1 + 3i), (3,2 + 3i), (3,3 + 3i)) | 0 ≤
i ≤ � − 1}, τ̃2 := {((2,3 + 3j), (2,4 + 3j), (2,5 + 3j)) | 0 ≤ j ≤ � − 2} and
α := {((1,3�), (2,3�), (2,1+3�))}, see Fig. 5(b) where the elements of P̃ are framed
by solid rectangles in B3.

Observe that P̃ exactly reuses 5� − 2 out of the 6� − 3 vertices of P . The vertices
of the P2’s in τ2 will appear entirely in V (P̃). Of each P2 in τ1 exactly two vertices
are reused by P̃ except for the one to the very right. Here all vertices are recycled.
Summing up 3(� − 1) + 2(� − 1) + 3 = 5� − 2 vertices are recycled.

Claim Let P ′ be an P2-packing of size greater than 2� − 1 for B� such that |V (P) ∩
V (P ′)| is maximum. Then |V (P) ∩ V (P ′)| = |V (P) ∩ V (P̃)|.

Proof We must have |P ′| = 2� due to Lemma 10. Again we use induction on �. if
� = 1 then P̃ = {((3,1), (3,2), (3,3)), ((1,3), (2,3), (2,4))} and |V (P)∩V (P̃)| = 3
which is optimal and hence shows the lemma for � = 1.

Let � > 1. Consider the set L := {(3,1), (3,2), (3,3)}. We must have L∩V (P ′)
=
∅ as P ′ is maximal. We will now distinguish cases with respect to the expression
L ∩ V (P ′). It can be easily seen that the case distinction is indeed complete.

338 J Comb Optim (2009) 18: 319–341

L ∩ V (P ′) = {(3,3)}: (a) If h := ((3,3), (2,3), (1,3)) ∈ P ′, then G[V \ V (h)] con-
sists of an A�−1 and an isolated K2. Due to Lemma 11, any maximum P2-packing
for A�−1 has size 2(� − 1). Hence, |P ′ \ {p}| = |{p ∈ P ′ | V (p) ⊆ V (A�−1)}| ≤
2(� − 1). Therefore, |P ′| ≤ 2� − 1, a contradiction to the optimality of P ′.
(b) If g := ((3,3), (2,3), (2,4)) ∈ P ′, then G[V \ V (g)] consists of two isolated
K1’s, a isolated K2’s and a B�−1. With Lemma 10 (similarly to subitem (a)), it
follows that |P ′| ≤ 2� − 1, which is again a contradiction.

L ∩ V (P ′) = {(3,2), (3,3)}: Then, f := ((3,2), (3,3), (2,3)) ∈ P ′. G[V \ V (f)]
consists of two isolated K1’s and an A�−1. With Lemma 11 (similarly to subitem
(a)) in the previous item), it follows that |P ′| ≤ 2� − 1, a contradiction.

L ∩ V (P ′) = {(3,1), (3,2), (3,3)}: Then d := ((3,1), (3,2), (3,3)) ∈ P ′. Now con-
sider the set Q =: {(1,3), (2,3), (2,4), (2,5)}. Due to the topology of B�, at most
one P2 from P ′ can share a vertex with Q. As P ′ is maximal, there must be exactly
one P2, say p ∈ P ′, that shares a vertex with Q.
Let P̂ = (P ′ \ {p}) ∪ c where c := {((2,3), (2,4), (2,5))}. As we have Q ⊆ V (P)

it follows that |V (P) ∩ V (P ′)| = |V (P) ∩ V (P̂)|. Now, G[V \ (V (d) ∪ V (c))] is a
B�−1 and an isolated K1. Let P̃�−1 contain only those P2’s of P̃ which are entirely
contained in B�−1. Let P̂�−1 be defined the same way with respect to P̂ .
By induction, |V (P) ∩ V (P̃�−1)| ≥ |V (P) ∩ V (P̂�−1)|. As we have P̃ = P̃�−1 ∪
{d, c} and P̂ = P̂�−1 ∪ {d, c} we see that |V (P) ∩ V (P̃)| ≥ |V (P) ∩ V (

˜̂P)| =
|V (P) ∩ V (P ′)|.

�

From the previous claim follows that no P2-packing of size j + 1 can reuse more
vertices of P than P̃ . This proves the theorem finally. �

From Theorem 7 we see that for any P2-packing P̄ of size j + 1 we have
|V (P)|

|V (P)∩V (P̄)| ≤ 6�−3
5�−2 and therefore lim�→∞ 6�−3

5�−2 = 6
5 = 3j

2.5j
.

We see that Theorem 4 is indeed sharp. We point out that our example is also
irreducible with respect to the 7k-kernel. With respect to B� and P we have |Q0| =
� − 1. But as |P | = 2� − 1 the double crown reduction rule does not apply (line 6 of
Algorithm 1). The same is true for fat crowns as |Q1| = 2 (line 8 of Algorithm 1).

A serious drawback is that the pending reduction rule suffices to solve P2-
PACKING on B�. Thus, if we enrich the kernelization part by pending such a worst
case instance never could show up in Algorithm 2. In the last section we will give a
slightly modified graph family which is also irreducible with respect to pending.

An irreducible lower bound example

Let C� := G(V (B�) \ {(2,2 + 3�)}, (E(B�) \ {{(2,1 + 3�), (2,2 + 3�)}}) ∪ {{(3,1),

(2,3�)}}), thus we simply delete the vertex (2,2 + 3�) and add the edge {(3,1),

(2,3�)} to B�, see Fig. 6. Due to this modification pending cannot be applied to C�.
Nevertheless, we can find the packings P and P̃ in C�.

Theorem 8 Given C� and the P2-packing P of size 2� − 1 for every P2-packing P ′
of size 2� we have the relation |V (P) ∩ V (P ′)| ≤ 5� − 2.

J Comb Optim (2009) 18: 319–341 339

Fig. 6 The graph C3

Proof Suppose there is P2-packing P ′ of size j + 1 with |V (P) ∩ V (P ′)| > 5� − 2.
Assume that there is no p ∈ P ′ such that covered, i.e., {(3,1), (2,3�)} ∈ E(p). Then
P ′ is also a packing for B�. But this contradicts Theorem 7. Hence, there are two
remaining possibilities:

(a) ((3,2), (3,1), (2,3�)) ∈ P ′. Consider G′ := G[V \ {(3,2), (3,1), (2,3�)}].
One can show by induction that after 2� − 2 applications of pending, the remain-
ing graph consists of isolated K1’s and K2’s. We conclude |P ′| = 2� − 1, which is a
contradiction to the premise.

(b) ((3,1), (2,3�), (2,1 + 3�)) ∈ P ′ or ((3,1), (2,3�), (1,3�)) ∈ P ′: Similarly to
(a), this would result in the contradictory consequence |P ′| = 2� − 1. �

By Theorem 8, we now have a graph family which is irreducible with respect to
hitherto reduction rules, and this shows that Theorem 4 is (asymptotically) sharp.
We would like to share the intuition that degree-one vertices which are attached to
a vertex of degree greater one are crucial for our lower-bound example. This is in
accordance with Sect. 5.1: The guaranteed P2-packing for (2,3)-graphs has greater
size than the one for general subcubic graphs.

6 Future work

One possible direction of research is that one tries to overcome the bound on the
number of reusable vertices of 2.5j . There are two main possibilities to tackle this
problem. Firstly, one could try to modify the greedy P2-packing by further ‘local
optimization rules’ similar to Rule 1 and Rule 2. Secondly, due to newly invented
reduction rules it might be possible that our lower bound examples do not occur
anymore. This could lead to an improvement of Theorem 4.

It would be nice to derive smaller kernels than 7k or 1.5k for P2-PACKING or
TOTAL EDGE COVER, resp., in view of the mentioned lower bound results (Chen et
al. 2007).

A closely related problem is MAXIMUM P3-PACKING for which Hassin and Ru-
binstein (1997) found a 3

4 -approximation. We are trying to apply extremal combinato-
rial methods to save colors for Pd -packings for d ≥ 3. First results seem to be promis-
ing. So, a detailed combinatorial (extremal structure) study of (say graph) structure
under the perspective of a specific combinatorial problem seems to pay off not only
for kernelization (see Estivill-Castro et al. 2005), but also for iterative approaches. In
view of new kernelization results for quite general packing problems (Moser 2009),
it would be also interesting to apply these ideas in broader contexts.

Developing exact algorithms for MAXIMUM P2-PACKING would be interest-
ing. Dynamic programming yields an O∗(2n)-algorithm. Enumerating all possible
midpoints takes

∑n/3
i=1

(
n
i

) ⊆ O∗(1.8899n). By Theorem 2, TOTAL EDGE COVER

340 J Comb Optim (2009) 18: 319–341

can be solved in time O∗(1.88991.5k) ⊆ O∗(2.5981k). Improving on exact, non-
parameterized algorithmics would also improve on the parameterized algorithm for
TOTAL EDGE COVER. Alternatively, finding for example a search-tree algorithm for
TOTAL EDGE COVER would be interesting.

We finally mention that H. Fernau, J. Kneis and P. Rossmanith could show that
also the general TEST COVER problem is in F P T , a bit surprising in view of the fact
that the quite similar FEATURE SET problem is W[2]-complete (Cotta and Moscato
2002, 2003). However, the general algorithm is far from practical and needs to be
improved.

References

Bazgan C, Hassin R, Monnot J (2005) Approximation algorithms for some vehicle routing problems.
Discrete Appl Math 146:27–42

De Bontridder KMJ, Halldórsson BV, Halldórsson MM, Lenstra JK, Ravi R, Stougie L (2003) Approxi-
mation algorithms for the test cover problem. Math Program, Ser B 98:477–491

Chen J, Fernau H, Kanj YA, Xia G (2007) Parametric duality and kernelization: lower bounds and upper
bounds on kernel size. SIAM J Comput 37:1077–1108

Chen J, Fernau H, Ning D, Raible D, Wang J (2008) A parameterized perspective on P2-packings. Tech-
nical report 0804.0570, ArXiv, http://arxiv.org/abs/0804.0570

Cotta C, Moscato P (2002) On the parameterized complexity of problems related with feature identification
for gene expression data mining techniques. Bioinformatics 1:1–8

Cotta C, Moscato P (2003) The k-feature set problem is W[2]-complete. J Comput Syst Sci 67:686–690
Dehne F, Fellows M, Fernau H, Prieto E, Rosamond F (2006) NONBLOCKER: parameterized algorithmics

for MINIMUM DOMINATING SET. In: Štuller J, Wiedermann J, Tel G, Pokorný J, Bielikova M (eds)
Software seminar SOFSEM. LNCS, vol 3831. Springer, Berlin, pp 237–245

Downey RG, Fellows MR (1999) Parameterized complexity. Springer, Berlin
Estivill-Castro V, Fellows MR, Langston MA, Rosamond FA (2005) FPT is P-time extremal structure I. In:

Broersma H, Johnson M, Szeider S (eds) Algorithms and complexity in Durham ACiD 2005. Texts
in algorithmics, vol 4. King’s College, London, pp 1–41

Fellows M (2002) Parameterized complexity: the main ideas and connections to practical computing. Elec-
tron Notes Theor Comput Sci 61

Fernau H (2005) Parameterized algorithmics: a graph-theoretic approach. Habilitationsschrift, Universität
Tübingen, Germany

Fernau H, Manlove DF (2006) Vertex and edge covers with clustering properties: Complexity and algo-
rithms. In: Algorithms and complexity in Durham ACiD 2006. King’s College, London, pp 69–84

Fernau H, Raible D (2008) A parameterized perspective on packing paths of length two. In: Yang B,
Du D-Z, An Wang C (eds) Combinatorial optimization and applications COCOA. LNCS, vol 5165.
Springer, Berlin, pp 54–63

Gallai T (1959) Über extreme Punkt-und Kantenmengen. Ann Univ Sci Bp Eötvös Sect Math 2:133–138
Hassin R, Rubinstein S (1997) An approximation algorithm for maximum packing of 3-edge paths. Inf

Process Lett 63:63–67
Hassin R, Rubinstein S (2006) An approximation algorithm for maximum triangle packing. Discrete Appl

Math 154:971–979; 2620 [Erratum]
Hell P, Kirkpatrick DG (1982) Star factors and star packings. Technical report 82-6, Computing Science,

Simon Fraser University, Burnaby, BC V5A1S6, Canada
Hopcroft JE, Karp RM (1973) An n5/2-algorithm for maximum matchings in bipartite graphs. SIAM J

Comput 2(4):225–231
Khot S, Raman V (2002) Parameterized complexity of finding subgraphs with hereditary properties. Theor

Comput Sci 289:997–1008
Kirkpatrick DG, Hell P (1978) On the completeness of a generalized matching problem. In: ACM sympo-

sium on theory of computing STOC, pp. 240–245
Kosowski A, Małafiejski M, Żyliński P (2005) Packing three-vertex paths in a subcubic graph. In: Fel-

sner S (ed) 2005 European conference on combinatorics, graph theory and applications (EuroComb
’05). DMTCS proceedings, Discrete mathematics and theoretical computer science, vol AE. Springer,
Berlin, pp 213–218

http://arxiv.org/abs/0804.0570

J Comb Optim (2009) 18: 319–341 341

Koutis I (2008) Faster algebraic algorithms for path and packing problems. In: Aceto L, Damgård I, Ann
Goldberg L, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) Automata, languages and pro-
gramming, 35th international colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Pro-
ceedings, Part I: Tack A: algorithms, automata, complexity, and games. Lecture notes in computer
science, vol 5125. Springer, Berlin, pp 575–586

Liu Y, Lu S, Chen J, Sze S-H (2006) Greedy localization and color-coding: improved matching and packing
algorithms. In: Bodlaender HL, Langston M (eds) International workshop on parameterized and exact
computation IWPEC. LNCS, vol 4169. Springer, Berlin, pp 84–95

Micali S, Vazirani VV (1980) An O(
√|V ||E|) algorithm for finding maximum matchings in general

graphs. In: Symposium on foundations of computer science. IEEE Press, New York, pp 17–27
Monnot J, Toulouse S (2007) The Pk partitioning problem and related problems in bipartite graphs. In:

van Leeuwen J et al (eds) Software seminar SOFSEM 2008. Lecture notes in computer science, vol
4362. Springer, Berlin, pp 422–433

Moser H (2009) A problem kernelization for graph packing. In: Nielsen M et al (eds) Software seminar
SOFSEM. LNCS, vol 5404. Springer, Berlin, pp 401–412

Plesník J (1984) Equivalence between the minimum covering problem and the maximum matching prob-
lem. Discrete Math 49:315–317

Prieto E, Sloper C (2003) Either/or: Using vertex cover structure in designing FPT-algorithms—the case of
k-internal spanning tree. In: Proceedings of WADS 2003, workshop on algorithms and data structures.
LNCS, vol 2748. Springer, Berlin, pp 465–483

Prieto E, Sloper C (2004) Looking at the stars. In: Downey R, Fellows M, Dehne F (eds) International
workshop on parameterized and exact computation IWPEC 2004. LNCS, vol 3162. Springer, Berlin,
pp 138–148

Wang J, Feng Q (2008) An O∗(3.523k) parameterized algorithm for 3-set packing. In: Agrawal M et al
(eds) Theory and applications of models of computation TAMC. LNCS, vol 4978. Springer, Berlin,
pp 82–93

Wang J, Ning D, Feng Q, Chen J (2008) An improved parameterized algorithm for a generalized matching
problem. In: Agrawal M et al (eds) Theory and applications of models of computation TAMC. LNCS,
vol 4978. Springer, Berlin, pp 212–222

	A parameterized perspective on packing paths of length two
	Abstract
	Introduction and definitions
	Mathematical motivation
	Applications
	Test cover
	Vehicle routing

	Our framework: parameterized complexity
	Discussion of related work
	Our contributions
	Some notations and definitions
	Organization of the paper

	Issues from parameterized complexity
	Combinatorial properties of P2-packings
	The algorithm
	Kernel results
	Combining kernel and combinatorial properties
	Used matching techniques
	Correctness
	Running time

	Lower bound & subcubic graphs
	Subcubic graphs
	Lower bound for vertex reusability
	A lower bound example
	Pending

	An irreducible lower bound example

	Future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

