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Abstract We provide a comprehensive study on network flow problems with arc
reversal capabilities. The problem is to identify the arcs to be reversed in order to
achieve a maximum flow from source(s) to sink(s). The problem finds its applica-
tions in emergency transportation management, where the lanes of a road network
could be reversed to enable flow in the opposite direction. We study several network
flow problems with the arc reversal capability and discuss their complexity. More
specifically, we discuss the polynomial time algorithms for the maximum dynamic
flow problem with arc reversal capability having a single source and a single sink,
and for the maximum (static) flow problem. The presented algorithms are based on
graph transformations and reductions to polynomially solvable flow problems. In ad-
dition, we show that the quickest transshipment problem with arc reversal capability
and the problem of minimizing the total cost resulting from arc switching costs are
N P -hard.
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1 Introduction

We study contraflow network problems, wherein we maximize flow in a graph while
permitting direction reversals of an arc, resulting in a capacity increase in the direc-
tion of switch. The applications are realized in an emergency situation, where people
have to be ‘evacuated’ from a specific area; i.e. a football stadium after a game, a city
expecting a flood or hurricane, a zone where an unexploded ordnance device has been
found, or a region which has been attacked by terrorists. In most of these cases, the
evacuees are expected to leave the area of risk, the source(s), towards a safer place,
the sink(s). A flow towards the source is undesired during most of these scenarios and
we do not expect the evacuees to go in this direction. As a direct consequence, all the
arcs that are not a part of any path from the source node(s) to the sink(s) might be
left unused. One can even encounter idle arcs during certain scenarios, such as man-
aging a football event, wherein we do have some amount of flow towards the source.
These idle arcs could be used to increase the efficiency of evacuation by reversing
their directions. The scenarios involving in partial lane reversal capability could be
captured with appropriate graph transformations. We discuss several scenarios that
may arise during the reconfiguration, which includes permitting only a subset of arcs
to be reversed, imposing a switching cost to the arcs involving in the reversals.

There are very few optimization techniques in the literature handling arc reversals.
Kim and Shekhar (2005) proposed a simulated annealing procedure for this prob-
lem and provided empirical results. They also provide a sketch of the proof that the
problem is N P -complete. A tabu-based heuristic was proposed by Tuydes and Zil-
iaskopoulos (2006) for the problem. They focus their study on a specialized version,
where they permit lane reversals with partial capacities. Hamza-Lup et al. (2004) pro-
posed a heuristic for this contraflow problem. These techniques and their pitfalls were
discussed in (Kim and Shekhar 2005). A few other studies in the literature that are
not analytical in nature were also proposed. They rely on simulation-based methods
and decision support tools (Theodoulou and Wolshon 2004; Williams et al. 2007).

In this paper, we provide a detailed study of the arc reversal (or contraflow) prob-
lems with respect to their computational complexity. The motivation is to introduce
the problems formally to provide a basis for further research in this area. As the appli-
cations are mainly realized during emergency situations, the dynamic flow problems
are of principal interest, but we study static cases as presuppositions and also for the
sake of completeness of the study. In Sect. 2, we provide a brief background of the
network flow problems and explain the terminology used in the rest of the paper. We
then provide a discussion of static flow problems in Sect. 3. A polynomial time al-
gorithm through a graph transformation is introduced for the static maximum flow
problem with arc reversal capability. The result is evident and it is useful in Sect. 4.1
in showing that the dynamic maximum contraflow problem with single source and
single sink is polynomially solvable. We show in Sect. 4.2 that the decision version
of the multiple sources and multiple sinks version of the problem is N P -complete
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through a reduction from 3-SATISFIABILITY (3SAT). In Sect. 4.2.2, we show that
the problem becomes N P -complete by having just two sources or sinks. In addition,
we discuss the inability of the graph transformation that was employed earlier to pro-
vide feasible solutions. We finally show in Sect. 5 that the problem of finding the
minimum total cost, incurred due to an arc switching cost, to identify the arcs to be
reversed is N P -hard, even in the static case.

2 Background

The basic terminologies and definitions that are predominantly used in the network
flows literature and that are essential for the rest of the paper are explained in this
section.

Definition 1 (Static feasible flow) Given is a graph G = (V ,A) with capacities ce ∈
Z

+ for all arcs e ∈ A. A static flow, characterized by the function f : A → R
+, with

value v, from s ∈ V to t ∈ V is feasible, if

fe ≤ ce, ∀e ∈ A (1)

∑

(i,j)∈A

fi,j −
∑

(j,k)∈A

fj,k =

⎧
⎪⎨

⎪⎩

v, j = s,

0, ∀j ∈ V \{s ∪ t},
−v, j = t.

(2)

We call node s as the ‘source’, node t as the ‘sink’ and rest of the nodes as ‘interme-
diate’ or ‘transhipment’ nodes.

Equation (1) ensures that the flow fe along each arc e ∈ A meets the capacity con-
straints; as we assume all lower bounds on the flow to be 0. In (2), the net flow out of
s is v and the net flow in t is −v. For all intermediate nodes, the net flow is 0 which
is also referred to as flow conservation. The definition of a feasible flow generalizes
in a natural way for the case of multiple sources and multiple sinks.

A sequence of distinct nodes x1, x2, . . . , xn of a graph G = (V ,A) is called a chain
if (xi, xi+1) ∈ A,∀i = 1, . . . , n. A chain is also referred to as a directed path. Let P

be the set of all chains from s to t . We define another flow function, h : P → Z
+, in

terms of the flow along the chains from s to t . A feasible flow f with value v could
be decomposed into a set of chains, P , from s to t , such that

v =
|P |∑

i=1

hi.

The process of obtaining flow along the chains this way is called as ‘chain decom-
position’. A more detailed account of these terminologies could be found in (Ahuja
et al. 1993; Ford and Fulkerson 1962).

In a dynamic graph or network G = (V ,A) each arc is associated with a travel
time, t : A → R

+, besides the capacity function. The graph expanded over T time
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periods, GT = (V T ,AT ), is obtained by replacing each node by T copies and having

nodes vl
i and v

l+ti,j
j connected in GT = (V T ,AT ) if vi and vj are connected in G, for

all l = 0, . . . , T − ti,j . This concept of a feasible flow can be directly adapted to the
dynamic case by ensuring that both (1) and (2) are satisfied for all discrete time steps.
Hence, a feasible dynamic flow is a feasible flow in the time expanded graph with the
value equal to the sum of the net flows out of all the T copies of s. For more details
about time expanded graphs refer, for instance, to (Ahuja et al. 1993, Chap. 19.6).

3 Maximum static contraflow problems

In this section, we provide a polynomial time algorithm solving the maximum con-
traflow problem in a static graph. The results presented in this section are very basic
and straightforward. Nevertheless, we discuss them in detail as this helps us in devel-
oping the main results in Sect. 4.

Now, let us define the maximum flow problem with arc reversal capability.

Definition 2 (Maximum Contraflow (MCF))
Instance: Given a directed graph G = (V ,A) with source s+ ∈ V , sink s− ∈ V and
capacity ce ∈ Z

+ on each arc e ∈ A.
Question: What is the maximum flow from node s+ to node s− if the direction of the
arcs can be reversed?

This problem is also called maximum flow problem with arc reversal. Consider
now procedure P-MCF. In the first step, an auxiliary graph G̃ = (V , Ã) is constructed.
The transformation from the original graph G is obtained by summing the capacities
of arcs (i, j) and (j, i). This allows us to reduce the MCF problem to the maximum
flow problem on the transformed graph in step 2. Step 3 removes cycle flows in the
transformed graph. This ensures that the constructed solution of the MCF problem in
step 4 is well defined.

We have the prior knowledge that there exists an optimal flow to the maximum
flow problem that does not have cycles. Thus, arcs on either direction will never be
used in this flow for the maximum flow problem. This is the basic idea of procedure
P-MCF that motivates the graph transformation given. This result is straightforward
but we can realize its impact in Sect. 4.1.

Theorem 1 (Proof of correctness) Procedure P-MCF solves the maximum flow prob-
lem with arc reversal for graph G = (V ,A) optimally.

Proof The proof consists out of two steps. First, we show that any solution of the
procedure P-MCF is feasible for G = (V ,A). Second, we show its optimality.

For feasibility, we only have to show that step 4 in the algorithm is well defined;
i.e. not both arcs (i, j) and (j, i) have to be switched. However, this is ensured by
step 3. The optimal solution after the flow decomposition results in a set of paths from
source to sink and a set of cycles with positive flows. After the flow decomposition
we could cancel the positive flows along all cycles and ensure that there is no flow
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Procedure Maximum Contraflow (P-MCF)
1. Construct the transformed graph G̃ = (V , Ã) where the arc set is defined

as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A.

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i ,

for all arcs (i, j) ∈ Ã.
2. Solve the maximum flow problem on graph G̃ with capacity c̃.
3. Perform flow decomposition into path and cycle flows of the maximum

flow resulting from step 2. Remove the cycle flows.
4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater

than ci,j , or if there is a non-negative flow along arc (i, j) /∈ A and the re-
sulting flow is the maximum flow with arc reversal for graph G = (V ,A).

End procedure

along any cycle. This ensures that there is either a flow along arc (i, j) or (j, i), but
never on both arcs. Hence, the resulting flow from step 4 is a feasible flow with arc
reversal for graph G = (V ,A).

Now, we prove that the resulting flow is also optimal. Note that any optimal
solution to the maximum flow problem with arc reversal on graph G = (V ,A) is
also a feasible solution to the maximum flow problem on the transformed graph
G̃ = (V , Ã). As the amount of flow sent from s to t is not changed in steps 3 and 4, the
resulting flow is an optimal solution to the maximum flow problem with arc reversal
on graph G = (V ,A). �

The running time of procedure P-MCF is dominated by solving a maximum flow
problem in step 2 and by the flow decomposition in step 3; as steps 1 and 4 can be
done in O(|A|). Let us denote the running time for solving the maximum flow prob-
lem by S1(|V |, |A|) and for the flow decomposition problem by S2(|V |, |A|). Then,
the running time of procedure P-MCF is given by O(S1(|V |, |A|)+S2(|V |, |A|)). Us-
ing the highest-label preflow-push algorithm leads to S1(|V |, |A|) = O(|V |2 · √A),
(Cheriyan and Maheshwari 1989). The flow decomposition can be done, for instance,
in O(|V | · |A|), (Ahuja et al. 1993). This proves the following theorem.

Theorem 2 (Running time) Procedure P-MCF solves the maximum contraflow prob-
lem in strongly polynomial time.

We are now able to extend the result above to the case of multiple sources and mul-
tiple sinks. This problem is also called maximum transshipment contraflow (MTCF)
problem.
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Corollary 1 The static version of the maximum contraflow problem with multiple
sources and multiple sinks is polynomially solvable.

Corollary 1 can be realized through a simple reduction. Let S+ and S− be the set
of sources and the set of sinks, respectively. Then, add a ‘super-source’ u+ and a
‘super-sink’ v− together with the arcs (u+, s+), for all s+ ∈ S, with arc capacities
equal their respective surplus and (s−, v−) for all s− ∈ S− with their arc capacities
equal their respective deficits. For more details, refer to (Ford and Fulkerson 1962).

Recognize that we basically showed in this section that the maximum contraflow
problem is equivalent to a maximum flow problem on an undirected (modified) graph.
This could be seen in the graph transformation provided in step 1 of procedure P-
MCF with arcs having same capacities in either directions.

4 Maximum dynamic contraflow problems

In this section, we discuss the maximum dynamic contraflow (MDCF) problem. The
maximum dynamic flow problem was studied by Ford and Fulkerson (1962), where
they try to maximize the flow sent from source to sink within a given time horizon T .
Unlike the static case, in the dynamic network flow problem the flow over an arc can
be repeated over time. FORD and FULKERSON proved that this problem is equivalent
to solving a minimum cost flow problem with the arc costs as travel times on the
arcs. Then the optimal flow on the arcs from source to sink is decomposed into a set
of paths or chains. These chains are then temporally repeated over time to obtain the
required dynamic flow. In other words, there is always a temporally repeated chain
flow that is equivalent to the maximum dynamic flow. A more formal definition is
provided below (Ford and Fulkerson 1962, p. 147).

Definition 3 (Temporally repeated flow) Let P be the set of paths obtained from the
chain decomposition of the optimal minimum cost flow. Then the maximum dynamic
flow is given by

∑

i∈P

(T + 1 − ti )hi,

where hi is the flow along the ith path and ti is the time taken to travel the ith path.

In this section, we first study the single source and single sink dynamic flow prob-
lem having arc reversal capability. We provide an algorithm employing a similar kind
of graph transformation as procedure P-MCF and discuss its proof of correctness
together with its worst case running time analysis. This implies that the quickest con-
traflow (QCF) problem is also polynomially solvable. In the quickest flow problem,
the time to send a given flow from source to sink is minimized. Burkard et al. (1993)
gave a strongly polynomial time algorithm for this problem.

Hoppe (1995) studied the multiple sources and multiple sinks version of this
problem—also called the quickest transshipment problem—where the time taken to
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send the supply at the sources to the sinks while satisfying their demands is mini-
mized. In static network flows, the multiple sources and multiple sinks are handled
by adding a ‘super-source’ and a ‘super-sink’. Then they are connected to the sources
and sinks respectively, see Corollary 1. However, this solution procedure is not ap-
plicable in a dynamic case anymore. For the same reason, the dynamic contraflow
problem with multiple sources and multiple sinks is N P -complete. We provide an
example illustrating this together with a proof of its N P -completeness.

4.1 Single source and single sink

Let us extend the MCF problem of Sect. 3 to the dynamic case.

Definition 4 (Maximum dynamic contraflow (MDCF))
Instance: Given a directed graph G = (V ,A) with source node s+ ∈ V , sink node
s− ∈ V , capacity ce ∈ Z

+ and transmission time te ∈ Z
+ on each arc e ∈ A with

ti,j = tj,i if (i, j), (j, i) ∈ A, and an overall time horizon T ∈ Z
+.

Question: Determine the maximum amount of flow that can be send in T units of
time from source s+ to sink s−, if the direction of the arcs can be reversed at time 0.

Note: In this case, if we choose to switch an arc, it remains switched from time 0
to T . The case where we allow switching of arcs back and forth in time is trivial
as the quickest transhipment contraflow problem, with this assumption, reduces to
the quickest transhipment problem through the graph transformation suggested in
procedure P-MDCF and hence is polynomially solvable.

Definition 4 states that in a MDCF problem, the graph is allowed to be asymmetric
with respect to the arc capacities. However, whenever both directions of an arc are
included in the graph, then the traveling time of these two arcs must be the same.
This assumption implies that the switching of an arc only changes the capacities of
the arcs but does not alter their traveling time.

The following theorem reveals the usefulness of temporally repeated flows in the
context of single source and single sink network flow problems, (Ford and Fulkerson
1962, Theorem 9.1).

Theorem 3 There is a temporally repeated dynamic flow that is maximal over all
dynamic flows for T periods.

The flow to be temporally repeated could then be determined by just solving a
minimum cost flow problem. Let us denote its running time by S3(|V |, |A|). Using,
for instance, the minimum mean cycle-canceling algorithm leads to a strongly poly-
nomial running time of O(|V |2 · |A|3 · log(|V |)), (Goldberg and Tarjan 1989).

Before we proceed to the next lemma, we need to know that utilizing the concept
of time expanded graphs in a solution algorithm leads to a pseudo-polynomial run-
ning time. In this case, the running time depends on |T |, rather than log(|T |) which
would then lead to a pseudo-polynomial running time. Nevertheless, we use the con-
cept of time expanded graphs in Theorem 4.

Consider now procedure P-MDCF. We show in Theorem 4 that it solves the MDCF
problem correctly. The main differences of procedure P-MCF and P-MDCF is given



J Comb Optim (2010) 19: 200–216 207

Procedure Maximum Dynamic Contraflow (P-MDCF)
1. Construct the transformed graph G̃ = (V , Ã) where the arc set is defined

as

(i, j) ∈ Ã, if (i, j) ∈ A or (j, i) ∈ A.

The arc capacity function c̃ is given by

c̃i,j := ci,j + cj,i

and the traveling time is

t̃i,j
(= t̃j,i

) :=
{

ti,j , if (i, j) ∈ A,

tj,i , otherwise,

for all arcs (i, j) ∈ Ã.
2. Generate a dynamic, temporally repeated flow on graph G̃ with capacity

c̃ and traveling time t̃ .
3. Perform flow decomposition into path and cycle flows of the flow result-

ing from step 2. Remove the cycle flows.
4. Arc (j, i) ∈ A is reversed, if and only if the flow along arc (i, j) is greater

than ci,j , or if there is a non-negative flow along arc (i, j) /∈ A and the re-
sulting flow is the maximum flow with arc reversal for graph G = (V ,A).

End procedure

in step 2. For the dynamic problem, we need temporally repeated flows. This ensures
that only one of the arcs (i, j) or (j, i) is used in the flow. This enables us to use the
same flipping rule for the arcs as in procedure P-MCF.

In order to show the correctness of procedure P-MDCF, we need the following
lemma.

Lemma 1 The maximum amount of flow in the single source and single sink max-
imum dynamic contraflow problem for graph G = (V ,A) is less than the optimal
flow in the maximum contraflow problem for the corresponding time expanded graph
GT = (V T ,AT ).

Proof The result follows directly from the observation that every feasible flow to
the maximum dynamic contraflow problem has an equivalent feasible flow to the
maximum contraflow problem of the time expanded graph. �

Please note that Lemma 1 holds good for more than one source and one sink. How-
ever, in general, equality holds only for the case of a single source and a single sink,
as we will see in the following theorem. We are now ready to prove the correctness
of procedure P-MDCF.
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Theorem 4 (Proof of correctness) Procedure P-MDCF solves the maximum dynamic
contraflow problem for graph G = (V ,A) optimally.

Proof The concept of this proof is similar to the proof of Theorem 1. First, we prove
that all the steps in procedure P-MDCF are well defined and result in a feasible solu-
tion. Second, we show optimality.

For feasibility, the proof follows directly from the fact that the constructed flows
are temporally repeated and hence, there is only a flow in one direction of two nodes,
and never in both directions at the same time as well as at different time periods.
After canceling the flows along the cycles, we have flows either on arc (i, j) or on
(j, i) but not on both. This ensures that the flow is less than the reversed capacities
on all the arcs at all time units. This also ensures the feasibility. In other words, we
now have established the fact

[G = (V ,A)]MDCFopt ≥ [G̃ = (V , Ã)]MDFopt ,

by the argument that every feasible flow of the dynamic flow problem in the trans-
formed graph G̃ = (V , Ã) is feasible to the maximum dynamic contraflow problem
in the graph G = (V ,A). Our proof is complete if we show that

[G = (V ,A)]MDCFopt ≤ [G̃ = (V , Ã)]MDFopt .

To see this, first note that the maximum contraflow in graph GT = (V T ,AT ) ≥
maximum dynamic contraflow in graph G = (V ,A), from Lemma 1. Hence we have,

[G = (V ,A)]MDCFopt ≤ [GT = (V T ,AT )]MCFopt .

By Theorem 1 we have that the maximum contraflow problem in graph GT =
(V T ,AT ) is equivalent to the maximum flow problem in the graph G̃T = (V T , ÃT ),
where the arc set ÃT is defined as

(i, j) ∈ ÃT , if (i, j) ∈ AT or (j, i) ∈ AT ,

and the arc capacity function c̃ is given by

c̃t
i,j := ct

i,j + ct
j,i .

Thus,

[GT = (V T ,AT )]MCFopt = [G̃T = (V T , ÃT )]MFopt .

By Theorem 3, the maximum flow in the time expanded graph G̃T = (V T , ÃT )

can be obtained by a temporally repeating a chain flow of a static graph G̃ = (V , Ã).
Hence we have the fact,

[G̃T = (V T , ÃT )]MFopt = [G̃ = (V , Ã)]MDFopt . �

Just like procedure P-MCF, running time dominating are steps 2 and 3 for pro-
cedure P-MDCF. This results in a worst case running time of O(S2(|V |, |A|) +
S3(|V |, |A|)); which is strongly polynomial.
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Theorem 5 (Running time) Procedure P-MDCF solves the maximum flow problem
in strongly polynomial time.

For given excess b, the quickest contraflow problem determines the minimum time
horizon T needed by any feasible flow.

Corollary 2 The quickest contraflow problem can be solved in a strongly polynomial
time.

One way to realize Corollary 2 is through the work by Burkard et al. for the quick-
est flow problem, (Burkard et al. 1993). First, obtain an upper bound on the quickest
time and second, perform a binary search by repeatedly solving the minimum dy-
namic contraflow problem. Such a bound can be obtained in polynomial time, for
instance, by computing a path from source to sink and temporally repeating flow
along the path until all supply at the source is sent to the sink. However, this leads to
a weakly polynomial algorithm. A strongly polynomial algorithm could be obtained
through a parametric search suggested by Megiddo (1979), Burkard et al. (1993).

4.2 Multiple sources and multiple sinks

Let us start with the definition of the multiple sources and multiple sinks version of
the MDCF problem.

Definition 5 (Dynamic Transshipment Contraflow (DTCF))
Instance: A directed graph G = (V ,A), a set of sources S+ ⊂ V , a set of sinks
S− ⊂ V , arc capacities ce ∈ Z

+ and transmission time te ∈ Z
+ for each arc e ∈ A

with ti,j = tj,i if (i, j), (j, i) ∈ A, and an overall positive integer time bound T .
Question: Is there a feasible dynamic flow within time horizon T , allowing each arc
to be revered once at time 0?

Note that the DTCF problem is a decision problem corresponding to the maximum
dynamic contraflow problem with multiple sources and multiple sinks.

4.2.1 DTCF is N P -complete in the strong sense

In this section, we proof that the DTCF problem is N P -complete. A sketch of the
proof outline was given in (Kim and Shekhar 2005). However, we provide a rigorous
proof. Also, the proof has some differences though we provide the reduction from the
same problem, 3SAT, (Garey and Johnson 1979, p. 46):

Definition 6 (3SAT)
Instance: Collection C = {c1, c2, . . . , cm} of clauses on a finite set U of variables
such that |c1| = 3 for 1 ≤ i ≤ m.
Question: Is there a truth assignment for U that satisfies all the clauses in C?

3SAT is known to be N P -complete in the strong sense, see (Garey and Johnson 1979,
Theorem 3.1).
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Fig. 1 Transformed graph G3SAT corresponding to 3SAT instance C = {{u1, u2, u3}, {u1, u2, u3}}

For an instance of 3SAT, construct a graph G3SAT = (V ,A) for DTCF as follows.
For each clause ci we have one source node c+

i with a surplus of 1. Each variable
uj ∈ U , is presented by six nodes in the graph: two for each literal, named u1

j , u2
j ,

u1
j and u1

j respectively, one source node with surplus 1, d+
j , and one sink node with

deficit −1, d−
j . Finally, there is one node with deficit −|C|, named s−. This sums up

to |V | = |C| + 6|U | + 1 nodes. Each clause node c+
i is connected to the nodes with

superscript 1 representing its literals, taking 3 time units. For each j , the node u1
j is

connected to its copy, u2
j , with transshipment time of 1. Nodes d+

j are connected to

u2
j and u2

j with transshipment time 1, while nodes d−
j are connected to u1

j and u1
j

having a transshipment time of 1. Finally, each second copy (superscript 2) of the
literals is connected to the sink s− taking a time of 1. All arcs have a capacity of |C|.
This leads to |A| = 3|C|+ 8|U | arcs in graph G3SAT . One such graph transformation
is shown in Fig. 1.

The proof of the validity of the transformation is based on the following key ob-
servation.

Lemma 2 In any feasible flow f in the graph G3SAT within time T = 5, there is a
flow of value 1 from node d+

j to node d−
j , for all j .
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Proof Let us fix index j and assume that the flow to node d+
j is integral. If the flow

to node d−
j does not come from node d+

j , then it can only come from exactly one

of the nodes ci or d+
k with k 
= j . However, in both cases, the flow arrives at node

d−
j earliest at time 6, or 7 respectively. This proofs the lemma for the case of integer

flows. The case of fractional flow is similar: If some fraction of the flow to node d−
j

comes from a different node then d+
j , then the flow arrives after time T = 5. �

Lemma 2 implies that for a feasible flow, at least one of the arcs (u1
j , u

2
j ) or

(u1
j , u

2
j ) has been switched for all j – with other words, at most one of the two arcs

(u1
j , u

2
j ) and (u1

j , u
2
j ) keep their direction in any feasible flow with time bound T = 5.

Now, we are able to proof the following lemma.

Lemma 3 An instance of 3SAT is a ‘YES’ instance, if and only if the transformed
graph G3SAT is a ‘YES’ instance for DTCF with overall time bound T = 5.

Proof “⇒” Let 3SAT have the feasible assignment uj = aj for all variables, with
aj ∈ {0,1}. Then, reverse the arcs (u1

j , u
2
j ) if aj = 0, and reverse arc (u1

j , u
2
j ) other-

wise. Now, for all j , send one unit of flow from d+
j to d−

j along the reversed arc. As

only one of the arcs (u1
j , u

2
j ) or (u1

j , u
2
j ) has been switched, we can send flow from

any of the nodes c+
i through any non-switched arc, dependent on the assignment of

the literals. This leads to a feasible flow for DTCF within time T = 5.
“⇐” We have to show, that any feasible flow f for DTCF needing (at most) 5

units of time leads to a ‘YES’ instance of the 3SAT. We assign the following value to
each variable uj ∈ U as

uj :=
{

0, if arc (u1
j , u

2
j ) is reversed in flow f,

1, otherwise.
(3)

We have to show that this is a satisfying truth assignment for the 3SAT instance. Now,
assume that clause ci is not a truth assignment. One unit of flow is send from node
c+
i to node s− through one of the nodes u1

j or u1
j with uj ∈ ci or uj ∈ ci . Notice that

this flow cannot go through any other node c+
k with 1 ≤ k ≤ m and k 
= i. Lemma 2

implies that the corresponding value of variable uj has been set; i.e. uj = 1 if the
flow passes node u1

j , or uj = 1 if it passes through node uj = 1. This leads to a
contradiction. �

The second part of the proof of Lemma 3 together with Lemma 2 give the idea of
the transformation from 3SAT. First, we have to send one unit of flow from each of
the nodes d+

j to d−
j . This ensures that (at least) one of the arcs between the copies of

the literals has to be reversed. The arc which has not been switched can then be used
for the flow of the nodes c+

j , allowing the clauses to have a truth assignment. Hence,
the value of the literals is reflected by the switching of the arcs.

Theorem 6 DTCF is N P -complete in the strong sense.
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Proof DTCF ∈ N P , as a non-deterministic algorithm needs only guess the set of
arcs to be reversed together with a flow f and check if the flow is feasible with time
bound T = 5; which can all be done in polynomial time. Lemma 3 states that the
given transformation G3SAT from 3SAT to DTCF is valid. As the cardinality of the
node set and the arc set of the constructed graph is O(|C|), the transformation is
polynomial in the input size of 3SAT. �

We want to mention that the transformation from 3SAT can easily be changed to
the general SAT by only changing the appropriate arcs from the clause nodes to the
nodes representing the literals.

4.2.2 What makes DTCF so tough to solve?

Ford and Fulkerson introduced the idea of temporally repeated chain flows of a sta-
tic flow. This enabled them to solve the maximum dynamic flow problem with one
source and one sink. The fundamental principle is that there is always an optimal
dynamic flow which uses only one direction of an arc, but never both. They call this
a standard chain decomposition. This property allows us to solve the maximum dy-
namic flow problem in strongly polynomial time. We exploit this property in Sect. 4.1
to solve the MDCF problem.

The concept of standard chain decomposition is not sufficient for some well known
dynamic flow problems (Hoppe 1995; Hajek and Ogier 1984; Orlin 1983). An exam-
ple is given in Fig. 2. Graph G = (V ,A) shown in Fig. 2(a) has a feasible flow with
time T = 6 as illustrated in Fig. 2(b). The dashed and gray lines show the two flows
from nodes s+

1 and s+
2 to node s−, respectively. Analyzing the graph reveals that there

is no feasible flow within time horizon T = 6 using only one of the arcs (n1, n2) or
(n2, n1); this can be seen, for instance, by considering the flow trough the cut sepa-
rating s− from the rest of the graph.

However, it was still possible to solve the maximum dynamic flow problem
with multiple sources and multiple sinks in the time-expanded graph; resulting in
a pseudo-polynomial running time algorithm. However, Hoppe was able to provide a
polynomial time algorithm for the dynamic transshipment problem (Hoppe 1995). He
introduced the concept of non-standard chain decomposition, allowing flow in either

Fig. 2 A tough instance of DTCF
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Fig. 3 Instance for DTCF with time bound T = 2L + 2 resulting from PARTITION

directions of an arc at different time steps – if both directions of an arc are present in
the graph.

Loosely speaking, the procedures P-MCF and P-MDCF reverse the arcs on the
fly and they are blind whether they reverse an arc or not. This does not cause any
problems in the context of static flows or single source and single sink dynamic flows,
as in a standard chain decomposition, one can always derive an optimal solution using
only one the arcs during the whole time horizon. However, in the case of multiple
sources and multiple sinks, the potential of using both arcs leads to the problem that
we have to know if an arc has been reversed or not. But exactly this memory and the
tradeoff of reversing the arc now or at a later time makes the problem N P -complete.
Consider Fig. 2 again. Applying the idea of procedures P-MDCF to this problem
leads to the following result: At time 1, we would switch arc (n2, n1) in order to
increase the capacity and at time point 3, we would switch it back again; resulting in
a flow needing only T = 5 time steps.

In Sect. 4.2.1, we showed that DTCF is N P -complete. The reduction from 3SAT
involves |C| + |U | source nodes and |U | + 1 sink nodes. In the following, we show
that there is no polynomial time algorithm for the DTCF problem having only two
sources and one sink (or one source and two sinks), unless P = N P . In other words,
allowing only one more source or sink to DTCF makes the problem N P -complete.

We do not go into full detail here, but rather provide the idea of a reduction
from PARTITION, which is motivated by the key observation of Lemma 2 and the
N P -completeness proof by Melkonian (2007). Given is a finite set A and a size
ai ∈ Z

+ for each i ∈ A. The PARTITION problem decides whether there is a sub-
set A′ ⊆ A such that

∑
i∈A′ ai = ∑

j∈A′\A aj , or not. PARTITION is known to be
N P -complete (in the weak sense), see (Garey and Johnson 1979, Theorem 3.5, Chap-
ter 4.2). Let

∑
i∈A ai = 2L with L ∈ Z

+. We construct an instance of the DTCF with
two source nodes s+

1 , s+
2 and one sink node s−, as shown in Fig. 3. The idea of this

transformation is that the flow at node s+
2 has to pass through node v1

0 to reach node
s−, and one unit of flow from node s+

1 has to travel though node v1
n to node s−. This

is indeed true as otherwise the total time bound of T = 2L + 2 would be exceeded.
The flow through the nodes v1

0 to v1
n and back gives the assignment to set A′; i.e.

i ∈ A′ if and only if arc (v1
i1
, v1

i ) is not reversed in the graph.
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5 Contraflow problems with arc switching Cost

To allow the switching of an arc in order to increase the capacity in one direction
results from the application in evacuation scenarios. However, in practice, you might
not be able to switch certain arcs. For instance, in evacuation scenarios, certain streets
are reserved for emergency vehicles but can also be used by (a limited number of)
other travelers; i.e. this can be modeled by reducing the capacity of this arc and block-
ing it from being reversed. In addition, the switching of an arc is highly costly; i.e. in
order to switch the direction of a highway, we have to set up police blocks on each
entry to the highway. Hence, it is natural to ask what are the minimum cost incurred
in switching the arcs allowing a certain (minimum) amount of flow. This leads to the
following problem.

Definition 7 (Fixed switching cost contraflow (FSCF))
Instance: A directed graph G = (V ,A) with a set of sources S+, a set of sinks S−,
excess b ∈ Z

|V |, arc capacities ce and arc-switching cost b
f
e for each arc e ∈ A.

Question: Find a feasible flow f in G with minimal total cost, if the direction of the
arcs can be reversed with (fixed) cost bf .

Note that FSCF is a static problem with multiple sources and multiple sinks. The
fixed cost b

f
e occur, whenever arc e is reversed. This definition allows to model the

situation described above: Whenever an arc cannot be reversed, then its cost can be
assigned a high value; i.e. Big M . As the cost of switching can differ for each arc, we
can distinguish between the effort of reversing an arc; i.e. reversing a highway or an
alleyway involves different cost or resources.

The fixed switching-cost contraflow problem has the following interesting value.
One can solve the MTCF problem and determine the optimal flow in the graph, see
Corollary 1. Later, one can apply the FSCF problem to determine the minimal cost
implied by the switching of arcs, while still pushing the optimal amount of flow
through the graph.

Notice that the FSCF problem has a similar structure as the minimum concave-cost
network flow problems. These problems ask to find a feasible flow while minimizing
the total cost which are in this case the sum of concave-costs induced by using of the
arcs. For an exact definition and an overview about this problem, please see the survey
by Guisewite and Pardalos (1990). We can basically assume the concave-cost per arc
to consist of fixed cost, occurring whenever this particular arc is used, and a variable
cost, depending on how much flow is send trough this arc, see (Kim and Pardalos
2000). Fixing the variable cost to zero leads to a special problem called minimum
cost fixed flow (MCFF) problem. Krumke et al. prove that this problem is N P -hard
in the strong sense even on series-parallel graphs, (Krumke et al. 1998, Theorem 14).
Series-parallel graphs have a very special structure and are defined recursively, see
(Gross and Yellen 2003; Bern et al. 1987). Furthermore, Krumke et al. show that the
minimum cost fixed flow problem is equivalent to the following problem, (Krumke
et al. 1998, Theorem 8):

Definition 8 0/1-minimum improvement flow (MIF)
Instance: A graph G = (V ,A) with sink node s+, source node s−, excess b ∈ Z

|V |,
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arc capacities ce ∈ Z
+, maximum capacities Ce ∈ Z

+,Ce ≥ ce and capacity improve-
ment cost b′

e ∈ Z.
Question: Determine an improvement strategy d : A → {0,Ce − ce} with minimum
cost

∑
e∈A deb

′
e, such that the graph with the improved capacity ue + de,∀e ∈ A,

allows a feasible flow f from s+ to s−.

The definition given here is slightly different then the one in the paper by Krumke
et al. (1998, Definition 7). Basically, we assume all data to be positive integral. The
improvement strategy function d is a 0-1 decision if additional capacity is used or
not; independent of how much additional capacity is used. The cost for this additional
capacity for arc e is fix at value (Ce − ce)b

′
e . In order to prove that FSCF is strongly

N P -hard, we show that it is equivalent to MIF.

Theorem 7 Fixed switching-cost contraflow is equivalent to 0/1-minimum improve-
ment flow.

Proof Without loss of generality, we can assume the FSCF problem to have single
source and single sink. Recognize that the graph transformation provided for Corol-
lary 1 works here.

“⇒” Given an instance of FSCF for graph G = (V ,A) with arc capacity ce

and arc-switching cost b
f
e . Construct an instance of MIF for graph G = (V ,A)

as follows. If there is an arc (i, j) ∈ A and (j, i) /∈ A, then (i, j), (j, i) ∈ A with
ci,j = Ci,j = Cj,i := ci,j , b

′
i,j = cj,i := 0, and b

′
j,i := b

f
i,j /ci,j respectively. For the

case that (i, j), (j, i) ∈ A, we define (i, j), (j, i) ∈ A with ci,j := ci,j , Ci,j = Cj,i :=
ci,j + cj,i , b

′
i,j := b

f
j,i/(ci,j + cj,i), cj,i := cj,i , and b

′
j,i := b

f
i,j /(ci,j + cj,i) respec-

tively. By applying the cycle reduction principle used in Sect. 3 and 4.1, we can see
that this transformation is indeed valid.

“⇐” Given an instance of MIF for graph G = (V ,A) with ce , Ce and b′
e, construct

an instance of FSCF for graph G = (V ,A) as follows. For any arc (i, j) ∈ A, we

have the three arcs (i, j), (i, i′), (j, i′) ∈ A. Define ci,j := ci,j , b
f

i,j = b
f

i,i′ := M ,

ci,i′ = cj,i′ = Ci,j − ci,j and b
f

j,i′ := b′
i,j (Ci,j − ci,j ), where M is a big number

preventing to switch the corresponding arc in an optimal solution. �

Recognize that having fixed cost for arc reversals makes the problem N P -hard,
even in the static case. One reason is, for instance, the previously mentioned obser-
vation, that the procedure P-MCF is ‘blind’ for the arc reversal decisions. Adding
a time component to FSCF makes it practically even more difficult to solve. The
time component reveals also the differences between the (dynamic) fixed switching-
cost contraflow problem and the (dynamic) 0/1-minimum improvement flow prob-
lem: MIF affects only a particular arc (i, j), while in FSCF also the reverse arc (j, i)

is affected, if both arcs are contained in the graph.
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6 Conclusions

This paper formally introduces the contraflow problem that has applications in emer-
gency transportation management. Several classic network flow problems are stud-
ied, including static and dynamic networks. A polynomial time algorithm for the dy-
namic contraflow problem with single source and single sink is given, together with
an N P -completeness proof for the dynamic transhipment contraflow problem. The
hardness of the contraflow problem with arc reversal cost is also indicated.
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