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Abstract Understanding recombination is a central problem in population genetics.
In this paper, we address an established computational problem in this area: compute
lower bounds on the minimum number of historical recombinations for generating
a set of sequences (Hudson and Kaplan in Genetics 111, 147–164, 1985; Myers and
Griffiths in Genetics 163, 375–394, 2003; Gusfield et al. in Discrete Appl. Math. 155,
806–830, 2007; Bafna and Bansal in IEEE/ACM Trans. Comput. Biol. Bioinf. 1, 78–
90, 2004 and in J. Comput. Biol. 13, 501–521, 2006; Song et al. in Bioinformatics
421, i413–i244, 2005). In particular, we propose a new recombination lower bound:
the forest bound. We show that the forest bound can be formulated as the minimum
perfect phylogenetic forest problem, a natural extension to the classic binary perfect
phylogeny problem, which may be of interests on its own. We then show that the
forest bound is provably higher than the optimal haplotype bound (Myers and Grif-
fiths in Genetics 163, 375–394, 2003), a very good lower bound in practice (Song et
al. in Bioinformatics 421, i413–i422, 2005). We prove that, like several other lower
bounds (Bafna and Bansal in J. Comput. Biol. 13, 501–521, 2006), computing the
forest bound is NP-hard. Finally, we describe an integer linear programming (ILP)
formulation that computes the forest bound precisely for certain range of data. Sim-
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ulation results show that the forest bound may be useful in computing lower bounds
for low quality data.

Keywords Recombination · Lower bound on the minimum number of
recombination · Ancestral recombination graph · Population genetics ·
Computational complexity

1 Introduction

Meiotic recombination is an important biological process which has a major effect on
shaping the genetic diversity of a population. Recombination takes two equal length
sequences and produces a third sequence of the same length consisting of some prefix
of one sequence, followed by a suffix of the other sequence. Estimating the frequency
or the location of recombination is central to modern-day genetics. Recombination
also plays a crucial role in the ongoing efforts of association mapping. Association
mapping is widely hoped to help locate genes that influence complex genetic diseases.
The increasingly available population genetic variation data provides opportunities
for better understanding of recombination.

In this paper, we assume the input data consists of single nucleotide polymor-
phisms (SNPs). A SNP is a nucleotide site where exactly two (of four) different nu-
cleotides occur in a large percentage of the population. That is, a SNP has binary
states (0 or 1). A haplotype is a binary vector, where each bit (called site) of this
vector indicates the state of the SNP site for this sequence. Throughout this paper,
the input to our computational problems is a set of (aligned) haplotypes (i.e. a binary
matrix with n rows and m columns).

An established computational problem on recombination is to determine the mini-
mum number of recombinations needed to generate a set of haplotypes from an ances-
tral sequence, using some specified model of the permitted site mutations. A mutation
at a SNP site is a change of state from one nucleotide to the other nucleotides at that
site. Throughout this paper, we assume that any SNP site can mutate at most once in
the entire history of the sequences, which is supported by the standard infinite sites
model in population genetics.

Given a set of binary sequences M , we let Rmin(M) denote the minimum number
of recombinations needed to generate the sequences M from any ancestral sequence,
allowing only one mutation per site over the entire history of the sequences. The prob-
lem of computing or estimating Rmin(M) has been studied in a number of papers, for
example (Hudson and Kaplan 1985; Myers and Griffiths 2003; Gusfield et al. 2007;
Bafna and Bansal 2004, 2006; Song et al. 2005). A variation to the problem occurs
when a specific ancestral sequence is known in advance. No polynomial-time algo-
rithm for either problem is known, and the second problem is known to be NP-hard
(Wang et al. 2001; Bordewich and Semple 2004). Therefore, the problem of com-
puting a good lower bound on the minimum number of recombinations has attracted
much attention.

In this paper, we present a new lower bound on Rmin(M), which has a static and
intuitive meaning. This lower bound (which we call the forest bound) is closely re-
lated to the minimum perfect phylogenetic forest problem, an extension of the clas-
sic binary perfect phylogeny problem. We then demonstrate that the forest bound is
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provably higher than a well-known bound: the optimal haplotype bound (Myers and
Griffiths 2003; Song et al. 2005).1 We resolve the complexity of computing the forest
bound in a negative way with a NP-hardness proof. Finally, we give an integer lin-
ear programming formulation whose solution computes the forest bound exactly. We
show empirically that this formulation can be solved in practice for data with small
number of sites.

2 Background

2.1 Recombination and ARGs

For haplotype data composed of (binary) SNPs, the simplest evolutionary history that
derives these haplotypes is the classic binary perfect phylogeny (if we assume the in-
finite sites model of mutations). The perfect phylogeny problem is to build a (rooted)
tree whose leaves are labeled by rows in M and edges labeled by columns in M ,
and a column can label at most one edge. For the binary perfect phylogeny problem,
Gusfield (1991) developed a linear time algorithm. However, often the real biolog-
ical data does not have a perfect phylogeny, which is partly due to recombination.
In this case, we need a richer model of evolution: The evolutionary history of a set
of haplotypes H , which evolve by site mutations, assuming one mutation per site,
and recombination, is displayed on a directed acyclic graph called an “Ancestral Re-
combination Graph (ARG)” (Griffiths and Marjoram 1996), also called phylogenetic
networks in some literature. An ARG N , generating n sequences of m sites each,
is a directed acyclic graph containing exactly one node (the root) with no incoming
edges, and exactly n leaves with one incoming edge each. Every other node has one
or two incoming edges. A node with two incoming edges is called a “recombination”
node (and the two incoming edges are called recombination edges). Each site (inte-
ger) from 1 to m is assigned to exactly one edge in N , and none is assigned to any
edge entering a recombination node. The sequences labeling the leaves of N are the
extant sequences, i.e., the input sequences. Figure 1 shows an example of ARG. See
Gusfield et al. (2004) for a more detailed explanation.

An ARG N is called a minARG if N uses exactly Rmin(M) recombinations. The
ARG N may derive sequences that do not appear in M . These sequences are called
Steiner sequences. Sequences in M are called input sequences.

A widely known technique for detecting recombination is the four gamete test.
Two columns are said to be incompatible if the two columns contain all four patterns:
00, 01, 10 and 11. If we assume the site mutations fit the infinite sites model (i.e. at
most one mutation per site), then there exists at least one recombination between a
pair of incompatible sites.

2.2 Lower bounds on Rmin(M)

There are a number of papers on lower bounds on Rmin(M) (Hudson and Ka-
plan 1985; Myers and Griffiths 2003; Gusfield et al. 2007; Bafna and Bansal 2006;

1Throughout this paper, when we say bound A is higher than bound B, we mean that bound A is guaranteed
to never be lower than bound B, and that there are examples where it is strictly higher.
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Fig. 1 A phylogenetic network
(or ARG) with two
recombination nodes. The
sequences that this ARG derives
are shown to the right. Here,
internal nodes are also labeled
by the given sequences. There is
no Steiner sequences in this
ARG. However, Steiner
sequences are often needed in
many ARGs. Note that if we
remove sequences d and f , we
remove all cycles in this ARG
and we have a tree. This tree is a
perfect phylogeny, where at
most one mutation occurs at a
site

Song et al. 2005). In Myers (2003), Myers and Griffiths (2003), Myers and Griffiths
introduced the haplotype lower bound, which, when combined with additional ideas
in Myers (2003), Myers and Griffiths (2003) significantly outperforms the previous
lower bounds. The haplotype bound, h(M), is simple and efficiently computable.
Consider the set of sequences M arrayed in a matrix. Then h(M) is the number of
distinct rows of M , minus the number of distinct columns of M , minus one. It is
easy to establish that this is a lower bound on Rmin(M). Simulations show that h(M)

by itself is a very poor bound, often a negative number. However, when used with a
few more tricks, it leads to impressive lower bounds. One such trick is to compute
the haplotype bound on a subset of sites from M that need not be contiguous. For a
subset of sites S (not necessarily contiguous), let M(S) be M restricted to the sites in
S, and h(S) be the haplotype bound computed on M(S). It is easy to see that h(S) is
also a lower bound on the M . The optimal haplotype bound is the highest h(S) over
all choices of S. Since there are an exponential number of subsets, complete enumer-
ation of subsets quickly becomes impractical, and the problem of computing optimal
haplotype bound has also been shown to be NP-hard (Bafna and Bansal 2006). How-
ever, it was showed in Song et al. (2005) that integer linear programming (ILP) can
be used to efficiently compute the optimal haplotype bound for the range of data of
current biological interest. They also showed the optimal haplotype bound is often
equal to Rmin(M) in certain biological datasets.

The history bound Myers and Griffiths (2003) also introduced the so-called “his-
tory bound”. The history bound is provably higher than the haplotype bound (Bafna
and Bansal 2004). In fact, the history bound is higher than all studied recombina-
tion lower bounds (about ten of them). However, the history bound is defined only
by a computational procedure (described below), and there is no simple static and
intuitive meaning provided for this bound in Myers and Griffiths (2003), independent
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of the procedure to compute it. This makes it difficult to find alternative methods to
compute the history bound, or to understand and improve it.

To compute the history bound for a set of binary sequences M , we initialize R = 0.
A site c in M is called non-informative when entries in column c have only a single
0 or a single 1. A cleanup step is defined as the removal of any non-informative site
in M , or the merging of two duplicate rows in M into one row. A row removal step
arbitrarily picks one row in M for removal, provided that no cleanup step is possible.
A history is defined by an execution of the following algorithm:

Repeat (a) and (b) until there is only one remaining sequence in M :

(a) Perform cleanup steps until no more cleanups is possible.
(b) Perform one row removal step by picking a row and then remove it; increment R

by one.

The history lower bound is equal to the minimum value of R over all possible
histories (i.e. the ways of choosing a row in the row removal step). The correctness of
the history bound can be proved by induction (Myers and Griffiths 2003). Computing
the history bound is NP-hard and a dynamic programming algorithm with O(2nm)

running time is given by Bafna and Bansal (2006), which improves upon the original
implementation by Myers and Griffiths (2003).

Interpretation of the history bound The history bound has a graphical interpretation.
Consider a minimum ARG N . Suppose we want to remove the nodes in N one by one,
until N becomes empty. We consider an ordering of node removal such that a node is
removed after all its descendants have been removed. Type (a) operations correspond
to removal of nodes not generated by recombination (i.e. has only a single parent
node). Type (b) operations correspond to removal of recombination nodes. Thus, the
number of type (b) operations is larger than the number of recombinations in N . Since
N is unknown, the history bound is to find the smallest number of type (b) operations
over all possible histories.

Our work on the forest bound comes out of an attempt to find a simple static
definition of the history bound. A static definition is important because a definition of
what is being computed, independent of how it is computed, is useful to understand
and find alternative ways to compute or approximate. For example, with no static
definition of the history bound, we do not know how to formulate an integer linear
program to compute it.

3 The forest bound and the minimum perfect phylogenetic forest (MPPF)
problem

3.1 Definition of the forest bound

The optimal haplotype bound is currently one of the best lower bounds that can
be practically computed for medium-range data. In the following, we demonstrate
a bound that can be proved to be higher than the optimal haplotype bound.

Given an arbitrary ARG N , suppose we remove all recombination edges. N is
then decomposed into connected components, each of which is a directed perfect
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phylogeny (sometimes simply referred to as a directed tree). Some of the tree edges
are labeled by site mutations in the original ARG. Note that a site appears exactly
once in N . Thus, we have a forest F(N) of perfect phylogenies, created by removing
all recombination edges. In what follows, we will consider each of these trees after
ignoring the edge directions. An important property of these trees in F(N) is that
there is no duplicate mutations at a site in two trees in F(N). In other words, if
a site s labels an edge in tree T1 ∈ F(N), another tree T2 ∈ F(N) can not have a
mutation at s. This implies that sequences in T2 have a uniform value (either all-0 or
all-1) at site s. Also note that F(N) partitions the rows in M , where each partition
is a perfect phylogeny and each row in M appears as a label in one of the perfect
phylogenies. We call such partitioning of M perfect partitioning. It is easy to see that
perfect partitioning always exists: a trivial partitioning simply has n partitions, where
each partition has a single row. Obviously, there exists a way of partitioning the rows
of M such that the number of partitions is minimized. This motivates the following
optimization problem.

The minimum perfect phylogenetic forest (MPPF) problem Given a binary matrix
M , find a set of a minimum number of perfect phylogenies that derives M such that
each row is derived by some perfect phylogeny and for any site s, mutations at s

occur at most once in at most one tree. We denote the minimum number of perfect
phylogenies Fmin(M).

There is a subtle issue about site mutations. When we construct an ARG for the
entire data, we need to let each site mutate exactly once (assuming the site has both
0 and 1 values). Therefore, requiring each site to mutate at most once is equivalent to
requiring each site mutate exactly once. This, however, may lead to potential problem
when we construct a set of trees, rather than a single tree because there are multiple
root sequences and the root sequences can introduce new states at sites without the
need of site mutations. We now show that the two notions, “mutating at most once
per site” and “mutating exactly once”, are equivalent for the forest bound. To see
this, consider a minimum forest under “mutating at most once per site” assumption.
Then we can simply add a new Steiner sequence by utilizing the un-used mutations
(if any). Here, we call a node (i.e. a sequence) Steiner node if this node or sequence
does not appear in input data M . The resulting forest follows the “mutating exactly
once” assumption and can not be smaller than the original due to the minimality
assumption. Thus, the minimum forest under “mutating exactly once” assumption
is not larger than that under “mutating at most once per site” assumption. On the
other hand, “mutating at most once per site” contains “mutating exactly once”, which
implies that the minimum forest under “mutating exactly once” assumption is not
smaller than that under “mutating at most once per site” assumption. Thus, the two
assumptions are equivalent for the forest bound. In the following, we assume each
site mutates exactly once in the forest.

Note that Fmin(M) = 1 iff M has a perfect phylogeny. That is, there exists a single
tree that derives all sequences in M iff M has a perfect phylogeny. On the other hand,
when there is no perfect phylogeny for M , we need more than one tree to derive all
the sequences in M . The MPPF problem asks to find the minimum number of trees
in the forest. This problem is loosely related to the well-studied maximum parsimony



J Comb Optim (2008) 16: 229–247 235

Table 1 One way to partition
this data into two perfect
phylogenies is to have rows
r1, r2 and r5 in one part and the
rest in the other part. On the
other hand, we can not put
r1, r2, r5 and r6 in the same
partition due to the four-gamete
test

r1 0 0 1 0 0

r2 1 0 1 0 0

r3 0 1 0 0 0

r4 0 1 0 0 1

r5 1 0 0 0 0

r6 0 1 0 1 1

r7 0 0 0 1 1

problem (i.e. the Steiner tree problem in phylogeny). In maximum parsimony, we
construct a single tree (with back or recurrent mutations) which minimizes the num-
ber of site mutations. The MPPF problem asks for constructing the minimum number
of trees, each of which is a perfect phylogeny, and each site can mutate once in at
most one tree.

Now we define the forest bound.

Forest bound For a binary matrix M , the forest bound is equal to Fmin(M) − 1.
We first illustrate the MPPF problem by the simple example in Table 1. Here, we

want to split the matrix into partitions, each of which has a perfect phylogeny, i.e.
does not violate four-gamete test. Also we require a site can mutate in at most one
partition.

Lemma 3.1 shows that the forest bound is indeed a lower bound on the minimum
recombination.

Lemma 3.1 The forest bound is a valid lower bound on Rmin(M).

Proof Suppose we trim a minARG N by removing all recombination edges in N and
we have a forest with k ≥ Fmin(M) trees. Note that N is connected and we need at
least one recombination to connect a tree to the rest of trees. So Rmin(M) ≥ k − 1 ≥
Fmin(M) − 1. The reason that we subtract 1 is because we can start from a tree and
this tree is the starting point of the network. �

Now we explain the reason for our interest in the forest bound. As mentioned
above, the history bound lacks a static definition, unlike the forest bound. Below we
show that the forest bound is higher than the haplotype bound but lower than the
history bound, and hence, the forest bound is provably the highest lower bound that
we know of which has a simple static definition. Recall that we call nodes (sequences)
in a tree Steiner if the sequences do not appear in M .

Lemma 3.2 For a perfect phylogenetic forest F with ns Steiner nodes, the number
of trees k is equal to n + ns − m.

Proof Suppose each tree Ti ∈ F contains ni distinct sequences (nodes) for i = 1 . . . k.
Here,

∑k
i=1 ni = n + ns , where ns is the number of Steiner nodes in the forest. We

know for each tree Ti , there are ni − 1 edges with mutations. Let mi denote the
number of mutations in tree Ti . This means mi = ni − 1. Here we assume there is
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exactly one mutation per site in the forest. As described earlier, this assumption does
not change the forest bound. So we have m = ∑k

i=1 mi = ∑k
i=1(ni −1) = n+ns − k

mutations in the forest. So, k = n + ns − m. �

The following shows an important property of a phylogenetic forest.

Lemma 3.3 The forest bound applied to all of M is at least as large as the forest
bound applied to a subset of sites in M .

Proof For a given data M , suppose we have a minimum phylogenetic forest F for
M with Fmin(M) trees. Now we consider F(S) when we restrict our attention to S,
a subset of sites. To derive F(S) from F , we remove all mutation sites in F that are
not in S and cleanup the forest by removing edges with no mutations, and collapsing
identical sequences. It is important to note that F(S) has at most Fmin(M) trees. This
is because when we remove sites not in S, we may need to link up two previously
disjoint trees (and thus make the number of trees smaller), but we can never increase
the number of trees. Thus, we know Fmin(M(S)) can not be higher than Fmin(M). �

Lemma 3.4 This forest bound is always higher than the haplotype bound, but lower
than the history bound.

Proof We first show that the forest bound is provably higher than the haplotype lower
bound. Given a matrix M , we first consider the submatrix consisting of n unique
rows and m unique columns of M . Suppose a minimum forest has k = Fmin(M)

trees. From Lemma 3.2, k = n + ns − m ≥ n − m. So k − 1 ≥ n − m − 1, which is
the haplotype bound. Furthermore, due to Lemma 3.3, the forest bound applied the
entire M is at least as large as the forest bound applied to the submatrix. Therefore,
the forest bound is always higher than the haplotype bound on matrix M .

Now we show that the history bound is higher than the forest bound. From the
algorithm to compute the history bound, it can be seen that the method produces a
phylogenetic forest. However, in contrast to the definition of a phylogenetic forest
given above, the forest produced by the history bound has additional time-order con-
straints: the trees in the forest can be time-ordered such that if site s mutates in a tree
Ti , the states at s for sequences in earlier trees must be ancestral states (i.e. not the
derived states). But since the forest produced by the history bound is a valid phyloge-
netic forest, the number of trees in that forest produced by the history bound cannot
be smaller than that from the definition of the forest bound. �

We now relate the forest bound to the optimal haplotype bound.

Theorem 3.5 The forest bound is higher than the optimal haplotype bound.

Proof By Lemma 3.4 we know that the forest bound applied to any subset of sites is
higher than the haplotype bound applied to the same subset of sites. In particular, if
S∗ is the subset of sites of M (called optimal subset) that gives the optimal haplotype
bound, then the forest bound applied to S∗ is higher. By Lemma 3.3, we know that
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Table 2 Example where the
optimal haplotype bound is
smaller than the forest bound

1 0 0 0 1

0 0 0 1 0

0 0 1 0 0

1 1 0 1 1

0 1 1 0 1

the forest bound applied to all of M is at least as large as the forest bound applied
to a subset of sites in M , which in turn is at least as large as the optimal haplotype
bound. �

Theorem 3.5 and Lemma 3.4 say that the forest bound is higher than the optimal
haplotype bound but lower than the history bound. Hence we conclude,

Corollary 3.6 The optimal haplotype bound cannot be higher than the history
bound.2

Experiments show that the forest bound can be strictly higher than the optimal
haplotype bound and improve the overall recombination lower bound. For example,
consider the following matrix shown in Table 2. The optimal haplotype bound for this
data is 1 by taking e.g. the first and the second sites, while it is not hard to see that a
perfect phylogenetic forest contains at least three components. For example, suppose
the first two rows belong to one tree T1 and the rest three rows belong to the other
tree T2. Then, T1 mutates at sites 1,4,5, while T2 mutates at 1,3,4,5. This is not a
legal partition since site 1,4,5 mutates two times (once in T1 and once in T2). Thus,
the forest bound for this data is 2.

As mentioned earlier, it is known that the optimal haplotype bound and the history
bound are both NP-hard to compute (Bafna and Bansal 2006). However, if the forest
bound could be computed efficiently, we would not need to compute the optimal
haplotype bound, but could instead use the forest bound. Unfortunately, the forest
bound is also NP-hard to compute, which we now show.

3.2 The complexity of the forest bound

Theorem 3.7 The MPPF problem is NP-hard.

Proof The high-level construction of our proof is inspired by Foulds and Graham’s
NP-completeness proof of Steiner tree in phylogeny problem (Foulds and Graham
1982).

As in Foulds and Graham (1982), we reduce from the known NP-complete prob-
lem of Exact Cover by 3-sets (X3C) (Garey and Johnson 1979). Recall that the gen-

2Myers (2003) asserted (with no proof) that the history bound is higher than the optimal haplotype bound.
Here we have furnished the proof to this claim.
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eral form of X3C is as the following:

S = {S1, S2, . . . , Sn}, where each |Si | = 3 and

Si ⊆ {1,2, . . . ,3m} = I3m, for 1 ≤ i ≤ n.

Does S contain (non-overlapping) m sets Si1, . . . , Sim whose union is I3m?

High-level idea We construct a binary matrix M for S (the collection of sets), such
that for each set Si , the set of corresponding sequences in M can be generated on
a perfect phylogeny. Thus, if there is a solution for X3C, we have m perfect phy-
logenies that use up all site mutations, and a collection of isolated sequences (also
trivially perfect phylogenies) and the total number of trees is Fmin(M). If there is no
solution for X3C, the number of trees in any perfect phylogenetic forests is more than
Fmin(M). To enforce this property, two sequences corresponding to the same set Si

will have a small Hamming distance. For two sequences corresponding to different
sets, their Hamming distance will be large. So, if two far apart sequences are placed
into the same tree, there will be too many Steiner sequences needed to connect them,
and thus by Lemma 3.2 and proper manipulation of the construction, we will need
more than Fmin(M) trees in such forest.

WLOG we assume there is no duplicate sets in S . Given an instance of X3C, we
construct a binary matrix M as follows. We let K = m + 1. Note that 2K − 3 > m,
when m > 1. For each Si , we construct a set of 3K sequences of length 3mK . We
have K sequences corresponding to each of the three elements in Si . Each of these
sequences is composed of 3m blocks of K sites. Each block is arranged sequentially
in the increasing order for each integer in Si . The sequences are constructed as fol-
lows. Suppose we are constructing the jth sequence (j ∈ {1 . . .K} ) for an element
p ∈ Si . For block (of number q) Bi,p,j,q in this sequence, if the corresponding integer
q /∈ Si , then block Bi,p,j,q contains all 1. If q ∈ Si and q �= p, then we set Bi,p,j,q to
be all 0. If q ∈ Si and q = p, we set the jth bit in Bi,p,j,q to 1 and 0 for all other bits.
Note that for a given row associated to a set Si , all bits corresponding to elements
not in this set are 1. Also note that for the K sequences corresponding to an integer
q ∈ Si , the K blocks Bi,p,j,q form a diagonal matrix with all 1 on the main diagonal.
One example is shown in Table 3 for the simple case when m = 2.

The following facts (proof omitted) about M are important.

P1. There are no two identical sequences in M .
P2. The 3K sequences corresponding to a single set Si have a star-shaped perfect

phylogeny, with the center sequence as the only Steiner sequence.
P3. For two sequences s1, s2 coming from the same set Si , the Hamming distance

between s1, s2 is 2. For two sequences s1, s2 coming from different sets Si, Sj ,
the Hamming distance is at least 2K − 2.

Now we claim that X3C problem has a solution (i.e. union of Si1, . . . , Sim is equal
to I3m) if and only if there is a phylogenetic forest for M with exactly 3nK − 3mK +
m perfect phylogenies.

We first show that given a solution (i.e. Si1, . . . , Sim ) of X3C, we can build a forest
with 3nK − 3mK + m trees. From property P2, we construct m perfect phylogenies,
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Table 3 Example of the constructed matrix when m = 2 (i.e. there are 6 elements in I3m), and thus K = 3.
The table lists the constructed rows for a set {1,2,4}

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

r1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

r2 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

r3 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

r4 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1

r5 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1

r6 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1

r7 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1

r8 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1

r9 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1

each from 3K sequences corresponding to each of Sij . Then, we treat the remaining
3nK −3mK as isolated sequences (trivially perfect phylogenies). So the total number
of perfect phylogeny is 3nK − 3mK + m.

Now we show the other direction: if there is a phylogenetic forest for M that has
3nK − 3mK + m perfect phylogenies, then there is a solution for problem X3C. We
first argue that no two sequences from different sets Si, Sj can appear together in
a same perfect phylogeny. For contradiction, suppose s1, s2 coming from different
sets are together in one perfect phylogeny. Consider the path from s1 to s2 in the
perfect phylogeny. From Property P3, the Hamming distance between s1 and s2 is at
least 2K − 2. This means there are at least 2K − 3 intermediate nodes on that path
whose states changes from s1 to s2 on these 2K − 2 sites. It is also easy to see that
none of these 2K − 3 nodes can be part of M , since each sequence in M has either
exactly a single 1 or all 1s within a block and intermediate nodes between s1, s2 must
contain from 2 to K − 1 1s for the block corresponding to the element not shared by
Si, Sj . That is, we know that the phylogenetic forest contains at least 2K − 3 Steiner
nodes. But from Lemma 3.2, we will have at least 3nk − 3mK + (2K − 3) perfect
phylogenies, which is larger than 3nK − 3mK + m since 2K − 3 > m. That is a
contradiction, and thus each phylogeny can only have sequences derived from the
same set Si .

Now it is easy to see that within the forest there can be at most m non-degenerated
trees. This is because each non-degenerated tree contains at least one Steiner node
(see Property P3). Also note that we can not have fewer than m non-degenerated trees.
To see this, suppose for contradiction, that we have at most m − 1 non-degenerate
perfect phylogenies. Since each such tree comes from a single set Si , if there are
at most m − 1 trees, there are at most 3(m − 1)K nodes in the trees. Then there
are at least 3nK − 3(m − 1)K = 3nK − 3mK + 3K degenerated trees. Since K =
m + 1, we know we will have more than 3nK − 3mK + m (isolated) trees. That is a
contradiction.

Therefore, we know we will have exactly m non-degenerated trees. Now we need
to show that these m non-degenerated trees correspond to a solution for X3C. Note
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Table 4 Example for the
2rMPPF problem. One way to
partition this data into two
perfect phylogenies is to have
the upper four rows in one part
and the rest in the other part.
Note that different from the
example given in Table 1, site 1
(for example) mutates once in
the upper partition and once in
the lower partition. This is
allowed in the 2rMPPF problem

r1 0 0 0

r2 0 1 0

r3 1 0 1

r4 1 0 0

r5 1 1 1

r6 1 1 0

r7 0 1 1

r7 0 0 1

that each of such trees does correspond to a set in S . What we need to show is that
every element in I3m is covered, and no element is covered more than once. Suppose
a tree has a block whose corresponding integer is not covered by other picked sets,
then we can easily enlarge the tree by adding the sequences of that block. Now we
want to argue that no two sets picked by this phylogenetic forest can overlap. For
contradiction, suppose there is an overlap between Si, Sj when we select all 3K se-
quences corresponding to Si, Sj . Then for the corresponding two trees, there must be
mutations in both trees for the overlapped sites. This contradicts the assumption that
the set of trees are perfect phylogenies with no duplicate mutations (sites). Therefore,
the given phylogenetic forest leads to a valid X3C solution. �

Corollary 3.8 Computing the forest bound is NP-hard.

3.3 A variant of the MPPF problem

Note that the MPPF problem requires that if a mutation occurs at a site in one parti-
tion, then this site does not mutate in the other partitions. Now, suppose we relax the
phylogenetic forest problem by allowing a site to mutate once in more than one per-
fect phylogenies (but still at most once in the perfect phylogeny of each partition). We
call this problem relaxed minimum Perfect Phylogenetic Forest problem (or rMPPF
problem), which might be of interests on its own. Here, we consider a special case of
this problem, where we want to find a bi-partition of M such that each partition has
a perfect phylogeny and the same site can mutate once in both partitions. We denote
this problem as 2rMPPF problem. See the example in Table 4 for an illustration. The
relaxed version of the phylogenetic forest problem is shown in the following exam-
ple. One way to view the 2rMPPF problem is that in 2rMPPF, the two partitions are
independent. That is, we only require each partition has a perfect phylogeny and the
mutations used in one partition do not affect the other partition.

The following theorem shows the rMPPF problem is NP-complete even when we
just want to partition the matrix into two perfect phylogenies.

Theorem 3.9 The 2rMPPF problem is NP-complete.

Proof In the following, we present a proof of NP-completeness of 2rPPF problem.
It is easy to see 2rPPF is in NP. That is, given two sub-populations, we can check
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Table 5 Choice gadget for xi .
The property of this gadget is
that there is exactly one way (as
shown above) to achieve perfect
phylogeny for both
sub-population, assuming
gamete 00 is included for any
two columns in each partition

1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1

whether each of the two sub-populations has perfect phylogeny in linear time (Gus-
field 1991). Then we need to show a reduction from an established problem to 2rPPF
problem to complete the NP-completeness proof. We will reduce from the well-
known NP-complete problem: NAESAT (not-all-equal SAT).

Recall that in NAESAT, we are given m clauses with three literals each. We shall
construct a haplotype matrix M such that there is a way to partition M into two
sub-populations (each having a perfect phylogeny) iff there is a truth assignment that
makes at least one literal true and at least one literal false in each clause. We would
call such partitioning a perfect partition. Suppose that the clauses are C1,C2, . . . ,Cm

and the variables appearing in them are x1, x2, . . . , xn. Also, in the following, when
we say splitting or partitioning, we refer to the valid partitioning into two sub-
populations, each with perfect phylogeny.

Before diving into the details, here is the high-level idea. We want to construct a
set of (partial) haplotype rows Hxi

for variable xi . Hxi
is constructed in such a way

that the rows in this set must be separated into two sub-populations evenly to make
the sub-population having perfect phylogeny. It is also important to ensure that there
is only one way to partition Hxi

to achieve perfect phylogenies. Intuitively, the way
of dividing Hxi

decides the boolean value for xi . We then extend the constructed
haplotypes by adding more sites, which correspond to the clauses. These new sites
are constructed in a way that we create specific patterns for rows corresponding to
the three variables in the clauses. And to achieve perfect phylogeny, these haplotypes
corresponding to the three literals can not be located inside a single sub-population.
This helps to ensure the not-all-equal condition in the NAESAT problem.

We begin with the (simplified) choice gadget for variable xi . See Table 5 for il-
lustration on the gadget Hxi

. Note that the generalized choice gadget is composed
of four partitions: the upper left and the lower right are simply the 3 by 3 identity
matrices, and the lower left and upper right are matrices with 3 by 3 all-1. Note also
that we can construct generalized choice gadgets of any size.

It is easy to see the haplotypes in Hxi
do not have perfect phylogeny, assuming

gamete 00 is included in each partition. Thus, in any partitioning, Hxi
can not reside

inside a single partition. How many ways of partitioning Hxi
are there (so that both

partitions allow perfect phylogenies)? We claim there is exactly a single way (three
upper rows in one partition and three lower rows in the other partition, as shown in
Table 5), assuming that gamete 00 is always present for any pair of sites (like a root-
known perfect phylogeny case). Why? We call the three rows in the upper partitions
as top rows, and the other three rows as bottom rows. If the rows are not divided as
shown in the table, then there must be three rows in one partition that are not all top
(resp. bottom) rows. But then it is easy to see there must be incompatibility (recall
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Table 6 Example of
constructing a choice gadget for
a xi by replicating five times.
Here, I3 stands for a 3 by 3
identity matrix. 13 is a 3 by 3
matrix filled with all 1. 0 stands
for an all-zero 3 by 3 matrix.
The leftmost column provides
index for the combo rows of
triple rows

1 I3 0 0 0 0 0 0 0 0 13

2 0 I3 0 0 0 13 0 0 0 0

3 0 0 I3 0 0 0 13 0 0 0

4 0 0 0 I3 0 0 0 13 0 0

5 0 0 0 0 I3 0 0 0 13 0

6 13 0 0 0 0 I3 0 0 0 0

7 0 13 0 0 0 0 I3 0 0 0

8 0 0 13 0 0 0 0 I3 0 0

9 0 0 0 13 0 0 0 0 I3 0

10 0 0 0 0 13 0 0 0 0 I3

that we always have gamete 00) in that sub-population. Also note that there are no
incompatibility in the shown partitioning.

But we are not done with choice gadgets yet. To avoid complexities caused by
the same variable appearing in several clauses, we use a trick of replicating. We
will replicate each variable the number of times that the variable appears in all these
clauses. The goal is the decouple between the clause gadgets (see below) such that
there would be no incompatibility between two clause gadgets. Note that the con-
structed matrix size after replicating is still polynomial size regarding to the input.

An example of replicating a variable 5 times is shown in Table 6.
Note that we define combo rows are three neighboring rows in the data. As shown

in Table 6, we can essentially create copies of Hxi
such that each copy needs to make

synchronized choices. The purpose of these replicated choice gadgets is that we now
can use different segments of choice gadgets in different clause gadgets. By doing
this, we can now safely decouple two clause gadgets because we ensure different
clause gadgets never share choice gadget segments.

Here, we must show that this generalized choice gadget is still a choice gadget.
That is, we need to prove that there is exactly one way of partitioning the generalized
choice gadget (i.e. the upper half and lower half) s.t. the two partitions are perfect
phylogeny. For better presentation, we only prove this for the example in Table 6. We
comment that the proof can be trivially extended to generalized choice gadgets of any
size.

Lemma 3.10 There is a unique way of perfect bi-partitioning the data in Table 6.
That is, partitioning by the upper half and lower half.

Proof The claimed partition is trivially a solution. We now need to show that there is
no other solution for perfect bi-partitioning.

We first prove the claim for the case where there is no separation of rows in any
of the 3 × 3 submatrices (i.e. the three rows in such submatrices belong to a single
partition). WLOG assume combo row 1 are in partition A. Since combo row 6 has
all-1 at first three sites (where combo row 1 has 01,10 gametes). This immediately
implies combo rows 6 are in partition B. Then, from combo rows 6, combo row 2
must be in partition A, and so on. So, combo rows 1,2,3,4,5 are in partition A while
the other rows are in partition B. But this is exactly the claimed unique partition.
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Table 7 How to arrange the
constructed choice gadgets.
Here, Hxi

is the generalized
choice gadget for variable xi

x1, x1 Hx1 0 0

x2, x2 0 Hx2 0

x3, x3 0 0 Hx3

Table 8 Gadgets for clauses.
Here is an example for clause
(xi , xj , xk). We use 0 to indicate
a 3-cells as all 0. 13,1 stands for
a 3 × 1 submatrix filled with
all-1. It is important to note that
these 3 × 1 submatrices are
aligned to the 3 × 3 submatrices
in the choice gadgets

For xi For xj For xk

xi 0 13,1 13,1

xi 0 0 0

xj 13,1 0 13,1

xj 0 0 0

xk 0 0 0

xk 13,1 13,1 0

Now we consider the situation when some comb row (say combo row 1 WLOG)
is divided into partition A and B. WLOG we further assume two rows in combo row
1 belongs to partition A. This implies whole combo row 6 is in partition B. This in
turn implies whole combo row 2 is in partition A, and so on. Finally, we know whole
combo row 10 is in partition B. However, there is a single row of combo row 1 in
partition B, and this causes incompatibility among sites in the I3. Contradiction.

Thus, there is only a single way of perfect partitioning of the generalized choice
gadget. �

Since we have enforced the unique perfect bi-partitioning of Hxi
for a single vari-

able xi , we let the top partition correspond to literal xi , and bottom partition for
literal xi . Now we show how we arrange these Hxi

for all variables. This is shown in
Table 7.

As shown in Table 7, we arrange the gadgets in a diagonal way. This can avoid in-
terference between choice gadgets for different variables. Also note that by filling all
0 bits in, we achieve the previously assumed 00 gamete, because both partition must
have at least one 00 gamete since Hxi

(on the diagonal) is not perfect phylogeny. An
important thing to note is that there is no incompatibility between two sites coming
from different choice gadget. This is due to the isolation caused by diagonal arrange-
ment: gamete 11 is missing for all such pairs.

With these choice gadgets in place, we are ready to handle the clauses. From now
on, we are not going to add new rows. We will only add columns (sites) to the existing
matrix for the clauses. For a clause, say Ci = (xi, xj , xk). We will create a block of
new sites for each of these literals. We show this by Table 8. Since there are other
rows corresponding to variables not appearing in ci , we fill in all 0 again. Note that
this means in any partitioning, we have gamete 00 in both partitions.

Let us look closely at the clause gadget. We already know each set of rows cor-
responding to a literal must belong to a single partition. Therefore, we can treat the
3×1 submatrices of all-1 (resp. 0) as a single letter 1 (resp. 0) since they must belong
to a single partition. Since we always have gamete 00 for pair of sites in this clause
gadget, it is easy to see the three sites in this clause gadget are pairwise incompatible.
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Thus, any partitioning must not have the three non-zero combo rows together in one
sub-population. Conversely, any way of separating the non-zero combo rows leads to
no-incompatibility within this clause gadget. Therefore, we know that we can achieve
no-incompatibility within the clause gadget iff the three literals are not equal in the
truth assignment for the clause.

It can also be shown that there are no incompatibility between sites in any parti-
tioning that enforces the choices gadgets. That is, there is not extra constraints im-
posed by our construction. It is easy to see that there is no incompatibility between
two clause gadgets. Also there is no incompatibility between sites in generalized
choice gadgets for any variable assignments. What remains to show is to ensure that
there is no incompatibility between sites in a choice gadget and clause gadget. It is
easy to see that any site in a clause gadget is compatible with sites in a choice gadget
for xi if xi (or xi ) does not appear in the clause (due to missing of gamete 11). Now
suppose xi does appear in the clause. The key observation is that for any site s in a
choice gadget, it either contains a single 1 or a block of three 1. The first case leads
trivially to compatibility. The second case also works because we assign all three val-
ues to 1 in the clause gadget. Thus, we can never have gametes 11 and 10 between s

and a site sc in a clause gadget at the same time. So we conclude that there is a way
of partitioning perfectly iff there is a not-all-equal truth assignment.

To summarize, our construction of matrix M ensures that there is a way of parti-
tioning M into perfect phylogenies iff there is a not-all-equal truth assignment for the
clauses. �

4 Practical computation of the forest bound

Now we use integer programming to compute the exact forest bound for data within
certain range.

4.1 Computing the forest bound precisely using integer linear programming

Consider an input matrix M with n rows and m sites. Our goal is to compute the
minimum forest that derives the input sequences. There are 2m possible sequences
(which form a hypercube) that could be part of the minimum forest. Of course, the
n input sequences must appear in this forest. From Lemma 3.2, in order to compute
the forest bound we need to minimize the number of Steiner nodes. Thus, we create a
variable vi for each sequence si in the set of 2m possible sequences at Steiner nodes,
where vi = 1 means sequence si appears in the forest. Next, we create a variable ei,j

for two sequences si , sj that differ at exactly one column. We create constraints to
ensure ei,j = 1 implies vi = 1 and vj = 1. We define a set Ec as the set of ei,j where
si , sj differ exactly at the single site c. The infinite sites mutation model requires that
exactly one e ∈ Ec has value 1.

Optimization goal Minimize (
∑2m

i=1 vi) − m − 1
Subject to

vi = 1, for each row si ∈ M .
ei,j ≤ vi , and ei,j ≤ vj , for each edge (si , sj ).
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∑
(si ,sj )∈Ec

ei,j = 1, for each site c

Binary Variables
vi for each sequence si with m binary characters
ei,j for each pair of sequences si , sj such that d(si, sj ) = 1.

The formulation can also be extended easily to handle the situation where there are
missing values in the input data, which is important for handling real biological data.
To handle missing data in the ILP formulation, for a sequence si with missing values,
we change the constraint vi = 1 to

∑
j vj ≥ 1, for each sequence sj that matches the

values of si at all non-missing positions. Our experience shows that the formulation
can be solved reasonably fast for data with up to 8 sites (by a powerful ILP package
CPLEX). Note that handling missing values is the advantage of the ILP formulation.
The history bound can be computed in time O(m2n) but can not be easily extended to
situations where there are missing values in the input data M . Although the number
of variables in the ILP is O(2n), our experience shows that it is practical for certain
range of data even when the data contains some missing values. See Sect. 4.2 for
practical results on this issue.

4.2 Simulations of data with missing data

Now we describe computations of the forest bound and how they compare to the hap-
lotype bound on simulated data. In this simulation study, to make comparison easier,
we do not use the composite method (Myers and Griffiths 2003), which often gives
higher lower bound. Initial experience shows that when composite bounds (instead
of a single bound over the entire interval) are compared, the forest bound tends to
agree more with the haplotype bound. This supports the general view that the op-
timal haplotype bound is a very good bound. It remains an interesting question on
finding effective ways to give bounds higher than the composite bound from the opti-
mal haplotype bounds on small intervals. We show here that the forest bound can be
effectively computed for certain range of data with missing values.

We generated 100 datasets with Hudson’s program MS (Hudson 2002) for each
parameter setting. We fix the number of sites in these data to 7 or 8. We want to
compare the forest bound with the optimal haplotype bound when the data contains
various level of missing data. Currently, the only known method computing optimal
haplotype bound with missing data can only work with very small data. So instead, we
compare with a weaker haplotype bound method, which is implemented in program
HapBound (Song et al. 2005). HapBound can handle missing data but not always give
the optimal bound (Song et al. 2006) when there is missing data. Missing values are
added to the datasets by setting an entry to be missing with a fixed probability Pmv .

Table 9 shows that the forest bound can outperform HapBound in some cases. Our
results show that the haplotype bound method used by the program HapBound ap-
pears to be quite good for the range of data we tested. In particular, our tests show that
when the missing value level is low or moderate, the program HapBound performs
quite well for the range of data we generated.

We also simulated randomly generated data to see how the three lower bounds per-
form. Our results show that the forest bound is more likely to give higher bounds than
the optimal haplotype bound on random data. For example, for randomly generated
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Table 9 Comparing the forest bound with haplotype bound. We simulate 100 datasets. Then we introduce
various level of missing values to these datasets. We report the percentage of datasets where the forest
bound is strictly higher than the haplotype bound. That is, each value is the percentage of datasets where
the forest bound is higher than the optimal haplotype bound for the specific setting (i.e. number of rows
and columns, and percentage of the missing values). Note that the forest bound is always as high as the
haplotype bound

% Missing value 0% 10% 20% 30%

20 rows, 7 sites 0% 0% 0% 3%

20 rows, 8 sites 0% 1% 0% 0%

30 rows, 7 sites 0% 1% 0% 8%

30 rows, 8 sites 0% 0% 0% 7%

data with 15 rows and 7 sites, the forest bound gives higher bound than the optimal
haplotype bound in 12% of the random data, while the history bound gives higher
bound than the optimal haplotype bound in 18% of the data. This suggests that as the
sequences become less correlated, the forest bound tends to perform better than the
optimal haplotype bound.

5 Discussion

In this paper, we present our understanding of a good lower bound on Rmin(M) (i.e.
the minimum number of recombinations needed to derive a set of sequences M),
namely the forest bound. We demonstrate the relationship between the forest bound
and the other two known lower bounds: the haplotype bound and the history bound.
Our work provides a unified view on all three lower bounds. This may help future
research on the recombination lower bounds.

There are many unsolved problem related to computing good lower bound on
Rmin(M). The ILP formulation can solve data with no more than 8 sites. This seems
to make the forest bound impractical because the real haplotype data can be quite
large, with hundreds of sites, and thus is well over the limit that the ILP formulation
can solve. However, this method can still be practical because a common way of
computing lower bounds is to compute local lower bounds on short intervals and
then use a composite method to compute the overall bound (Myers and Griffiths
2003). Thus, the ILP formulation may be useful in computing local bounds for short
intervals and thus improve the overall bound. Still, an interesting research question is
how to compute the forest bound for data with larger number of sites, which would
allow us to find out how the forest bound compares to the haplotype bound in those
cases. Another possibility is to explore some good approximation of the forest bound,
which can be easily computed.

Another interesting problem is to develop practical methods to compute the history
bound when the data contains missing values. The current dynamic programming
method to compute the history bound does not easily generalize to handle missing
values. As mentioned earlier, one attractive feature of the ILP formulation for the
forest bound is its ability to handle missing values. It will be interesting to see how
we can address the missing value issue in history bound methods.
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