
J Comb Optim (2008) 15: 315–341
DOI 10.1007/s10878-007-9080-6

An efficient generalized network-simplex-based
algorithm for manufacturing network flows

Prahalad Venkateshan · Kamlesh Mathur ·
Ronald H. Ballou

Published online: 8 June 2007
© Springer Science+Business Media, LLC 2007

Abstract Fang and Qi (Optim. Methods Softw. 18:143–165, 2003) introduced a new
generalized network flow model called manufacturing network flow model for manu-
facturing process modeling. A key distinguishing feature of such models is the assem-
bling of component raw-materials, in a given proportion, into an end-product. This
assembling operation cannot be modeled using usual generalized networks (which
allow gains and losses in flows), or using multi-commodity networks (which allow
flows of multiple commodity types on a single arc). The authors developed a network-
simplex-based algorithm to solve a minimum cost flow problem formulated on such a
generalized network and indicated systems of linear equations that need to be solved
during the course of the network-simplex-based solution procedure. In this paper, it
is first shown how various steps of the network-simplex-based solution procedure can
be performed efficiently using appropriate data structures. Further, it is also shown
how the resulting system of linear equations can be solved directly on the generalized
network.
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1 Introduction

Network flows have been studied extensively by the operations research commu-
nity (Ahuja et al. 1993; Bazaraa et al. 1990). A large number of real problems en-
countered in practice can be accurately formulated as equivalent problems on some
underlying network. Network problems arise in applications in areas as diverse as
finance (Golden et al. 1979), material production and distribution (Geoffrion and
Graves 1974), and vehicle routing (Toth and Vigo 2002), to name a few. Network
problems also allow for efficient solution procedures.

The network-simplex method is one such procedure that solves network problems
by specializing the simplex algorithm for networks. Various steps of the simplex al-
gorithm have efficient counter-parts in the network-simplex method. The general-
ized network-simplex method is used to solve network flow problems that allow for
gains and losses in flows. Multi-commodity network flow problems, likewise, have
an equivalent network-simplex-based solution procedure.

Recently, Fang and Qi (2003) introduced a new generalized network flow model
called the manufacturing network flow model. Mo et al. (2005) expanded the study
of manufacturing network flows by incorporating certain features of ordinary multi-
commodity network flow models. A key distinguishing property of all such models is
the assembling of component raw-materials, in a given proportion, to produce end-
products. Such an operation cannot be modeled on usual generalized networks be-
cause generalized networks allow for gains and losses in the total flow that enters a
particular node or travels along an arc, regardless of the type of each component of the
total flow. Multi-commodity networks are used primarily in situations where multiple
commodities share a common distribution network with some resource constraints on
arcs and/or nodes. Neither of these two types of networks has the capability to model
the manufacturing or assembling operation.

In their paper, Fang and Qi (2003) also outlined the steps of a network-simplex-
based solution procedure for a minimum cost flow problem on manufacturing net-
works. Due to the fact that manufacturing network flows involve the assembly oper-
ation, which is fundamentally different from the types of operations encountered in
other network flow models, it is not immediately clear whether or how various steps
and updates involved in the network-simplex-based algorithm can be carried out with
the same efficiency as the usual network-simplex method. Our main contribution in
this paper is to show that it is indeed possible to carry out the steps of the network-
simplex-based method and the updates involved, with efficiency. More specifically,
the main results of this paper are the following:

1. We develop data structures that would aid in efficient implementation of the
network-simplex-based solution procedure for manufacturing networks.

2. We show how certain linear systems of equations that arise during the course of the
network-simplex-based procedure for manufacturing networks can be efficiently
solved.

In the model developed by Fang and Qi (2003), even though the total incoming
flow at a node along different arcs had to be in a certain given proportion, the total
flow into a node was required to be equal to the total flow out of a node. Lu et al.
(2006) study a manufacturing network model in which this assumption is relaxed.
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That is, even though the incoming flow at a node along its different incoming arcs had
to be in a given proportion, the total flow out of this node was not required to be equal
to the total sum of the incoming flows at that node. The methodology developed in our
paper is capable of handling this more general type of flow. To aid in discussion of our
methodology, it will be useful to describe an application in which a manufacturing
network flow model is necessary. In a variety of problem contexts, geographically
dispersed customers demand units of an end product each one of which is composed
of various components in a fixed and given proportion. The end product is produced
(or assembled, as the case may be) at the site of geographically dispersed assemblers
by combining the requisite amount of components. The assembler could represent a
manufacturer, a distributor, or a retailer, or more generally any entity that assembles
multiple components into a single product for onward distribution.

There exist geographically dispersed suppliers who specialize in the production
and supply of each component. Multiple suppliers may supply the same component
but a supplier is capable of supplying only a single type of component. Assemblers
source components from suppliers. Capacity constraints (lower and upper bounds)
may exist on how much of a component a supplier can supply, how much of an end
product each assembler can assemble and on how much of a commodity (component
or end product) can be shipped between a supplier and an assembler and between an
assembler and a customer. Shipment of components or end products incurs a cost that
varies linearly with the amount of flow. The problem is to find the flow of commodi-
ties that satisfies customer demand at least cost.

A pictorial example will help in better understanding of the problem. Figure 1
depicts an example in which each demand cluster has a certain demand of an end
product, each unit of which is made up of a certain quantity of component 1 and a
certain quantity of component 2. Supplying one unit of the end product of demand
cluster 1 from assembler 1 requires the sourcing of appropriate amounts of compo-
nents from the suppliers of that specific component. As a result of this requirement,

Fig. 1 Example problem
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it is not possible to split the demand of the end product into individual and separate
component demands.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notation
and the manufacturing network flow model used to solve the minimum cost distri-
bution problem. In Sect. 3, certain graph-theoretical properties of the network flow
model are derived. In Sect. 4, we describe the steps of the network-simplex-based al-
gorithm. In Sect. 5 an example is studied which illustrates the proposed methodology.

2 Model

First we list the notation used throughout the paper.

i = index of a customer, i = 1, . . . , I

di = non-negative demand of ith customer in units of end-product
j = index of an assembler, j = 1, . . . , J

k = index of a supplier, k = 1, . . . ,K

p = index of a component type, p = 1, . . . ,P

ap = positive amount of pth component needed to assemble one unit
of end-product

R(k) = index of component supplied by the kth supplier
bji = non-negative unit shipment cost of the end product from j th assembler

to ith customer
dkj = non-negative unit shipment cost of component from kth supplier to j th

assembler
[Q] = the set of integers from 1 through Q, defined only for positive integral Q

In addition to the above, let (Lj ,Uj ) and (lk, uk) stand for the non-negative lower
and upper bounds (if any) on the amount shipped out of the j th assembler and kth
supplier respectively. Non-negative lower and upper bounds on the amount shipped
between specific assembler-customer and supplier-assembler pairs are likewise rep-
resented by (Lji,Uji ) and (lkj , ukj ) respectively.

We are now in a position to describe the manufacturing network model for the
distribution problem. As illustrated in Fig. 2, in this network, there is a node, Sk , rep-
resenting the kth supplier, a node Aj , representing the j th assembler and a node, Ci ,
representing the ith customer. The flow of component p originates from a node rp .
Directed arcs connect rp to all suppliers supplying the pth component. The assem-
bling operation performed by the j th assembler is represented by a set of nodes and
arcs. A node of type Ajrp is used to conceptually represent the entry point of the pth
component at the facility of the j th assembler. All incoming flow at node Ajrp flows
to node Bj rp . This node is used to represent the contribution of the pth component
towards the assembly operation. All nodes of type Bj rp are also “associated” with
node AFj . This association has a very special meaning in the context of this paper.
First, there is no arc between a Bj rp node and AFj node. Secondly, feasibility of a
solution requires that the total units of the end-product produced by the j th assem-
bler be matched by the exact appropriate amount of each component sourced by that
assembler. As will be shown subsequently the special association between the Bj rp
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Fig. 2 Example of manufacturing network

nodes and the AFj node will help achieve this requirement. Thirdly, node AFj will
be shown to be useful both for a mathematical and an intuitive understanding of the
network-simplex-based solution procedure. Nodes Bj rp , ∀p ∈ [P ] and node AFj to-
gether represent the actual assembly process at the site of the j th assembler. These
P +1 nodes are the nodes associated with the j th assembly process. Nodes AFj lead
into nodes Aj that are in turn connected to customer nodes Ci .

All nodes in this network satisfy the usual flow conservation property (flow in =
flow out) except nodes of type Bj rp and AFj . More specifically, if zAj rp,Bj rp stands
for the flow on arc (Aj rp,Bj rp) and zAFj ,Aj

stands for the flow on arc (AFj ,Aj ),
the two are related by the following relationship:

zAj rp,Bj rp − apzAFj ,Aj
= 0, ∀p ∈ [P ], ∀j ∈ [J ]. (1)

Equation (1) represents the requirement that assembling 1 unit of the end-product
requires ap units of the pth component sourced to an assembler. It is this very require-
ment that leads to the complication in the model and necessitates the development of a
new network-simplex-based solution methodology for manufacturing network flows.
If P = 1, and a1 = 1, the problem simplifies to the usual minimum cost network flow
problem.



320 J Comb Optim (2008) 15: 315–341

Now, the problem of finding the optimal flow on the manufacturing network can
be cast in the following general form:

[MCNF] Minimize ctz

s.t. Az = d, (2)

Bz = 0, (3)

LB ≤ z ≤ UB (4)

in which, each column (variable) represents a unique arc of the manufacturing net-
work. The vector of decision variables, z, is of size K + KJ + JP + J + JI , cor-
responding to the total number of arcs in Fig. 2. Vector c contains as components the
distribution costs, bji and dkj .

Constraints (2) represent the usual flow balance constraints (flow in = flow out) at
all nodes in the network except those of type Bj rp and AFj . As a result, matrix A is
totally unimodular. The number of rows in matrix A (and vector d) is K+JP +J +I ,
which is equal to the number of nodes in Fig. 2 that satisfy the usual flow balance
constraints. Except for components corresponding to customer demand di , ∀i ∈ [I ],
all other entries of vector d are 0. Constraints (3) represent all constraints of type (1).
Matrix B has JP rows corresponding to the flow balance constraints at all nodes of
type Bj rp . Constraints (4) impose lower (LB) and upper (UB) bounds on the flow.

3 Graph-theoretic properties of bases of [MCNF]

In this section, we will derive certain graph-theoretic properties of the bases of
problem [MCNF]. These properties will be used in the development of a network-
simplex-based algorithm.

For problem [MCNF], let α be the total number of constraints in the constraint
set (2) and β be the total number of constraints in the constraint set (3). By adding
enough artificial variables, the constraint set can be made to be of full rank. Then,
any basis is a square matrix with (α + β) rows.

The network-simplex-based method works directly on a graph underlying problem
[MCNF] such as the one depicted in Fig. 2. Let B denote a basis of problem [MCNF].
The columns of B correspond to a certain set of arcs of the manufacturing network.
These arcs together constitute a sub-graph of the manufacturing network. We now
derive a few properties of this sub-graph.

In the graph corresponding to the columns of the constraint matrix of problem
[MCNF], the following types of cycles along which flow can be augmented exist:

Type 1: Cycle involving nodes rp , Sk1 , . . . , Skq ,Aj1rp, . . . ,Ajq−1rp where R(k1) =
· · · = R(kq) = p, k1 �= · · · �= kq and j1 �= · · · �= jq−1.

Type 2: Cycle involving nodes Sk1, . . . , Skq , Aj1rp, . . . ,Ajq rp where R(k1) = · · · =
R(kq) = p, k1 �= · · · �= kq and j1 �= · · · �= jq .

Type 3: Cycle involving nodes Aj1, . . . ,Ajq , Ci1, . . . ,Ciq where j1 �= · · · �= jq and
i1 �= · · · �= iq .

Type 4: Cycle involving AFj nodes: For instance, AFj1,Aj1,Ci1, . . . ,Ciq−1 ,Ajq ,

AFjq , where j1 �= · · · �= jq , i1 �= · · · �= iq−1 and one of the following set
of nodes for each p ∈ [P ]:
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(a) Aj1rp,Ajq rp,Ajl1
rp, . . . ,Ajlqp

rp,Bj1rp,Bjq rp,Bjl1
rp, . . . ,Bjlqp

rp,

rp, Sk1 , . . . , Skqp
, where k1 �= · · · �= kqp , jl1 �= · · · �= jlqp

�= j1 �= jq,

R(k1) = · · · = R(kqp ) = p and qp = lqp + 2.
(b) Aj1rp,Ajq rp,Ajl1

rp, . . . ,Ajlqp
rp,Bj1rp,Bjq rp,Bjl1

rp, . . . ,Bjlqp
rp,

Sk1, . . . , Skqp−1 , where k1 �= · · · �= kqp−1, jl1 �= · · · �= jlqp
�= j1 �= jq ,

R(k1) = · · · = R(kqp−1) = p and qp = lqp + 1.

Since a cycle of type 4 involves arcs corresponding to the end-product as well as
the components, we refer to it as a complex cycle. We now show that the columns
associated with arcs corresponding to each one of the type of cycles are linearly
dependent.

Lemma 1 Columns of the constraint matrix for problem [MCNF] associated with
arcs corresponding to each one of the four types of cycles are linearly dependent.

Proof Proof of this lemma for cycles of types 1 through 3 is similar to the proof
for the usual network-simplex method. Such proofs can be found in Kennington and
Helgason (1980), for instance, and are omitted here. The proof for a cycle of type
4 is unique to manufacturing networks. We prove the result for the complex cycle
used as an example in the definition of the type 4 cycle. The proof for other complex
cycles is similar. Let us define ef,t to be the column of the constraint set of problem
[MCNF] corresponding to the directed arc between nodes f and t . If f is not an
AFj type node, this column is a vector of size α +β with all entries 0 except an entry
of −1 corresponding to the component associated with node f and an entry of +1
corresponding to the component associated with node t . If the arc (f, t) corresponds
to the arc (AFj ,Aj ), ef,t has all entries 0, except an entry of 1 corresponding to
the component associated with node Aj , and an entry of −ap corresponding to the
component associated with node Bj rp , ∀p ∈ [P ].

We first note that each cycle of type 4, consists, in effect, of P sub-cycles, one for
each component type. Each one of these sub-cycles has the same nodes amongst the
AFj , Aj and Ci nodes as part of the sub-cycle. Let these nodes be AFj1, . . . ,AFjq ,
Aj1, . . . ,Ajq , Ci1, . . . ,Ciq−1 . Now we can define a new vector rhs as follows:

rhs = eAFj1 ,Aj1
+ eAj1 ,Ci1

− eCi1 ,Aj2
+ · · · − eCiq−1 ,Ajq

− eAjq ,AFjq
.

It is easy to see that rhs has as entries 0 for all components except those corresponding
to nodes Bj1rp for which the entry is -ap , and those corresponding to nodes Bjq rp
for which the entry is ap . We now consider the set of nodes that are unique to each
subcycle. For the pth such subcycle (assuming the set of nodes are of type 4b), we
define a vector lhsp as follows:

lhsp = −eBjq rp,Ajq rp − eAjq rp,Skqp−1
+ · · · + eSk1 ,Aj1 rp + eAj1 rp,Bj1 rp .

It is easy to see that lhsp has as entries 0 for all components except that corresponding
to node Bj1rp for which the entry is +1, and that corresponding to node Bjq rp for
which the entry is −1. It then follows that rhs + ∑

p∈[P ] aplhsp = 0 establishing
linear dependence. �
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Corollary 1 B does not consist of columns corresponding to the arcs of any type of
cycle along which flow can be augmented.

Proof Follows from the non-singularity of any basis and Lemma 1. �

Let us define arcs associated with the j th assembly operation as the following set
of P + 1 arcs: (AFj ,Aj ), (Aj r1,Bj r1), . . . , (Aj rP ,Bj rP ).

Lemma 2 B consists of at least P columns (arcs) associated with the j th assembly
operation.

Proof Consider the first case where column eAFj ,Aj
is not a part of the basis. If there

were less than P other columns associated with the j th assembly operations in the
basis, it implies that there is at-least one other column eAj rp,Bj rp not a part of the
basis. Hence, all entries of the row in the basis corresponding to node Bj rp are 0,
contradicting the non-singularity of the basis.

The second case is where column eAFj ,Aj
is a part of the basis. If there were

less than P other columns associated with the j th assembly operations in the ba-
sis, it implies that there are at least two rows in the basis associated with nodes
Bj rp1 and Bj rp2 whose only non-zero entries are from the non-zero entries of col-
umn eAFj ,Aj

. The two rows are, therefore, linearly dependent, again contradicting the
non-singularity of the basis. �

For any node n, let un represent its node potential (dual variable). Let the cost of
unit flow along arc (f, t) in the manufacturing network be denoted by cf,t .

Since there is no incoming arc at node AFj , the constraint set of problem [MCNF]
does not contain a constraint corresponding to AFj nodes. None-the-less, it will be
convenient to associate a node potential, uAFj

, with node AFj , that is related to the
node potentials for nodes of type Bj rp , uBj rp , as follows:

uAFj
=

∑

p∈[P ]
apuBj rp . (5)

This association presents no difficulty, conceptually or mathematically, since the
reduced-cost of arc (AFj ,Aj ), which is

∑
p∈[P ] apuBj rp + cAFj ,Aj

− uAj
can, con-

veniently and intuitively, be written as uAFj
+cAFj ,Aj

−uAj
. Equation (5), therefore,

can be considered to represent the complementary slackness conditions for the nodes
associated with the j th assembly operation.

Using (1), any lower or upper bound on the flow on arc of type (Aj rp,Bj rp) can
be translated into an equivalent bound on arc of type (AFj ,Aj ). Hence, without loss
of generality, the lower and upper bounds on all arcs of type (Aj rp,Bj rp) can be
taken to be 0 and ∞ respectively. This leads us to the following result.

Theorem 1 There exists an optimal basis in which all arcs of type (Aj rp,Bj rp) are
a part of the basis.

Proof Consider an optimal basis B∗ in which arc (Aj rp,Bj rp) is not a part of the
basis. The flow on this arc is at its lower bound of zero.
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Let u1 and u2 be the node potentials associated with nodes Ajrp and Bj rp re-
spectively. The optimality conditions imply that the reduced-cost, cAj rp,Bj rp + u1 −
u2 ≥ 0.

Now, as a result of Lemma 2, arc (AFj ,Aj ) is a part of the basis. Let u3 =∑
p∈[P ] apuBj rp and let u4 represent the node potential associated with node Aj .

Then, u4 = u3 + cAFj ,Aj
.

Remove arc (AFj ,Aj ) from B∗, set the associated flow to its lower bound (of
zero), and introduce arc (Aj rp,Bj rp) into the basis to obtain the new basis B∗∗.
As a result of this modification, the reduced-cost of arc (AFj ,Aj ) increases by
ap(cAj rp,Bj rp + u1 − u2) ≥ 0. Since the flow on arc (AFj ,Aj ) is at its lower bound,
the optimality conditions still hold, and B∗∗ is an optimal basis. (Note that this con-
clusion is valid only if we can prove that in changing from basis B∗ to basis B∗∗ the
potential of node Aj is not altered. The proof for this will follow from Lemma 3 that
we prove subsequently.) �

The sub-graph associated with the bases of problem [MCNF] can be consid-
ered a generalization of the spanning tree associated with the usual network-simplex
method. The following definition provides this generalization.

Definition Generalized Tree: A generalized tree for a manufacturing network is
a connected graph with no cycles along which flow can be augmented. Nodes
corresponding to the assembly operation: (AFj , Bj r1, . . . ,Bj rP ) are considered
connected only if at least P arcs amongst (Aj r1,Bj r1), . . . , (Aj rP ,Bj rP ) and
(AFj ,Aj ) are part of the tree.

For the sake of brevity, we refer to the generalized tree here-after as simply the
g-tree.

In the context of the g-tree, the P arcs (Aj rp,Bj rp), ∀p ∈ [P ], provide connec-
tivity only to the Bj rp nodes and the AFj node. In other words, the presence of these
P arcs alone does not provide for the connectivity of the Ajrp nodes.

Theorem 2

(a) Every basic solution of [MCNF] corresponds to a g-tree.
(b) Every g-tree corresponds to a basic solution of [MCNF].

Proof (a) (Modified from Fang and Qi 2003) We will begin the network-simplex-
based procedure by creating a special zeroth node and creating artificial arcs con-
necting this zeroth node to all other nodes in the manufacturing network. As the pro-
cedure continues, a few of these artificial arcs will leave the current basis. Since the
basis B associated with a basic solution is non-singular, it follows from Corollary 1
that the sub-graph associated with the basic solution does not contain any cycle along
which flow can be augmented. Now assume the graph associated with the basis is not
connected. By re-arranging the basis, we can write the basis in form

B =
(

S 0
0 V

)
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where S corresponds to nodes that are connected to the zeroth node, and V corre-
sponds to nodes unconnected to the zeroth node. The rows in V are completely in A
and hence their sum is 0, contradicting the non-singularity of B. From Lemma 2, we
also know that there exist at least P arcs amongst (Aj r1,Bj r1), . . . , (Aj rP ,Bj rP )

and (AFj ,Aj ) that are part of the g-tree.
(b) The only possible cycles along which flow can be augmented in the graph are

the four types that were identified previously. Since the g-tree by definition does not
contain any of these, it follows that the g-tree corresponds to a basic solution. �

4 Network-simplex-based algorithm

We now describe, conceptually, the network-simplex-based solution procedure. As-
sociated with any basic feasible solution are arcs in the network which can either

1. be a part of the g-tree (basis), in which case the arc is said to belong to set T of
arcs, or

2. belong to the set L of non-basic arcs whose flows are at their lower bounds, or
3. belong to the set U of non-basic arcs whose flows are at their upper bounds.

The network-simplex-based method for the distribution problem proceeds itera-
tively through the following steps.

Step 1. Find a feasible g-tree structure specified by the sets T, L and U of arcs.
Step 2. Compute the flow and node potentials associated with this g-tree structure.
Step 3. Determine if some arc (k, l) violates the optimality conditions. If no such

arc exists, terminate with the current solution being optimal. Otherwise go to
step 4.

Step 4. Add arc (k, l) to the g-tree and determine the leaving arc (q, t).
Step 5. Perform a g-tree update and update the flow and node potentials. Go back to

step 3.

We now elaborate on how each one of the steps above can be performed efficiently.

4.1 Steps 1 and 2: finding an initial basic feasible solution and computing node
potentials

To start the network-simplex-based method, we will construct an all-artificial basis.
To do this, we add a new artificial node to the network and call it the zeroth node.
Artificial arcs, with a lower bound of zero and an upper bound of ∞, connect the
zeroth node to all nodes in the network except nodes associated with the assembly
operation. The cost of unit flow on these arcs is set to a large positive value, M . The
only exception relates to arcs between the zeroth node and the component nodes, rp ,
that are not charged any cost. As a result of Theorem 1, all arcs of type (Aj rp,Bj rp)

are included as a part of the g-tree.
The flows on the original arcs of the manufacturing network are set to their lower

bounds. The directions and flows on the artificial arcs are, then, set such that there is
flow balance at all nodes of the manufacturing network, including the nodes associ-
ated with the assembly process, for which the flow balance requirement is specified
by (1).
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Fig. 3 Example of a starting basis

An example is provided in Fig. 3. Dashed lines are used to indicate that the zeroth
node that appears in three different locations refers to the same node. In this example,
if a1 = 1, a2 = 2, d1 = 5, d2 = 10, d3 = 15 and L1 = 10, the flows on all basic arcs
except the following are zero:

z0,A1r1 = zA1r1,B1r1 = 10,

z0,A1r2 = zA1r2,B1r2 = 20,

zA1,0 = 10,

z0,C1 = 5,

z0,C2 = 10,

z0,C3 = 15.

The node potentials can be calculated using the g-tree structure and complemen-
tary slackness conditions. We may assume the node potential for the zeroth node as
being equal to 0. For the starting basis shown in Fig. 3, the various node potentials
are indicated in Table 1.

4.2 Step 3: testing for optimality

Once the node potentials are calculated, the following procedure is used to determine
if the current basis is optimal.

1. Let ψ1 = {(k, l) ∈ L : ck,l + uk − ul < 0}, and let ψ2 = {(k, l) ∈ U : ck,l + uk −
ul > 0}.

2. If ψ1 ∪ ψ2 = ∅, terminate with the present flows being optimal. Otherwise, select
(k, l) ∈ ψ1 ∪ ψ2 as the arc that violates the optimality conditions.
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Table 1 Node potentials for
starting basis of Fig. 3 Node, i Node potential, ui

r1 0

r2 0

S1 −M

S2 −M

S3 −M

A1r1 M

A1r2 M

A2R1 M

A2R2 −M

B1R1 M

B1R2 M

B2R1 M

B2R2 −M

AF1 3M

AF2 −M

A1 −M

A2 M

C1 M

C2 M

C3 M

Before we discuss steps 4 and 5, we need to develop appropriate data structures
for the network-simplex-based method. The sections that follow assume familiarity
with the data structures developed in the Appendix.

4.3 Step 4: pivoting

On adding an arc (k, l) that violates the optimality conditions to the g-tree, one of the
four types of flow-augmenting cycles is formed in the graph. We use the root index
along with the predecessor index to find this cycle which we refer to as the pivoting
cycle.

If root(k) = root(l) �= 1, then the cycle formed is of type 1, 2 or 3. By backtracking
to the common root-node, the nodes belonging to the cycle can be identified. The
maximum value, δ units, of flow that can be sent around this cycle before the flow on
one of its component arcs reaches either its lower or upper bounds is found out just
as is the case in the usual network-simplex method. Any arc along which the flow
reaches this bound is chosen as the leaving arc (q, t). If root(k) = 1 and root(l) = 1,
both nodes, on backtracking, could lead to the same AFj node. In this case, the cycle
is of type 3 and can be dealt with similarly.

If, however, root(k) �= root(l), a variety of cases could arise that require careful
consideration.

If root(k) = 1 and root(l) = 0, we know that either node k is an AFj node, or that
we can backtrack from node k to an AFj node. The Bj rp nodes associated with this
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AFj node all necessarily have a root of 0. Hence, we can backtrack along a path in the
g-tree from each one of the Bj rp nodes to the zeroth node. This path corresponds to a
path for component of type p to reach the j th assembler. From node l, we can directly
backtrack to the zeroth node. A flow of δ of the end-product on this complex cycle
corresponds to a flow of apδ along the path corresponding to the pth component.
The leaving arc (q, t) is the arc along which the flow reaches either its lower or upper
bound first. This arc could be either of an end-product type, or of the type of any
one of the P components. Theorem 1 allows us to disregard consideration of any arc
of type (Aj rp,Bj rp) as candidates for leaving arc. A similar analysis can be used
if root(k) = 0 and root(l) = 1. An example where such a cycle results is when arc
(A1,C1) is chosen as the entering arc in the g-tree shown in Fig. 11. If root(k) = 1
and root(l) = 1, and both nodes lead to different AFj nodes, a complex cycle of
type 4 results. The leaving arc can be found out using a similar analysis.

If the root of node l is Bj rp , while that of node k is different, and entering arc
(k, l) is an arc associated with a component type commodity and not an end-product
commodity, we first backtrack from node l to node Bj rp . From the other Bj rp nodes
associated with the j th assembly operation, we backtrack to their respective roots,
which are either zero, or Bj1rp nodes associated with the j1 th assembly operation,
where j1 �= j .

The root of the assembler node AFj associated with Bj rp could be either zero
or a different Bj rp node. In case of the former, we backtrack from the AFj node to
the zeroth node. In case of the latter, we bactrack from the AFj node, to AFj2 node,
where j2 �= j . From each node Bj2rp , p ∈ [P ], we backtrack to their respective root-
nodes. The above procedure is likewise repeated for node k. After backtracking from
node k, we identify the complex cycle in the g-tree. By identifying the maximum
possible flow of δ units that may be augmented along the arcs of this complex cycle
associated with the end-product, we can find the leaving arc (q, t). A similar analysis
results if root of node k is a Bj rp node, while that of node l is a different node.

An example will help clarify this point. In Fig. 11, if arc (r2, S2) were to enter the
g-tree, the following complex cycle is created, which can be found by appropriately
backtracking to the root indices of the nodes associated with the entering arc.

End-product type: AF1 → A1 → C3 → 0,

Component 1: B1r1 → A1r1 → S3 → r1 → 0,

Component 2: B1r2 → A1r2 → S2 → r2 → 0,

Component 3: B1r3 → A1r3 → S4 → r3 → 0.

If the entering arc is associated with the end-product, a similar procedure of first
backtracking to an AFj node followed by backtracking to the roots of the associated
Bj rp nodes can be employed if the root of node l is a Bj rp node. This procedure is
repeated for node k. The complex cycle is identified as before, and so is the leaving
arc (q, t).

For cycle types 1, 2 and 3, if δ units of additional flow were found to be the
maximum possible before flow on arc (q, t) attained its bounds, the flow along the
various arcs of the cycle is augmented by this amount. In case of a complex cycle, the
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flow along arcs associated with the pth component is augmented by apδ, where δ is
the amount of flow that can be augmented along arcs associated with the end-product.

The root index, thus, helps in identifying the pivoting cycle that is formed in the
graph when arc (k, l) is added to the g-tree. Note that, similar to the case of the usual
network-simplex method, the flows in the network change only for those arcs that are
a part of the pivoting cycle. Hence, there is no need to re-calculate the flows along
arcs that are not a part of the pivoting cycle. The root index will also play a crucial
role in updating the node potentials, which we discuss in the next section.

4.4 Step 5: updating g-tree indices and node potentials

The final step that needs clarification is how the g-tree indices and node potentials are
updated after pivoting, without having to re-calculate them from scratch for all nodes
in the network.

An efficient method to update the indices that is available for the usual network-
simplex method is described in Bazaraa et al. (1990). We generalize this method for
the case of the manufacturing network as follows.

The method involves first finding out the “stem”, which is a special path in the
network that connects the entering arc to the leaving arc. The stem consists of those
nodes for which the predecessor index would necessarily change as a result of the
pivot. The predecessor indices for all other nodes of the network remain unchanged
after the pivot. To find out the stem, we begin by noting that either node k or node l or
both become disconnected on removal of arc (q, t) from the g-tree. By a node being
disconnected, we mean that its potential would have to change as a result of the pivot.
The question of which one of the nodes k or l is disconnected can be answered by
examining whether the leaving arc is encountered when backtracking from node k (in
which case node k is disconnected) or node l (in which case node l is disconnected).
This is best illustrated by means of an example.

In Fig. 4, we need to find out whether leaving arc (S6,A3r3) causes the discon-
nectedness of node A1 or C1. Let us begin by finding out whether A1 is disconnected.
Using the predecessor indices, we backtrack from node A1. We encounter node AF1.
Since node AF1 is a node associated with an assembly operation, we need to back-
track to the roots of each one of the other nodes associated with the assembly op-
eration. This is so because, changing the potential of any node associated with the
assembly operation requires modifying the potential of some other node associated
with the same assembly operation to maintain the complementary slackness condi-
tions represented by (5). Thus, from B1r1, we can backtrack to its root-node of zero,
without having encountered the leaving arc. From B1r2, we can backtrack to its root-
node, B3r2, without having encountered the leaving arc. Since this node (B3r2) is
associated with another assembly operation, we examine other nodes associated with
it. Thus, we examine backtracks from node B3r1 to its root-node of zero and do not
encounter the leaving arc. If we then examine backtracks from node AF3 to its root-
node of zero, we would still not encounter the leaving arc. However, on backtracking
from node B3r3 to its respective root-node of B2r3, we do encounter the leaving arc.
We can thus conclude that node A1 is indeed disconnected. The stem consists of those
nodes encountered along the series of backtracks that led us to the conclusion of the
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Fig. 4 Backtracking to find the stem

disconnectedness of node A1. For instance, in this example, the stem would consist
of the following nodes: (A1,AF1,B1r2,A1r2, . . . ,A3r2,B3r2,AF3,B3r3,A3r3).

Once the stem is identified, we update the indices and potentials of nodes in the
stem. The predecessor index is simply reversed for the nodes featuring in the stem.
This process is straight-forward except in the case of one type of stem. In case the
stem consists of the following set of nodes in order: (. . . ,Aj r1,Bj r1,AFj ,Bj r2,

Aj r2, . . .), then, pred(Bj r1) is set to be Ajr1, the predecessor index of node AFj is
left unchanged, while that of Bj r2 is set to AFj .

Once the predecessor indices have been updated, the root indices are updated next.
The root index of a node is set to be the same as that of its updated predecessor. The
root indices of Bj rp and AFj nodes encountered on the stem, are updated based on
the rules specified in the Appendix.

We now state a result that will prove useful in subsequent analysis.

Lemma 3 If the root of an AFj node is not equal to 1, exactly one amongst the P

Bj rp nodes associated with it and the Aj node has its predecessor set to be equal to
the AFj node.

Proof Note that by construction of the all-artificial starting basis, the roots of all AFj

nodes are 1 at the beginning of the network-simplex-based method. This implies,
that to begin with, the root-node of each of the Bj rp nodes associated with the j th
assembly operation is zero. Let us examine when the root of an AFj node becomes
different from 1 for the first time.
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We analyze one situation when this change occurs. The analysis is similar for other
instances. One instance when the root of an AFj node becomes different from 1 for
the first time occurs when the entering arc is arc (k, l) with root(k) = 1, root(l) �= 1
and backtracking from node k using the predecessor indices leads to the AFj node.
The leaving arc (q, t) should be such that it results in the disconnectedness of node
k and node AFj . (In this case, after performing the pivot operation, node k would
inherit the same root-node as node l and node AFj would in-turn inherit the same
root-node.) For this to happen, it is necessary for the leaving arc (q, t) to be of
component type p that lies in path obtained by backtracking from one of the Bj rp
nodes to its root-node of 0. Assuming without loss of generality that pred(t) = q , the
stem appears as shown: (k, . . . ,Aj ,AFj ,Bj rp, . . . , t). On updating the indices, we
have pred(k) = l, . . . ,pred(AFj ) = Aj ,pred(Bj rp) = AFj , and so on. The root in-
dices are updated as shown: root(k) = · · · = root(AFj ) = root(l), root(Bj rp) = · · · =
root(t) = Bj rp . The path connecting the other Bj rp nodes to the zeroth node remains
unaffected and the same holds true for the indices of nodes in this path. Thus, the first
time that the root of an AFj node changes from 1, the lemma holds.

To complete the proof of this lemma, it remains to show that any updating opera-
tions performed subsequently in the network-simplex-based algorithm do not lead to
a violation of the property of the lemma.

Note that any updating operation begins with the creation of the stem. This stem,
in general, can be composed of any number of nodes associated with the assembly
process. Regardless of the number of such nodes, there are just three types of se-
quences of nodes that can feature in the stem:

1. (. . . ,Aj r1,Bj r1,AFj ,Bj r2,Aj r2, . . .)—in this case, the predecessor of Bj r1 is
set equal to Ajr1, while that of Bj r2 is set equal to AFj . The root of Bj r1 is set
equal to that of Ajr1, while that of Bj r2 is set to itself.

2. (. . . ,Aj ,AFj ,Bj r1,Aj r1, . . .)—in this case, since we have been able to back-
track from node Aj to node AFj using the original predecessor indices, it follows
that before the updating process, pred(Aj ) = AFj . The predecessor of all asso-
ciated Bj rp nodes are the respective Ajrp nodes. After the updating process, the
predecessor of Bj r1 is set equal to AFj , while that of the Aj node is set to the
node that precedes it in the stem. The root-node of Bj r1 is set to itself.

3. (. . . ,Aj r1,Bj r1,AFj ,Aj , . . .)—in this case, pred(Bj r1) is set equal to Ajr1,

root(Bj r1) is set equal to root(Aj r1), pred(Aj ) is set equal to AFj and root(Aj )

is set equal to root(AFj ).

None of these three cases leads to a situation in which the lemma is violated. Hence,
the proof stands complete. �

(We are now in a position to prove a claim that was needed to complete the proof
of Theorem 1. Consider the g-tree associated with basis B∗ in the proof of Theorem 1.
Since arc (Aj rp,Bj rp) was not a part of the g-tree, the root of node Bj rp must have
been set to itself. Therefore, its predecessor would be node AFj . Consequently, as
a result of Lemma 3, the predecessor of node Aj is not node AFj . However, since
arc (AFj ,Aj ) forms a part of the g-tree, the predecessor of node AFj is necessarily
node Aj . Thus, the potential of node Aj is unaffected by the new potential of node
AFj in basis B∗∗.)
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The system of linear equations that are required to be solved during every iteration
of the network-simplex-based algorithm relate to the complementary slackness con-
ditions. This set of conditions require assigning node potentials such that the reduced-
cost of arcs belonging to T is 0. In case of the usual network-simplex method, this
system of linear equations can be solved directly on the spanning tree that is associ-
ated with the set T of arcs belonging to the basis. However, in our case, we have a
new set of complementary slackness conditions for the nodes associated with the as-
sembly operation, represented by (5). Despite this complication, we now outline how
the node potentials can be assigned using operations performed on the g-tree itself.

The node potentials of the stem are first updated using the updated predecessor
indices. Special care is taken when dealing with nodes of the stem that are associated
with an assembly operation. For instance, if the nodes encountered in the stem are
(. . . ,Aj r1,Bj r1,AFj ,Bj r2,Aj r2, . . .), the node potential of Bj r1 is updated using
the node potential of Ajr1. Let the change (new node potential-old node potential)
in node Bj r1’s potential be Δ. The node potential of node AFj is left unchanged,
while that of node Bj r2 is decreased by Δa1

a2
. If the nodes encountered in the stem

are (. . . ,Aj r1,Bj r1,AFj ,Aj , . . .), the node potential of Bj r1 is updated using the
node potential of Ajr1. If the change in node Bj r1’s potential is Δ, the node po-
tential of node AFj is increased by Δa1. If the nodes encountered in the stem are
(. . . ,Aj ,AFj ,Bj r1,Aj r1, . . .), the node potential of AFj is updated using the node
potential of Aj . If the change in node AFj ’s potential is Δ, the node potential of
node Bj r1 is increased by Δ

a1
. Note that all these changes in the potentials of nodes

associated with the j th assembly operation continue to maintain the complementary
slackness relationship represented by (5).

Once the potentials of the nodes in the stem have been updated, we utilize the
thread indices to update the potentials of nodes that descend from the nodes in the
stem. In doing so, we might update the potential of say, node Bj r1, whose predecessor
is Ajr1. This necessitates updating the potential of some other node associated with
the j th assembly operation in order to maintain the relationship represented by (5).
If the root of the AFj node is not equal to 1 and its predecessor is Aj , it implies
that its node potential is fixed independently of the node potential of Bj r1. Lemma 3,
however, guarantees that in such a case, there exists exactly one other Bj rp node
whose root is equal to itself. If this node is node Bj r2, its potential is decreased by an
amount equal to Δa1

a2
, where Δ is the change in the node potential of Bj r1, in order to

maintain the relationship represented by (5). The thread index is then used to update
the descendents of node Bj r2. Note that this process is valid since these descendents
derive their node potentials from their root-node, which in this case is Bj r2.

In this process of updating the node potentials of descendents of the stem, it could
so happen that the node potential of a predecessor of a stem node is updated. Figure 5
illustrates one such case.

When arc (A1,C1) enters the g-tree and arc (0,C1) leaves the g-tree, node C1 is
disconnected. This node constitutes the stem. The potential of the node C1 is updated
to uA1 + cA1,C1 . Using the thread indices, we now update the potentials of nodes
that descend from the stem. Thus, we update the potentials of the following nodes:
A2,AF2,B2r3,A2r3, . . . ,A1r3,B1r3,AF1,A1. We seem to have reached a problem
in that the updated potential of node C1, on being used to update the potentials of its



332 J Comb Optim (2008) 15: 315–341

Fig. 5 Updating node potentials

descendents, leads to a possible change of the potential of the node, A1, that was used
to update the potential of node C1 in the first place. (This is the special case in which
both nodes associated with the entering arc are disconnected.) However, Theorem 3
below establishes that this problem can be resolved and appropriate node potentials
can be found using operations performed on the g-tree itself.

Theorem 3 There exists a three-step procedure that can be implemented on the g-tree
itself by which we can find appropriate node potentials satisfying the complementary
slackness conditions for the stem and its descendents even when this results in an
update of the potential of one of the predecessors of a stem node.

Proof Without loss of generality assume that the first node in the stem is node l

associated with the entering arc (k, l). On updating the potentials of the stem nodes,
ul is set the value of uk +ck,l . Let us define a new function fk(u) as the node potential
of k on beginning with a potential of u for node l and using this value to update the
potentials of the stem, and its descendents, eventually leading to the potential fk(u)

for node k. Note that function fk() is well-defined since there is a sequence of nodes
whose potentials are updated along the stem and the stem’s descendents. The thread
index ensures that this sequence itself is well-defined.

Observe that in obtaining the potential for node k from the potential for node l,
we merely perform additions, subtractions, multiplication and division by rational
numbers. Hence, fk(u) can be expressed as a linear function of u. If fk(u)+ ck,l = u,
we have found the appropriate node potentials. Since we know that the linear system
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of equations uB = cB , where cB is the vector of cost coefficients of variables featured
in the basis has a solution for all bases encountered during the network-simplex-based
method, we know that the linear function fk(u) − u + ck,l has a zero. The zero of
this linear function, u∗

l , can be found using at-most two function evaluations. For
instance, if fk(u1) − u1 + ck,l = k1 �= 0, and fk(u2) − u2 + ck,l = k2 �= 0, by linear
interpolation, u∗

l = u1 −k1(
u2−u1
k2−k1

). Each function evaluation requires beginning with
a unique value for ul , and performing potential updates for the nodes encountered on
the stem and its descendents. This operation can be performed directly using the
various data structures defined on the g-tree itself.

The third and final step involves actually using the value of u∗
l found to update the

node potentials of the stem and its descendents. �

It is interesting to note that the procedure outlined in the proof of Theorem 3 is
also one of the methods to update the node potentials of augmented trees (also called
one-trees, which are spanning trees with one additional arc, thereby forming a cycle)
associated with bases in the generalized network-simplex method. This method is
described in Ahuja et al. (1993). Yet, Theorem 3 is an important result in the context
of the generalized network-simplex-based method for manufacturing network flows
for the reason that the set of nodes and arcs that lead to the update of the potential
of a predecessor of a stem node do not form an augmented tree based on its usual
definition, due to the presence of nodes representing the assembly operation. So, it
is not immediately clear if there exists a procedure that is capable of solving the
resultant system of linear equations efficiently. Theorem 3 indicates that there does
exist such a procedure.

Once the node potentials are updated, the leaving arc (q, t) is removed from T and
added to either L or U depending on whether the arc left the pivoting cycle in step 4
at either the lower or the upper bound respectively. Arc (k, l) is added to T. The depth
index of every node in the stem is set to be one more than its predecessor. The thread
index is again used to update the depths of descendents of the stem node. Finally,
updating the thread indices can be performed as in the case of the usual network-
simplex method based on the new predecessor and depth indices. This completes
step 5 of the network-simplex-based method.

5 Example problem

In this section, we present the steps that the network-simplex-based algorithm goes
through in solving an example problem to optimality. This example is presented on a
3 customer, 3 assembler, 6 supplier, 3 component problem. The demand of the three
customers is 10, 15 and 20 units, respectively. The amount of components needed to
produce 1 unit of the end product are given by the vector at = [1,2,4]. Suppliers 1
and 2 provide component 1, suppliers 3 and 4 provide component 2, and the other
suppliers provide component 3. The lower and upper bounds on various arcs are
depicted in Fig. 6. For arcs not depicted in the figure the lower bounds are zero,
while the upper bounds are infinite. There is a cost of 2 units for the unit flow of
any commodity to and from assembler 3, while there is a cost of 1 unit for any unit
flow to and from other assemblers. There is no cost for flow on any other arc in the
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Fig. 6 Bounds for example problem

network. The cost of unit flow from the zeroth node to nodes other than rp nodes is
set at 1000 units. If there are multiple candidates for either the entering or leaving
arcs, different rules have been studied in literature to select one amongst them. In this
example, we select the arcs to illustrate the various concepts developed in this paper,
and not according to any particular rule.

Figure 7 depicts the starting g-tree, in which the flows on all original arcs is set at
the lower bound associated with the arc. The flow and orientation on other artificial
arcs is set so as to balance the flow in the network.

We outline in Table 2 the various iterations of the network-simplex-based method.
In the table, the term EA stands for the entering arc during that iteration, while LA
stands for the leaving arc. The leaving arc can leave the basis and enter either L or U
depending on whether it leaves the basis at the lower or upper bound respectively.

Figure 8 depicts the steps of iteration number 2. The stem is composed of the fol-
lowing nodes: (A3,AF3,B3r3,A3r3). We first update the potential of node A3 to be
uA3 = uc1 − 2 = 998. The potential of node A3 changes to 998 from the earlier po-
tential of −1000. This constitutes a change of Δ = 998 − (−1000) = 1998. Since the
next node in the stem corresponds to component 3, its potential likewise increases by
Δ
a3

= 499.5 from its earlier potential of −1000, finally becoming uB3r3 = −500.5. It
can now be verified that the new node potentials still satisfy the complementary slack-
ness condition denoted by (5). The predecessor of B3r3 is made AF3, and the root of
node B3r3 is set to itself. That B3r3 is the only node amongst nodes B3rp,∀p ∈ [P ]
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Fig. 7 Starting G-tree

to have its root set to itself is due to Lemma 3. This fact will become important in the
node potential updates of a subsequent iteration.

In iteration number 12, depicted in Fig. 9, arc (S1,A3r1) enters the basis, while
arc (0,A3r1) leaves. This causes the potential of node A3r1 to be updated to uA3r1 =
uS1 + 2 = 2. The potential of node B3r1 changes to 2 from the earlier potential of
1000. This constitutes a change of Δ = 2−(1000) = −998. However, root(AF3) = 0,
implying that its potential cannot be changed since it is derived directly from the ze-
roth node. Yet, from Lemma 3, we know that there exists some other B3rp node
whose root is set to itself. To maintain the complementary slackness conditions, the
potential of this node should be changed. In our example, root(B3r3) = B3r3. The
potential of this node is decreased by a1Δ

a3
= −249.5 from its earlier potential of

−500.5, finally becoming uB3r3 = −251. Note that the complementary slackness
condition depicted by (5) still hold. We now update the potential of node A3r3 to
be −251.

In iteration number 19, depicted in Fig. 10, arc (S1,A2r1) enters the basis, while
arc (0,A2r1) leaves. This causes the potential of node A2r1 to be updated to uA2r1 =
uS1 + 1 = 1. The potential of node B2r1 changes to 1 from the earlier potential of
1000. This constitutes a change of Δ = 1 − (1000) = −999. Now, root(AF2) = 1,
implying that its potential can be changed when the potential of one of the B2rp
nodes changes. Thus, the potential of node AF2 increases by a1Δ from its present
potential of 3000, finally becoming uAF3 = 2001. It can be observed that this change
retains the relationship depicted by (5).
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Table 2 Iterations for the example problem

Iteration Details

number

1 EA:(AF3,A3), LA:(0,A3) to L

2 EA:(A3,C1), LA:(A3r3,0) to L

3–8 EA:(r1, S1), LA:(0, S1) to L. EA:(r1, S2), LA:(0, S2) to L. EA:(r2, S3), LA:(0, S3) to L

EA:(r2, S4), LA:(0, S4) to L. EA:(r3, S5), LA:(0, S5) to L. EA:(r3, S6), LA:(0, S6) to L

9 EA:(S5,A1r3), LA:(A3r3,0) to L

10 EA:(AF1,A1), LA:(0,A1) to L

11 (S3,A1r2) switches from L to U

12 EA:(S1,A3r1), LA:(0,A3r1) to L

13 EA:(S4,A3r2), LA:(0,A3r2) to L

14 EA:(S4,A1r2), LA:(0,A1) to L

15 EA:(A1,C1), LA:(0,C1) to L

16 EA:(A1,C2), LA:(A1r1,0) to L

17 EA:(S2,A1r1), LA:(0,C2) to L

18 EA:(A1,C3), LA:(0,C3) to L

19 EA:(S1,A2r1), LA:(0,A2r1) to L

20 EA:(S5,A2r3), LA:(0,A2r3) to L

21 EA:(AF2,A2), LA:(A2r2,0) to L

22 EA:(S3,A2r2), LA:(0,A2) to L, Optimal Solution

EA: Entering Arc. LA: Leaving Arc

6 Conclusion

In this paper, we presented a graph-theoretic characterization of the bases associated
with manufacturing network flow problems. We developed data structures to assist
in a network-simplex-based solution methodology for manufacturing network flow
problems. We also showed how a system of linear equations that arises during the
solution procedure can be solved using the g-tree underlying the network-simplex-
based method itself.

The methodology developed in this paper assumes a single type of end-product.
The mathematical model for the problem with multiple types of end-products, each
requiring the combination of component raw-materials in different proportions, ex-
hibits a block-diagonal structure, with a set of common linking constraints and a
set of constraints specific to each end-product type. Efficient solution procedures for
problems exhibiting such structure decompose the problem into a master problem
and many sub-problems. Each sub-problem is specific to a single end-product type
and the methodology developed in this paper can be used to efficiently solve such
sub-problems.

We have shown theoretically satisfactory update procedures for the network-
simplex-based method for manufacturing network flows. In codes that implement
network-simplex solution methods, indices in addition to the augmented thread
indices are utilized for computational advantages. For the usual network-simplex
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Fig. 8 Iteration 2

Fig. 9 Iteration 12

method, these include the final index of a node, the reverse thread index and the
size of the sub-tree rooted at every node (Bazaraa et al. 1990). In light of this, certain
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Fig. 10 Iteration 19

additional data structures may need to be developed specifically for manufacturing
network flows for effective implementations of the network-simplex-based method.
All these additional data structures can be derived from the basic data structures de-
veloped in this paper. We hope that these data structures can serve as a starting point
for computational implementations of the network-simplex-based method.

Acknowledgements The authors thank two anonymous referees for their useful comments on an earlier
version of the paper.

Appendix Data structures

A variety of data structures have been developed for efficient implementation of the
network-simplex method for generalized non-manufacturing type networks. Excel-
lent reference sources about these data structures include Ahuja et al. (1993), Bazaraa
et al. (1990) and Kennington and Helgason (1980). One of the widely used data
structures are the augmented thread indices first proposed by Johnson (1966) for
the network-simplex procedure and subsequently generalized by Glover et al. (1974)
for the generalized network-simplex procedure. In this paper, we show that the aug-
mented thread indices (that consist of the well-known predecessor, depth and thread
indices) along with a new data structure called as the root indices can be used for ef-
ficient implementation of the generalized network-simplex-based algorithm for man-
ufacturing network flows.

Each node i in the manufacturing network flow model has a unique path connect-
ing it to its root. This path can be traversed using the predecessor indices. There is
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Fig. 11 Example of a G-tree

no single root in the network, but each node, i, has its own specific root, denoted by
root(i). The depth of a node is the number of nodes in the path connecting it to its
root plus the depth of its root-node. On starting with an all-artificial basis, each node
(other than those associated with the assembly operation) is connected directly to the
special zeroth node whose depth is taken to be equal to 0.

The root of node i is zero if there is a path connecting it to the zeroth node that
does not involve an AFj node. Root of an AFj node is zero, if arc (AFj ,Aj ) is a
part of the g-tree, and root(Aj ) = 0. If arc (AFj ,Aj ) is not a part of the g-tree, the
indices for node AFj are set as follows:

If the root of every Bj rp node associated with node AFj is zero,

1. Choose any Bj rp node associated with node AFj , say, Bj rp∗ .
2. Set depth(AFj ) = 1 + depth(Bj rp∗ ). Set pred(AFj ) = Bj rp∗ .
3. Set root(AFj ) = 1. (Note: the root index of 1 is symbolic, and this value of 1 does

not stand for any particular node in the network.)

Otherwise,

1. Amongst the Bj rp nodes associated with node AFj whose roots are not zero,
choose any Bj rp node, say, Bj rp∗ .

2. Set depth(AFj ) = 1 + depth(Bj rp∗ ). Set pred(AFj ) = Bj rp∗ .
3. Set root(AFj ) = root(Bj rp∗ ).

If the root of a Bj rp node cannot be set to zero due to the lack of a direct path
leading to the zeroth node, its root is set in one of the following two possible ways:

1. If pred(Bj rp) = AFj , the root of a Bj rp node is set to itself.
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Table 3 Indices for the G-tree in Fig. 11

Node, i Pred(i) Depth(i) Thread(i) Root(i)

r1 0 1 S1 0

r2 0 1 S5 0

r3 0 1 S4 0

S1 r1 2 S3 0

S2 A1r2 6 0 B1r2

S3 r1 2 A1r1 0

S4 r3 2 A1r3 0

S5 r2 2 A2r2 0

S6 r3 2 A2r3 0

A1r1 S3 3 B1r1 0

A1r2 B1r2 5 S2 B1r2

A1r3 S4 3 B1r3 0

A2r1 S3 3 B2r1 0

A2r2 S5 3 B2r2 0

A2r3 S6 3 B2r3 0

B1r1 A1r1 4 A2r1 0

B1r2 AF1 4 A1r2 B1r2

B1r3 A1r3 4 S6 0

B2r1 A2r1 4 AF2 0

B2r2 A2r2 4 r3 0

B2r3 A2r3 4 C3 0

AF1 A1 3 B1r2 0

AF2 B2r1 5 A2 1

A1 C3 2 AF1 0

A2 AF2 6 C1 1

C1 A2 7 C2 1

C2 A2 7 r2 1

C3 0 1 A1 0

2. Otherwise, its root is the first Bj rp node encountered in backtracking using the
predecessor indices.

The root of all other nodes in the network is set to be that of its predecessor.
Figure 11 shows the g-tree associated with a hypothetical network basis. For this

g-tree, the values for various indices is shown in Table 3.
Given the predecessor and depth indices, the thread index can be constructed us-

ing a depth-first-search process in linear time (Ahuja et al. 1993). The thread in-
dices provide a convenient means of visiting all of node i’s descendents before vis-
iting any other node. Beginning at node i, we visit thread(i), followed by a visit to
thread(thread(i)), and so on, until we encounter a node whose depth is lesser than or
equal to that of node i.
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