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Abstract This paper introduces Phased Local Search (PLS), a new stochastic reac-
tive dynamic local search algorithm for the maximum clique problem. PLS interleaves
sub-algorithms which alternate between sequences of iterative improvement, during
which suitable vertices are added to the current clique, and plateau search, where
vertices of the current clique are swapped with vertices not contained in the current
clique. The sub-algorithms differ in their vertex selection techniques in that selec-
tion can be solely based on randomly selecting a vertex, randomly selecting within
highest vertex degree or randomly selecting within vertex penalties that are dynam-
ically adjusted during the search. In addition, the perturbation mechanism used to
overcome search stagnation differs between the sub-algorithms. PLS has no problem
instance dependent parameters and achieves state-of-the-art performance for the max-
imum clique problem over a large range of the commonly used DIMACS benchmark
instances.

Keywords Maximum clique . Adaptive search . Local search . Dynamic search

1 Introduction

The maximum clique problem (MC) calls for finding the maximum sized sub-graph
of pairwise adjacent vertices in a given graph. MC is a prominent combinatorial
optimisation problem with many applications, for example, information retrieval, ex-
perimental design, signal transmission and computer vision (Balus and Yu, 1986).
More recently, applications in bioinformatics have become important (Pevzner and
Sze, 2000; Ji et al., 2004). The search variant of MC can be stated as follows: Given
an undirected graph G(V, E), where V is the set of all vertices and E the set of all
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edges, find a maximum size clique in G, where a clique in G is a subset of ver-
tices, K ⊆ V , such that all pairs of vertices in K are connected by an edge, i.e., for all
v, v′ ∈ K , {v, v′} ∈ E , and the size of a clique K is the number of vertices in K . MC is
NP-hard and the associated decision problem is NP-complete (Garey and John-
son, 1979); furthermore, it is inapproximable in the sense that no deterministic
polynomial-time algorithm can find cliques of size |V |1−ε for any ε > 0, unless
NP = ZPP (Håstad, 1999).1 The best polynomial-time approximation algorithm for
MC achieves an approximation ratio of O(|V |/(log |V |)2) (Boppana and Halldórsson,
1992). Therefore, large and hard instances of MC are typically solved using heuristic
approaches, in particular, greedy construction algorithms and stochastic local search
algorithms such as simulated annealing, genetic algorithms and tabu search. (For an
overview of these and other methods for solving MC, see (Bomze et al., 1999)). It
may be noted that the maximum clique problem is equivalent to the independent set
problem as well as to the minimum vertex cover problem, and any algorithm for
MC can be directly applied to these equally fundamental and application relevant
problems (Bomze et al., 1999).

From the recent literature on MC algorithms, it seems that, somewhat unsur-
prisingly, there is no single best algorithm. Although most algorithms have been
empirically evaluated on benchmark instances from the Second DIMACS Chal-
lenge (Johnson and Trick, 1996), it is quite difficult to compare experimental results
between studies, mostly because of differences in the respective experimental proto-
cols and run-time environments. Nevertheless, particularly considering the compara-
tive results reported by Pullan and Hoos (2006), it seems that there are five stochastic
local search MC algorithms that achieve state-of-the-art performance: Reactive Local
Search (RLS) (Battiti and Protasi, 2001), an advanced and general tabu search method
that automatically adapts the tabu tenure parameter; Deep Adaptive Greedy Search
(DAGS) algorithm (Grosso et al., 2005) which uses an iterated greedy construction pro-
cedure with vertex weights; k-opt algorithm (Katayama et al., 2004) is based on a con-
ceptually simple Variable Depth Search (VDS) procedure that uses elementary search
steps in which a vertex is added to, or removed from, the current clique; VNS (Hansen
et al., 2004) is a basic variable neighbourhood search heuristic that combines greedy
search with simplical vertex tests in its descent steps; and Dynamic Local Search—
Maximim Clique (DLS-MC) (Pullan and Hoos, 2006), an algorithm which alternates
between phases of iterative improvement, during which suitable vertices are added to
the current clique, and plateau search, where vertices of the current clique are swapped
with vertices not contained in the current clique. The selection of vertices is solely
based on vertex penalties that are dynamically adjusted during the search, and a pertur-
bation mechanism is used to overcome search stagnation. The behaviour of DLS-MC is
controlled by a single parameter, penalty delay, which controls the frequency at which
vertex penalties are reduced. Unfortunately, the DLS-MC algorithm is sensitive to the
penalty delay parameter, and its calibration time-consuming and instance-dependent.
This weakness of DLS-MC has been explicitly stated (Pullan and Hoos, 2006), where
elimination of tuning for penalty delay is indicated as a valuable improvement.

1 ZPP is the class of problems that can be solved in expected polynomial time by a probabilistic algorithm
with zero error probability.
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In this work, a new stochastic local search algorithm for MC, based on DLS-MC
and dubbed Phased Local Search (PLS), is introduced. PLS is a reactive algorithm, that
requires no run-time parameters, and interleaves sub-algorithms which differ primarily
in their vertex selection methods and the perturbation mechanisms used to overcome
search stagnation. Based on extensive computational experiments, it is shown that PLS
has comparable performance to DLS-MC, on a range of widely studied benchmark
instances.

The remainder of this paper is structured as follows. The PLS algorithm and key
aspects of its efficient implementation are first described. Next, empirical performance
results are presented that establish PLS as state-of-the-art in heuristic MC solving. This
is followed by a more detailed investigation of the behaviour of PLS and the factors
determining its performance. Finally, a summary of the main contributions of this
work, insights gained from this study, and an outline of some directions for future
research are described.

2 The PLS algorithm

...for any algorithm, any elevated performance over one class of problems is ex-
actly paid for in performance over another class. Wolpert and Macready (1997)

This observation is substantiated by the results presented in Pullan and Hoos (2006)
and Grosso et al. (2005) where it became apparent that, to efficiently solve all the DI-
MACS benchmark instances, algorithms with conflicting characteristics were required.
In particular: a random sub-algorithm is able to solve instances where the maximum
cliques are a combination of high, average and low degree vertices (for example, the
DIMACS p hat1500-1 instance); a greedy sub-algorithm that favours the higher de-
gree vertices is efficient where the vertices in the maximum cliques are biased towards
the higher degree vertices (for example, randomly generated instances such as the DI-
MACS Cn family); and, a greedy sub-algorithm that favours the lower degree vertices
is efficient for maximum cliques whose vertices are biased towards the lower degree
vertices (for example, the DIMACS brock family of instances). PLS interleaves three
such sub-algorithms which use random selection (Random sub-algorithm), random
selection within vertex degree (Degree sub-algorithm), and random selection within
vertex penalties (Penalty sub-algorithm), and is now described using the following no-
tation: G(V, E)—an undirected graph with V = {1, 2, . . . , n}, E ⊆ {{i, j} : i, j ∈ V };
N (i) = { j ∈ V : {i, j} ∈ E}—the vertices adjacent to i ; K —current clique of G; and
C p(K ) = {i ∈ V : |K \ N (i)| = p}, p = 0, 1, . . .—the set of all vertices not adjacent
to exactly p vertices in K . That is, C0 is the increasing set of vertices while C1 is the
level set of vertices.

Algorithm PLS(G, tcs, max-selections)
Input: graph G; integers tcs (target clique size); max-selections;
Output: Clique of cardinality tcs or ‘failed’;

1. selections := 0;
2. U := ∅;
3. <Randomly select a vertex v ∈ V , K := {v} >;
4. do
5. Phase(50, RandomSelect, Reinitialise);
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6. if |K | = tcs then return K ;
7. Phase(50, PenaltySelect, Reinitialise);
8. if |K | = tcs then return K ;
9. Phase(100, DegreeSelect, Initialise);

10. if |K | = tcs then return K ;
11. while selections < max-selections;
12. return ‘failed’;

The PLS algorithm operates as follows: an initial vertex is selected from the given
graph G uniformly at random and the current clique K is initialised to the set consist-
ing of this single vertex. Then, the search, (lines 4–11 of PLS) repeatedly performs 50
iterations of the Random sub-algorithm (by initiating the function Phase with appro-
priate parameters), followed by 50 iterations of the Penalty sub-algorithm and then
100 iterations of the Degree sub-algorithm. This sequence terminates when either a
clique of cardinalty tcs is found or the maximum number of selections (additions to
the current clique K ) has occurred. PLS invokes the function Phase to implement
the Random, Penalty and Degree sub-algorithms described above. The structure of
function Phase is:

function Phase (iterations, Select, Perturb)
Input: iterations; function Select; function Perturb;
Output: K (current solution);

1. do
2. do
3. while C0(K ) \ U �= ∅ do
4. v :=Select(C0(K ));
5. K := K ∪ {v};
6. selections := selections + 1;
7. if |K | = tcs then return K ;
8. U := ∅;
9. end while

10. if C1(K ) \ U �= ∅ then
11. v := Select(C1(K ) \ U );
12. K := [K ∪ {v}] \ {i}, U := U ∪ {i}, where {i} = K \ N (v);
13. selections := selections + 1;
14. end if;
15. while C0(K ) �= ∅ or C1(K ) \ U �= ∅;
16. i terations := i terations − 1;
17. UpdatePenalties;
18. Perturb;
19. while (iterations > 0 and selections < max-selections);
20. return K ;

Each iteration of Phase (within which a single complete execution of lines 1–19
is referred to as an “iteration”) alternates between an iterative improvement phase,
during which vertices from the increasing set C0(K ) are added to the current clique
K , and a plateau search phase, in which vertices from the level set C1(K ) are swapped
with the vertex in K with which they do not share an edge. The search phase terminates
when C0(K ) = ∅ and either C1(K ) = ∅ or all vertices that are in C1(K ) have already
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been an element of K during the current iteration. As the final step of the iteration, a
perturbation of K is performed to generate a new starting point for the next iteration.
Iterations are repeated until either the maximum clique is found or the number of al-
lowed iterations have been performed or the number of allowed selections (additions
to the current clique) is exceeded. The different vertex selection methods for each
sub-algorithm are implemented within the input function Select while the different
perturbations for each sub-algorithm are implemented within the input function Per-
turb. Note that the differences between the sub-algorithms are wholly contained within
these input functions. Finally, penalty updates are performed (UpdatePenalties) during
all sub-algorithms but penalties are only used for vertex selection when the Penalty
sub-algorithm is active. The three sub-algorithms of PLS are now described in more
detail:� Random Sub-algorithm: For this sub-algorithm, within RandomSelect, vertices are

chosen uniform randomly from C0(K ) and C1(K ) to be added or swapped into K . At
the completion of the iteration, function Reinitialise is invoked to uniform randomly
select a vertex v, add this to K and remove all vertices from K that are not connected
to v. This perturbation mechanism provides for some continuity in the search and
also maintains K as relatively large at all times.� Degree Sub-algorithm: For this sub-algorithm, DegreeSelect selects a vertex from
C0(K ) (or C1(K )) with maximum degree—ties broken randomly. Note that the
computation of vertex degree is made once only as part of PLS initialisation. This
vertex selection rule turns out to be particularly efficient when dealing with random
graphs such as the DIMACS Cn family of instances. The perturbation mechanism
for this sub-algorithm is the Reinitialise method described above for the Random
sub-algorithm.� Penalty Sub-algorithm: The purpose of vertex penalties is to provide additional
diversification to the search process, which otherwise could easily stagnate in situ-
ations where the current clique has few or no vertices in common with an optimal
solution for a given MC instance. Perhaps the most obvious approach for avoiding
this kind of search stagnation is to simply restart the constructive search process
from a different initial vertex. However, even if there is random (or systematic) vari-
ation in the choice of this initial vertex, there is still a risk that the heuristic guidance
built into the greedy construction mechanism causes a bias towards a limited set of
suboptimal cliques. Therefore, integer penalties are associated with the vertices that
modulate the heuristic selection function used in the greedy construction procedure
in such a way that vertices that repeatedly occur in the cliques obtained from the
constructive search process are discouraged from being used in future constructions.

For this sub-algorithm, within PenaltySelect, vertices are chosen uniform ran-
domly from the lowest penalty sub-set of C0(K ) and C1(K ) to be added or swapped
into K . At the completion of the iteration, function Initialise is invoked to uniform
randomly select a vertex v and initialise K to contain only this vertex. Typically this
perturbation mechanism provides for relatively large discontinuities in the search
trajectory.

The penalty phase of the DLS-MC algorithm described in Pullan and Hoos (2006)
required a exogenous, family or sub-family instance-dependent, parameter penalty
delay which specified how frequently penalties should be decreased. However, as
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Fig. 1 Adaptive updating of the PLS penalty delay variable by the PLS function UpdatePenalties, from
two different initial starting points, for the brock800 1 instance. Starting from PLS default value of two,
the optimal value of 43 is obtained within 41 samples and is then tracked closely

was pointed out in Pullan and Hoos (2006), there seemed to be a correlation between
the optimal value for penalty delay and the percentage of vertices that had a penalty
at any point in time. Based on this observation, PLS uses the same penalty scheme
as DLS-MC but, after initially setting penalty delay to two, reactively adjusts the
penalty delay parameter at each penalty decrease cycle, with the goal of ensuring
that 75% of vertices have a penalty value greater than zero. When the number
of penalised vertices is less than this target, penalty delay is incremented by unity
(which decreases the frequency of penalty decreases). Alternatively, if the number of
penalised vertices is greater than 75% of the total vertices, penalty delay is decreased
(which increases the frequency of penalty decreases). This update scheme is able to
drive penalty delay towards the correct value for the instance. Figure 1 illustrates the
behaviour of penalty delay for the brock800 1 instance where DLS-MC required
a high penalty delay value (45) for reaching good performances. Two experiments
are shown, the first with an initial penalty delay of two (continuous line) and the
second with an initial value of 100 for penalty delay (dotted line). The penalty delay
value is sampled each 500 iterations; the “stable” value reached for penalty delay of
43 is very close to the optimal value of 45 identified in the tests of Pullan and Hoos
(2006).

Transitioning between sub-algorithms was implemented so that the Random and
Degree sub-algorithms always resumed from the point at which their previous invoca-
tion completed. However, the Penalty sub-algorithm continues from the point at which
the preceeding Random sub-algorithm invocation terminated.

Springer



J Comb Optim (2006) 12:303–323 309

3 Empirical performance results

In order to evaluate the performance and behaviour of PLS, extensive computational
experiments on all MC instances from the Second DIMACS Implementation Chal-
lenge (1992–1993)2 were performed. These instances have also been used extensively
for benchmarking purposes in the recent literature on MC algorithms. The 80 DIMACS
MC instances were generated from problems in coding theory, fault diagnosis prob-
lems, Keller’s conjecture on tilings using hypercubes, and the Steiner triple problem,
in addition to randomly generated graphs and graphs where the maximum clique has
been “hidden” by incorporating low-degree vertices. These problem instances range
in size from less than 50 vertices and 1000 edges to greater than 3300 vertices and
5 000 000 edges.

All experiments for this study were performed on a dedicated 2.4 GHz Pentium
IV machine with 512KB L2 cache and 512MB RAM using the g++ C++ compiler
with the ‘−O2’ option. To execute the DIMACS Machine Benchmark3 this machine
required 0.62 CPU seconds for r300.5, 3.80 CPU seconds for r400.5 and 14.50 CPU
seconds for r500.5. In the following, unless explicitly stated otherwise, all CPU times
refer to the reference machine.

3.1 PLS performance

To evaluate the performance of PLS on the DIMACS benchmark instances, 100 in-
dependent trials were performed for each instance using target clique sizes (tcs) cor-
responding to the respective provably optimal clique sizes or, in cases where such
provably optimal solutions are unknown, largest known clique sizes. The only param-
eter of PLS, max Selections, was set to 100 000 000 (1 000 000 000 for MANN a45
and MANN a81), in order to maximise the probability of reaching the target clique
size in every trial.

The PLS performance results (averaged over 100 independent trials) are shown in
Table 1 for the complete set of 80 DIMACS benchmark instances. Note that PLS finds
optimal (or best known) solutions with a success rate of 100% over all 100 trials per
instance for 76 of the 80 DIMACS instances; the instances where the target clique
size was not reached consistently within the allotted max Selections were C2000.9,
where all 100 trials achieved 78 as compared to 80 (Grosso et al., 2004); MANN a45
where all 100 trials achieved 344 as compared to 345 (Hansen et al., 2004; Battiti
and Protasi, 2001); MANN a81 where all 100 trials achieved 1098 as compared to
1099 (Katayama et al., 2004), and keller6 where 36 of 100 trials were successful giving
a maximum clique size (average clique size, minimum clique size) of 59(57.75, 57).
For these cases, the reported CPU time statistics are over successful trials only and
are shown in parentheses in Table 1. Furthermore, the expected time required by PLS
to reach the target clique size is less than 1 CPU second for 67 of the 80 instances,
and an expected run-time of more than 10 CPU seconds is only required for 8 of the
13 remaining instances, all of which have at least 800 vertices.

2 http://dimacs.rutgers.edu/Challenges/.
3 dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique.
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As with DLS-MC, the time-complexity of search steps in PLS is generally very
low. For example, for instance brock800 1 with 800 vertices, 207 505 edges, and a
maximum clique size of 23 vertices, PLS performs, on average, 194 421 selections
(i.e., additions to the current clique K ) per CPU second.

3.2 Comparative results

The results reported in the previous section demonstrate that PLS achieves ex-
cellent performance on the standard DIMACS benchmark instances. In Pullan
and Hoos (2006), extensive comparisons are presented between DLS-MC and
DAGS (Grosso et al., 2005), GRASP (Resendeand et al., 1998) (using the results con-
tained in Grosso et al. (2005)), k-opt (Katayama et al., 2004), RLS (Battiti and
Protasi, 2001), GENE (Marchiori, 2002), ITER (Marchiori, 2002) and QUALEX-
MS (Busygin, 2002). It is important to note that the performance results for the algo-
rithms that DLS-MC was compared with have been reported in a variety of ways (e.g.
statistics on the clique size obtained after a fixed run-time) with generally only a very
basic indication of the computer processor performance. As was noted in Pullan and
Hoos (2006), this makes the comparisons between algorithms an approximation at best
and a goal of the Pullan and Hoos (2006) study was to document DLS-MC using tech-
niques such that future algorithms could be compared with greater accuracy. Building
on this, the approach taken in this study is to compare PLS directly with DLS-MC
by measuring performance using the same techniques as utilised in Pullan and Hoos
(2006). Indirectly this then allows the performance of PLS to be compared with the
performance of all the other algorithms documented in Pullan and Hoos (2006).

Table 2 contrasts the performance results for PLS with the respective performance
results for DLS-MC. Overall, with the exception of keller6, PLS can be classed as
comparable or more efficient than DLS-MC for all DIMACS instances.

The significant results in Table 2 from this comparative performance evaluation can
be summarised as follows:� For the DIMACS brock family, with the exception of brock800 2, PLS has, in some

cases, considerably improved performance. This is an interesting result as the Penalty
sub-algorithm is the only sub-algorithm to locate the maximum clique, while the
other two PLS sub-algorithms would appear to be redundant (and time consuming).
In contrast, DLS-MC only uses a penalty algorithm for the brock family of instances
so the expectation would be that DLS-MC would require less computational effort to
locate the maximal clique. This apparent anomaly is investigated further in Section 4.� For the DIMACS Cn family of instances, PLS clearly out-performs DLS-MC. This is
primarily due to the incorporation of the Degree sub-algorithm within PLS which,
even given the computational requirements of the completely redundant Penalty
and partially redundant Random sub-algorithms, still allows PLS to out-perform
DLS-MC.� For the MANN a45 and MANN a81 instances, a performance enhancement, related
to searching for the clique “partner” for a vertex to be swapped into the current
clique for dense graphs, enabled PLS to out-perform DLS-MC in that it required,
on average, less CPU time to obtain better quality results. However, PLS did require
considerably more selections than DLS-MC to obtain this improvement.
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Table 3 Percentage allocation of total number of selections to the PLS sub-algorithms and percentages of
ocurrances that each sub-algorithm was active when the maximal clique was located for selected DIMACS
instances

Random Penalty Degree

Instance % selections % success % selections % success % selections % success

C1000.9 12.0 20 67.2 0 20.8 80

p hat1500-1 23.2 42 31.2 26 45.6 32

brock800 1 21.2 0 38.9 100 39.9 0

keller6 16.7 100 46.9 0 36.4 0

san1000 19.9 41 39.5 22 40.6 37

� For keller6, PLS had poor performance relative to DLS-MC. As this instance has
vertices that form 8 groups with respect to vertex degree and the maximal clique
consists of vertices from all these groups, the Random sub-algorithm should be the
effective algorithm. However Table 3 shows that only 16.7% of selections occurred
when the Random sub-algorithm was active.

Given that PLS performs three sub-algorithms cyclically, of which generally only
one is efficient for a particular instance, whereas the DLS-MC results were obtained
by “tuning” the algorithm to each instance, these results are somewhat surprising. In
particular, while the MANN and Cn results arise from the efficiency improvements and
the use of the Degree sub-algorithm (for which there is no counterpart in DLS-MC),
there is no direct implementation change to account for the improvement in some of
the brock results.

4 Discussion

To gain a deeper understanding of the run-time behaviour of PLS and the efficacy of its
underlying mechanisms, additional empirical analyses were performed. Specifically,
the relationship between the PLS sub-algorithm selection/perturbation methods and
the characteristics of the problem instances, the ordering of the sub-algorithms, and the
effect of allocating relatively more iterations to each sub-algorithm were investigated.

4.1 MC instance characteristics

To justify the selection and perturbation methods used in the PLS sub-algorithms, a
conceptual model of the “hyper-surface” associated with the MC instance is useful.
If the characteristic vector s ∈ {0, 1}n is defined by si = 1 ⇔ vi ∈ K then the hyper-
surface associated with an MC instance is that defined by the function f (s) = ∑n

i=1 si

(= |K |). When a PLS iteration adds vertex v to K to produce K ′ then f (s′) will be in
the range 1 . . . f (s) + 1. When f (s′) = f (s) the addition of vertex v can be visualised
as a movement along a “plateau” on the hyper-surface, when f (s′) = f (s) + 1 the
addition of vertex v is a movement “up-hill” on the hyper-surface, and when f (s′) <

f (s) the addition of vertex v is a movement “down-hill” on the hyper-surface. The
hyper-surface clearly has a lower bound of f (s) = 0 (K = φ) and an upper bound of
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Fig. 2 Expected cardinalities of Cm (K ), m = 0 . . . 7 from Eq. (1) for a randomly generated graph with
number of vertices n = 1000 and edge probability P = 0.9 as compared to experimental observations for
C1000.9

f (s) = n (K = V ) and, within these bounds, plateaus can exist at any level. Starting
from the hyper-surface lower bound ( f (s) = 0), there are two possibilites for reaching
the point(s) on the hyper-surface corresponding to the maximal clique(s). Either they
can be reached directly using up-hill moves only, or the point is surrounded by a
plateau and one or more plateau moves are required to access it. In the PLS context,
movement on a plateau corresponds to selecting a vertex from C1(K ) and an up-hill
move corresponds to selecting a vertex from C0(K ). As PLS does not perform any
selections from Cm(K ), 1 < m < n there is no movement on the down-hill portions of
the hyper-surface. Accordingly, for any clique K , the sequence |Cm(K )| , 0 ≤ m ≤ 1
defines the topography of the hyper-surface, as perceived by PLS, at the point on the
hyper-surface corresponding to the clique K . For a randomly generated graph with
n vertices and an edge probability of P , the expected values for the terms of this
sequence are given by:

E(|Cm(K )|) = (n − |K |)
(|K |

m

)
P |K |−m(1 − P)m (1)

Figure 2 compares the expected cardinality of Cm(K ) from Eq. (1),with n = 1000 and
P = 0.9, with that found experimentally for instance C1000.9, for m = 0 . . . 7. As
can be seen, there is close agreement between the predicted and measured results.

Springer



316 J Comb Optim (2006) 12:303–323

860 870 880 890 900 910 920 930
0

1

2

3

4

5

C1000.9

F
re

q
u
e
n
cy

150 200 250 300 350 400 450 500 550 600 650
0

0.5

1

p_hat1500–1

F
re

q
u
e
n
cy

470 480 490 500 510 520 530 540 550 560
0

2

4

6

brock800_1

F
re

q
u
e
n
cy

Vertex degree

Fig. 3 Distribution of vertex degree (x) and average vertex degree (dotted line) for the C1000.9, p hat1500-1
and brock800 1 instances. Also shown are the vertex degree (*) of the vertices in the maximum clique.
As can be seen, for C1000.9, the maximal clique vertices are biased towards the higher degree vertices
which makes this instance susceptible to the Degree sub-algorithm. For p hat1500-1, for which only a
single maximal clique appears to exist (Pullan and Hoos, 2006), with a single exception, there is a bias
towards the higher degree vertices. This combination of a low degree vertex with high degree vertex plus
the single maximal clique increases the difficulty of p hat1500-1 as compared to the other instances of the
p hat family. This wide distribution of maximal clique vertex degrees makes p hat1500-1 susceptible to the
Random sub-algorithm. For brock800 1, the maximal clique vertices are biased towards the lower degree
vertices which makes these instances susceptible to the Penalty sub-algorithm

4.2 Test instances

The DIMACS instances chosen for the empirical analysis of PLS were C1000.9,
p hat1500-1 and brock800 1 (collectively referred to as the “DIMACS subset” in
this study). These instances were selected because, firstly, they are of reasonable size
and difficulty and secondly, they are all solved effectively by a different PLS sub-
algorithm. C1000.9 is a randomly generated instance where, as shown in Fig. 3, the
maximal clique vertices are biased towards the higher degree vertices (intuitively it
would seem reasonable that, for a randomly generated instance, vertices in the optimal
maximum clique would tend to have higher vertex degrees). The p hat1500-1 instance
was created with a generator which is a generalization of the classical uniform random
graph generator and has wider vertex degree spread and a larger maximal clique than
the corresponding uniform random graph. For p hat1500-1, only a single maximal
clique appears to exist (Pullan and Hoos, 2006) and, as shown in Fig. 3, with a single
exception, there is a bias towards the higher degree vertices. For brock800 1 however,
the vertices in the optimal maximum clique are biased towards the lower than average
vertex degree (Note that the DIMACS brock instances were created in an attempt to
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Fig. 4 |K | (scaled by −60 for C1000.9), |C0(K )| and |C1(K )| during the final iteration for each of the
C1000.9, p hat1500-1 and brock800 1 instances. For C1000.9, the final vertex for the maximal clique was
found after a sequence of 15 successive selections from C1(K ) (plateau search) followed by the addition
of the 68th vertex to the maximal clique. At the maximal clique, there is a single C1(K ) vertex available
to produce a second maximal clique. For p hat1500-1, the situation is basically the same except for the
final 3 selections which are all from C0(K ) with no C1(K ) vertices available at the maximal clique. For
brock800 1, the final sequence of selections are 3 from C0(K ), 1 from C1(K ) followed by 8 from C0(K )
with no C1(K ) vertices available at the maximal clique

defeat greedy algorithms that used vertex degree for selecting vertices to be added to
the current clique (Brockington and Culberson, 1996)).

A quantitative analysis of the maximum cliques for the DIMACS subset instances,
showed that, for C1000.9, averaged over all maximal cliques found by PLS, the average
vertex degree of vertices in the maximal cliques is 906 (standard deviation of 9) as
compared to 900 (9) when averaged over all vertices; for p hat1500-1, corresponding
figures were 494 (84) and 380 (111) respectively while for brock800 1, they are 515
(11) and 519 (13) respectively.

From Table 4, for C1000.9, when |K | = ω(C1000.9)(= 68), E(|C0(K )|) = 0.72
and E(|C1(K )|) = 5.45 which confirms that there is a high probability of multiple
maximal cliques (70 distinct maximal cliques were found in 100 trials in Pullan and
Hoos (2006)) for this instance and raises the possibility of a larger maximal clique ex-
isting. For p hat1500-1, when |K | = ω(p hat1500-1)(= 12), E(|C0(K )|) = 0.000088
and E(|C1(K )|) = 0.0031929 which suggests that p hat1500-1 is an extreme variant
of the corresponding random graph and that it is highly unlikely that more than a
single maximal clique exists (a single unique maximal clique was found in 100 tri-
als in Pullan and Hoos (2006)). A similar situation exists for brock800 1 as, when
|K | = ω(brock800 1)(= 23), E(|C0(K )|) = 0.04 and E(|C1(K )|) = 0.48 (a single
unique maximal clique was found in 100 trials in Pullan and Hoos (2006)).

Figure 4 provides a direct experimental indication of the nature of the hyper-surface,
close to the maximal clique, for the three DIMACS subset instances used in this
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discussion. For C1000.9, the final iteration to attain the maximal clique consisted
of the sequence 3P, 1U, 15P, 1U where k P denotes k consecutive selections from
C1(K ) (plateau) and kU denotes k consecutive selections from C0(K ) (up-hill). At the
maximal clique, there is a single C1(K ) vertex available to produce a second maximal
clique (from which there may be additional maximal cliques available). This suggests
that the hyper-surface for C1000.9, around the maximal clique, is predominantly a
large, high level (≈0.99 of the maximum hyper-surface height) plateau with the point
corresponding to the maximal clique being just a single selection above the plateau. For
p hat1500-1, the final sequence is 3U, 1P, 1U, 1P, 1U, 1P, 1U, 4P, 1U, 7P, 3U . At
the maximal clique, there are no C1(K ) vertices available. Note that, in this case, the
final iteration for p hat1500-1 was performed by the Penalty sub-algorithm which uses
the Initialise perturbation. This sequence tends to suggest that the maximal clique for
p hat1500-1 is a moderate size “peak” on a mid- to high-level (≈ 0.75 of the maximum
hyper-surface height) plateau. For brock800 1, the final sequence of selections is
10U, 4P, 2U, 2P, 3U, 1P, 8U with no C1(K ) vertices available at the maximal clique.
This suggests that the point corresponding to the maximal clique is a prominent peak
(no C1(K ) selections were available during the final sequence of 8 selections from
C0(K )) on a relatively small, low-level (≈ 0.65 of the maximum hyper-surface height)
plateau.

4.3 Vertex selection

The vertex selection techniques implemented in the PLS sub-algorithms either bias
the selection towards the higher degree vertices (Degree), the lower degree vertices
(Penalty) or have no directly implemented bias (Random). However, in the Random
case, there is an inherent bias towards the higher degree vertices simply from the
fact that they are more likely to be present in C0(K ) and C1(K ). Table 3 gives the
success rate, for each sub-algorithm, over 100 trials of PLS on the DIMACS subset.
For C1000.9, the Degree sub-algorithm actually located the maximal clique in 80%
of the trials with Random being responsible for the remaining 20% of successes. For
p hat1500-1, which is basically a randomly generated instance, the maximal clique
contains a single low degree vertex and this makes p hat1500-1 less susceptible to
the Degree sub-algorithm and the Random sub-algorithm, which uniformly samples
a wider degree range of vertices, is more effective. Because of the bias towards the
lower degree vertices in the maximal clique for brock800-1, the Penalty sub-algorithm
had a 100% success rate on this instance.

4.4 Perturbation techniques

For all PLS sub-algorithms, a perturbation is invoked when C0(K ) = ∅ and either
C1(K ) = ∅, or all vertices that are in C1(K ) have already been an element of K dur-
ing the current iteration. Whilst it is possible to perform perturbations that generate
a change in |K | in the range 0, . . . , |K | − 1 (Grosso et al., 2005), PLS only uses
two of these possibilities. The Reinitialise perturbation will generate, for a randomly
generated instance, a starting clique for the next iteration of expected cardinality
P |K | where K is the final current clique from the preceeding iteration. This pertur-
bation is appropriate when the maximal clique lies within a high-level plateau on the
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Table 4 Expected cardinalities of C0(K ) and C1(K ) from Eq. (1) for randomly generated graphs
corresponding to the three DIMACS subset instance near their maximal cliques

C1000.9 p hat1500-1 brock800 1

|K | C0(K ) C1(K ) |K | C0(K ) C1(K ) |K | C0(K ) C1(K )

64 1.10356 7.84753 8 5.82813 46.625 19 0.21777 2.22799

65 0.99214 7.16547 9 2.91211 26.209 20 0.14137 1.52246

66 0.89197 6.54114 10 1.45508 14.5508 21 0.09177 1.03775

67 0.80192 5.96982 11 0.72705 7.99756 22 0.05958 0.70575

68 0.72095 5.44719 12 0.36328 4.35938 23 0.03868 0.47897

hyper-surface associated with the instance as it will tend to keep the search at a high-
level and not waste effort searching the lower level plateaus. Such a hyper-surface can
be produced for randomly generated instances such as C1000.9 where the maximal
clique consists of vertices whose degree is relatively high. However, as the Initialise
perturbation always generates a starting clique of cardinality 1 it is more appropriate
when the maximal clique lies within a low to mid-level plateau as these plateaus will
be searched as each iteration proceeds up-hill on the hyper-surface from the initially
low starting point. Such a hyper-surface would be produced where the maximal clique
contains some number of vertices whose degree is relatively low such as brock800 1.

In summary, where the search is focused on the higher degree vertices (higher level
plateaus), a perturbation such as Reinitialise is more appropriate. However, where the
search is focused on the lower degree vertices (lower level plateaus), a perturbation
such as Initialise is more appropriate.

4.5 PLS sub-algorithms

To investigate the performance of the PLS sub-algorithms further, a variant of PLS,
dubbed PLS−<Sub-algorithm>, where only the specified sub-algorithm was allowed
to be active, was used. Table 5 shows the performance of PLS compared to the optimal
sub-algorithm while Fig. 5 shows the proportion of selections performed, as a function
of |K |, for the PLS sub-algorithms on the DIMACS subset instances. For:� C1000.9 Starting with K = φ, the average number of consecutive selections from

C0(K ) is 44 and the maximum number is 55. As ω(C1000.9) = 68 this clearly in-
dicates that plateau search is essential for locating the maximal clique for C1000.9.
Also shown is that PLS-Degree performs relatively more searching of the higher
level plateaus than PLS-Random and hence is more efficient at locating the maximal
clique. The effectiveness of the Degree sub-algorithm is highlighted by comparing
the results in Table 5 with those in Table 2 where the CPU time for C2000.9 decreased
from 160.3759 seconds for DLS-MC to 112.8189 seconds for PLS to 24.1423 sec-
onds for PLS-Degree.� p hat1500-1 Starting with K = φ, the average number of consecutive selections
from C0(K ) is 6 and the maximum number is 11 which indicates that it is feasible to
attain the maximal clique (ω(p hat1500-1) = 12) using C0(K ) only. This is reflected
in Table 3 which shows that, for p hat1500-1, all 3 PLS sub-algorithms achieved a
significant degree of success.
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Fig. 5 Frequency of selections, as a function of |K |, for the Random, Degree and Penalty sub-algorithms for
the C1000.9 (optimal sub-algorithm Degree), p hat1500-1 (Random) and brock800 1 (Penalty) instances.
The ‘-I’ versions of the sub-algorithms did not perform any plateau searches

� brock800 1 Starting with K = φ, the average number of consecutive selections
from C0(K ) is 12 and the maximum number is 19. As ω(brock800 1) = 23 this
clearly indicates that plateau search is essential for locating the maximal clique for
brock800 1. Also shown is that PLS-Random performs relatively more searching of
the higher level plateaus while PLS-Penalty tends to concentrate on the lower level
plateaus.

The distributions of the average number of C1(K ) selections before either a C0(K )
or perturbation was performed for the DIMACS subset instances are shown in Fig. 6.
The results for C1000.9 were obtained by PLS-Degree, those for p hat1500-1 by PLS-
Random and those for brock800 1 by PLS-Penalty sub-algorithms. Clearly shown is
that PLS-Penalty spends considerably more effort on searching the mid-level plateaus
than PLS-Degree. As described below for Fig. 4, the maximal clique for C1000.9 was
attained in a single C0(K ) selection from the plateau at f (s) = 67, for p hat1500-
1 the maximal clique was attained in a direct up-hill climb from the plateau at
f (s) = 9, and that for brock800 1 from a direct up-hill climb from the plateau at
f (s) = 15.

There are only two choices for the sequencing of the sub-algorithms within PLS.
The results presented in this paper are for the sequence Random ⇒ Penalty ⇒ Degree.
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Table 5 Comparative results for PLS and PLS-<Sub-algorithm> (that is, PLS where only the specified
sub-algorithm was used)

PLS PLS-<Sub-algorithm>

Instance CPU(s) Sels. Sels/Sec Sub-algorithm CPU(s) Sels. Sels/Sec

brock200 1 0.0036 2958 821624 Penalty 0.03 25032 834385

brock200 2 0.0294 14143 481059 Penalty 0.0163 8406 515703

brock200 3 0.0272 16235 596886 Penalty 0.0123 7695 625648

brock200 4 0.0776 52799 680402 Penalty 0.4757 327035 687481

brock400 1 1.0757 481300 447429 Penalty 2.3982 1134343 472997

brock400 2 0.3771 173598 460351 Penalty 0.4971 229240 461155

brock400 3 0.1798 81699 454388 Penalty 0.1987 92297 464503

brock400 4 0.1038 47535 457948 Penalty 0.0766 35652 465426

brock800 1 30.0919 5850513 194421 Penalty 43.8343 8962868 204471

brock800 2 24.4061 4736217 194058 Penalty 14.6352 3031502 207137

brock800 3 15.0795 2937434 194796 Penalty 15.7624 3247824 206048

brock800 4 6.5407 1263170 193124 Penalty 9.8108 2014630 205348

C1000.9 1.8839 701067 372135 Degree 0.5854 212777 363473

C125.9 0.0001 199 1989599 Degree <ε 56 −
C2000.5 0.7271 44977 61857 Degree 0.6712 40096 59737

C2000.9 112.8189 23563287 208859 Degree 24.1423 4669919 193433

C250.9 0.0022 2689 1222377 Degree 0.0009 854 949177

C4000.5 149.6532 4651204 31079 Degree 160.7299 4846521 30153

C500.9 0.1857 128858 693904 Degree 0.0782 40567 518757

keller6 550.9461 50206021 91126 Random 432.5392 44968698 103964

MANN a45 28.7605 44230353 1537885 Penalty 46.0563 46823913 1016667

MANN a81 269.6636 227500971 843647 Penalty 293.9578 120167634 408792

p hat1500-1 3.2765 197988 60426 Random 3.0711 172692 56231

san1000 4.7187 368133 78015 Random 8.7664 725082 82711

The other possible sequence, Random ⇒ Degree ⇒ Penalty, gave similar results with
the exceptions of MANN a45 and MANN a81 where the results were poor compared
to those shown in Table 1 for the sequence Random ⇒ Penalty ⇒ Degree. The results
shown in Table 5, which basically confirm the results obtained for the brock family
in Table 2, show that there appears to be an inherent advantage in cycling around
sub-algorithms (as compared to executing them in parallel). The influence of the
preceeding Degree and Random sub-algorithms on the Penalty sub-algorithm occurs
via the vertex penalties where, in effect, they are “re-set” towards those that occur
following a random selction of vertices. In effect, a major perturbation periodically
occurs in the search trajectory of the Penalty sub-algorithm and this appears to be
beneficial to the search for these instances.

The other possible variation for sub-algorithms is the number of iterations al-
lowed for each sub-algorithm invocation. Experimentally, it was determined that,
overall, 50 iterations for Random, 50 iterations for Penalty and 100 iterations for
Degree produced the best overall results for the DIMACS instances. Whilst the
stage size is fixed for each sub-algorithm, as shown in Table 3, the relative num-
ber of selections performed by each sub-algorithm is dependent on the particular
instance.
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Fig. 6 Distributions of the average number of C1(K ) selections before either a C0(K ) selection or pertur-
bation was performed for the DIMACS subset instances

5 Conclusions and future work

This study has demonstrated that by applying variants of the general paradigm of
dynamic local search to the maximum clique problem, the state-of-the-art in MC
solving can be improved. PLS builds on previous MC algorithms, in particular
the recently introduced DLS-MC algorithm. Both algorithms use a combination of
sub-algorithms when searching for maximum cliques with each sub-algorithm consist-
ing of a clique building phase followed by a perturbation. Unlike DLS-MC, PLS does
not require the user to supply an exogenous, family or sub-family instance-dependant,
parameter to nominate and adapt the sub-algorithm to the instance. PLS combines
three sub-algorithms which are effective for three different instance types. The first
sub-algorithm, Random, effectively solves instances where the maximal clique consists
of vertices with a wide range of vertex degrees. The second sub-algorithm, Penalty,
uses vertex penalties to bias the search towards cliques containing lower degree ver-
tices. The vertex penalties are increased when the vertex is in the current clique when
a perturbation occurs and are subject to occasional decrease, which effectively allows
the sub-algorithm to ‘forget’ vertex penalties over time. Unlike DLS-MC, where the
frequency with which these decrease is fixed and externally nominated, the Penalty
sub-algorithm of PLS adaptively modifies the frequency of penalty decreases to obtain
near optimal performance. The final PLS sub-algorithm, Degree, uses vertex degrees
to bias the search towards cliques containing higher degree vertices.

The fact that PLS has comparable, and sometimes improved, performance to
DLS-MC on almost all of the standard DIMACS benchmark instances in combination
with its excellent performance compared to other high-performance MC algorithms
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clearly demonstrates the value of the underlying paradigm of combining variants of a
basic local search algorithm.

The overall performance of PLS on standard MC instances reported here suggests
that the underlying dynamic local search method has substantial potential to provide
the basis for high-performance algorithms for other combinatorial optimisation
problems, particularly weighted versions of MC and conceptually related clustering
problems.
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