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Abstract The 2-INTERVAL PATTERN problem is to find the largest constrained pattern
in a set of 2-intervals. The constrained pattern is a subset of the given 2-intervals such
that any pair of them are R-comparable, where model R ⊆ { <, �, () }. The problem
stems from the study of general representation of RNA secondary structures. In this pa-
per, we give three improved algorithms for different models. Firstly, an O(n log n + L)
algorithm is proposed for the case R = { () }, where L = O(dn) = O(n2) is the to-
tal length of all 2-intervals (density d is the maximum number of 2-intervals over
any point). This improves previous O(n2 log n) algorithm. Secondly, we use dy-
namic programming techniques to obtain an O(n log n + dn) algorithm for the case
R = { <, � }, which improves previous O(n2) result. Finally, we present another
O(n log n + L) algorithm for the case R = { �, () } with disjoint support(interval
ground set), which improves previous O(n2

√
n) upper bound.
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1 Introduction

In the area of prediction and analysis of RNA secondary structures, arc-annotated se-
quence focuses on the very detailed description of the structure itself—the sequence of
the bases and the bonds between the bases (Evans, 1999). However, using arc-annotated
sequence to further predict other homogeneous RNA structures is proved sometimes
hard. Derived from arc-annotated sequence, 2-intervals representation considers only
the bonds between the bases and the patterns of the bonds, such as knots, hairpin
structures and pseudoknots (Vialette, 2004). Thus, it has become a well macroscopic
describer of RNA secondary structures.

A 2-interval is two disjoint intervals on a line. Two disjoint 2-intervals can be defined
in the relations of precedence (<), nest (�) or cross (()). A constrained pattern is a set
of 2-intervals such that any pair of them are R-comparable, where R ⊆ { <, �, () }.
2-INTERVAL PATTERN problem introduced by Vialette (2004) is to find the largest
constrained pattern in a set of 2-intervals, and it is closely related to the problem
of PATTERN MATCHING OVER SET OF 2-INTERVALS (Vialette, 2004; Gramm, 2004)
and LONGEST ARC-PRESERVING COMMON SUBSEQUENCE (Evans, 1999; Alber et al.,
2004; Jiang et al., 2004).

The R-comparable relations of 2-intervals can be formulated in different graph
classes (Golumbic, 1980), and some graph-theoretic algorithms have been used
to solve the 2-INTERVAL PATTERN problem efficiently (Vialette, 2004; Blin et al.,
2004). In the paper of Blin et al. (2004), they almost completed the NP-
Completeness results for 2-INTERVAL PATTERN problems under three different
types of support models (unlimited, unitary, disjoint), which was classified by
Vialette (2004).

Recently, Crochemore et al. studied the approximation algorithms for 2-INTERVAL

PATTERN problem (Crochemore et al., 2005). In our paper, we give several algo-
rithms to improve the time complexity of finding optimal solutions for some models
to O(n log n + L), which is worst-case quadratic.

The rest of this paper is organized as follows. In Section 2, we define some basic
terminologies for 2-INTERVAL PATTERN problem. In Sections 3, 4 and 5, we will
give improved algorithms for R = { () }, R = { <, � } and R = { �, () } respectively.
Finally, conclusions are made in Section 6.

2 Preliminaries

First, we’ll review the terminologies used in Vialette (2004) and Blin et al. (2004). Let
I = [a, b] be an interval (a ≤ b), define l(I ) = a and r(I ) = b. A 2-interval is the
union of two disjoint intervals I and J , denoted by D = (I, J ) such that I < J , where
the strict precedence order < means I is strictly to the left of J , i.e. r(I ) < l(J ).
The left interval I and right interval J of D are denoted by Left(D) and Right(D)
respectively (see Fig. 1).

For any two 2-intervals D1 = (I1, J1) and D2 = (I2, J2), we say they are disjoint
if and only if (I1 ∪ J1) ∩ (I2 ∪ J2) = ∅. Any pair of disjoint 2-intervals must satisfy
one of the following three relations (see Fig. 2):
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a b

I= [a,b]

(a) an interval

I J

(b) strict precedence order of
intervals: I < J ⇔ r(I) < l(J)

r(I) < l(J)

I=Left(D) J=Right(D)

D

(c) a 2-interval D and its supports

Fig. 1 Definition of 2-interval

D 2

I2I1 J1 J2

D 1

(a) Precedence: D1 < D2

D 2

I2 I1 J1 J2

D 1

(b) Nest: D1 D2

D 2

I2 J2

D 1

I1 J1

(c) Cross: D1 () D2

Fig. 2 Three relations for two disjoint 2-intervals

Fig. 3 Here is a { <, � }-comparable 2-interval set, because any two 2-intervals in this set are either
{ < }-comparable or { � }-comparable

PRECEDE D1 < D2 ⇔ I1 < J1 < I2 < J2; transitive
NEST D1 � D2 ⇔ I2 < I1 < J1 < J2; transitive
CROSS D1 () D2 ⇔ I1 < I2 < J1 < J2; not symmetric

D1 and D2 are called τ -comparable if D1τ D2 for some τ ∈ { <, �, ()}. A 2-interval
set is called R-comparable, where R ⊆ { <, �, () }, if and only if for any two elements
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of it, there exists a relation τ ∈ R such that they are τ -comparable (see Fig. 3 for
example).

Let D = {D1, D2, . . . , Dn} denote a set of n 2-intervals. The support (or interval
ground set) of D is denoted by Support(D) = ⋃{Ii , Ji | Di = (Ii , Ji )}. Let X denote
the set of interesting coordinates

⋃
D∈D{r(Left(D)),l(Right(D))}. Assume that the

elements of X = {x1, x2, . . . , x|X |} are sorted, i.e. x1 < x2 < · · · < x|X |. Since |X | ≤
2n, the sorting process takes O(n log n) time.

A structured pattern p is a sequence of |P| = 2m words, which contains m different
alphabets and each appears exactly twice. The structure pattern can be used to define
a R-comparable 2-interval set. For example, p = abaccb is a { <, �, () }-structured
pattern, because aa () bb, aa < cc and cc � bb. A R-structured pattern is called
simple if |R| = 1. It is easy to see that abccba is a simple pattern, since it is { � }-
structured.

Given a 2-interval set D and a model R ⊆ { <, �, () }, the 2-INTERVAL PAT-
TERN problem is to find the largest cardinality subset D′ ⊆ D, so that D′

is R-comparable. In Vialette (2004), Vialette classified the problem into three
types:

− UNITARY: All the intervals in Support(D) are of the same size;
− DISJOINT: The intervals in Support(D) are disjoint and equal-size;
− UNLIMITED: No restriction on the support of D.

In our paper, we only concern the cases of DISJOINT and UNLIMITED.
To better illustrate our improvements, we define a parameter L, which means the

total length of 2-intervals. The length of a 2-interval D is defined to be Length(D) =
k2 − k1, where xk1

= r(Left(D)) and xk2
= l(Right(D)). The density ofD, denoted by

d, is the maximum number of 2-intervals over any point. Formally, d = maxx∈X |{D =
(I, J ) ∈ D |r(I ) ≤ x < l(J )}|. It is easy to see L ≤ dn ≤ n2. Table 1 summarizes
the results of our work.

Table 1 Summarized results for different models of 2-INTERVAL PATTERN problem

Support

Model Disjoint Unlimited

{ <, �, () } O(n
√

n) (Micali and Vazirani, 1980) APX-Hard

(Bar-Yehuda et al., 2002)

{ <, () } ? NP-Complete (Blin et al., 2004)

{ �, () } O(n log n + L)∗ NP-Complete (Vialette, 2004)

{ <, � } O(n log n + dn)∗

{ () } O(n log n + L)∗

{ < } O(n log n) (Vialette, 2004)

{ � } O(n log n) (Blin et al., 2004)

The improved results of this paper are marked by ∗. The symbol “ ? ” means the complexity of that case
remains open.
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Fig. 4 A sweep-line sweeps from left to right

3 Improved algorithm for { () }-structured pattern

In this section, we will give an O(n log n + L) algorithm for the model R = { () }. This
improves the O(n2 log n) algorithm given in Vialette (2004).

Our algorithm is based on a sweep-line method. Let D[x] be the set of 2-intervals
crossing a vertical line whose horizontal coordinate is x , that is D[x] = {Di ∈
D |r(Left(Di )) ≤ x and l(Right(Di )) > x}. For convenience, set x0 = −∞ and let
D(k) denote D[xk] for 0 ≤ k ≤ |X |, hence D(0) = ∅. When the vertical line sweeps
from left to right (Fig. 4) passingan interesting point xk ∈ X , some 2-intervals may
be added to D[x], and some may be removed. Let P (k) and Q(k) be the differences
between D(k−1) and D(k), we have

P (k) = D(k) \ D(k−1) = {D ∈ D |r(Left(D)) = xk},
Q(k) = D(k−1) \ D(k) = {D ∈ D |l(Right(D)) = xk}.

Theorem 1. Let ω(D) be the cardinality of the largest { () }-comparable subset of D,
then ω(D) = max1≤k≤|X | ω(D(k)).

Proof: Observe that for any two 2-intervals Di and D j which are ()-comparable,
we have r(Left(D j )) < l(Right(Di )). Thus for any subset D′ ⊆ D which is { () }-
comparable, we have maxD′

j ∈D′ r(Left(D′
j )) < minD′

i ∈D′ l(Right(D′
i )). This implies

that D′ is also a subset of D(k), where xk = maxD′∈D′ r(Left(D′)). Hence, ω(D) must
be equal to ω(D(k)) for a specific k. �

By Theorem 1, we can get ω(D) by computing ω(D(k)) for 1 ≤ k ≤ |X |. Vialette
shows that ω(D(k)) can be computed by finding a maximum independent set of corre-
sponding trapezoid graphs in O(n log n) time (Felsner et al., 1997), so his algorithm
runs in O(n2 log n) total time. To improve the complexity, we utilize the dynamic
structure of D(k) by discovering the relationship between ω(D(k−1)) and ω(D(k)).

Definition 1. The height of D under D(k), denoted by Hk(D), is the cardinality of the
largest { () }-comparable subset of D(k), whose maximal element must be D under the
relation (). That is Hk(D) = ω({D′ ∈ D(k) | D′ () D}) + 1 for D ∈ D(k), and Hk(D) = 0
for D �∈ D(k).

Obviously, we have ω(D(k)) = maxD∈D(k) Hk(D). If we can compute Hk(D) for
each k and D efficiently, then we can get a better upper bound. To achieve this, we first
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exam the the relationship between Hk(D) and Hk−1(D), and show that every non-zero
Hk(D) can be computed efficiently.

Lemma 1. For any k, the () relation is transitive in D(k) .

Proof: Given any three 2-intervals D1, D2, D3 ∈ D(k), where D1 () D2 and D2 () D3,
we are going to prove that D1 () D3. Let D1 = (I1, J1), D2 = (I2, J2) and D3 =
(I3, J3), then by the definition of (), we have I1 < I2 and I2 < I3, so

I1 < I3. (1)

For the same reason, that is J1 < J2 and J2 < J3, we have

J1 < J3. (2)

Because D3 is in D(k), we have (by definition of D(k))

r (I3) ≤ xk, (3)

and also because D1 is in D(k), we have (by definition of D(k))

l(J1) > xk . (4)

From (3) and (4), we get

r (I3) < l(J1), (5)

from (5) we get

I3 < J1. (6)

Combining (1), (2) and (6), we have

I1 < I3 < J1 < J3. (7)

So we know that D1 and D3 are ()-comparable due to the definition of (), that is

D1 () D3. (8)

So the () relation is transitive in the set D(k) for any fixed k. �

Theorem 2. For D ∈ D(k−1), after the sweep-line goes from xk−1 to xk, the height of D
decreases at most by one, or remains the same, i.e. Hk−1(D) − 1 ≤ Hk(D) ≤ Hk−1(D).

Proof: First, Hk(D) = h > 1 if and only if there exists a D′ ∈ D(k) so that Hk(D′) =
h − 1 and D′ () D (due to Lemma 1). Since no 2-interval in P (k) can cross D, the
height of D will not increase. Let {D1, D2, . . . , Dh−1, D} be a { () }-comparable subset
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ofD(k−1), where h = Hk−1(D). Because no pair of 2-intervals in Q(k) are ()-comparable,
at least h − 1 elements from the previous set will be preserved in D(k), hence Hk(D) ≥
h − 1 = Hk−1(D) − 1. �

Let C (k)
h = {D ∈ D(k) | Hk(D) = h}. The key issue is to test efficiently for a 2-

interval D ∈ C (k−1)
h whether there exists a D′ ∈ C (k)

h−1 such that D′ () D. In other
words, we have to check whether the following set is empty{

D′ ∈ C (k)
h−1 |r(Left(D′)) < l(Left(D)) and r(Right(D′)) < l(Right(D))

}
.

Alternatively, it is to test whether

min
{
r(Left(D′)) | D′ ∈ C (k)

h−1 and r(Right(D′)) < l(Right(D))
}

< l(Left(D)).

This property could be tested efficiently by a merge-like process, when the 2-intervals
in C (k)

h−1 are sorted by the key r(Right(D′)), and those in C (k−1)
h are sorted by

l(Right(D)). By the discussion above, we have following procedure FALLDOWN(k)
to compute Hk(D) from Hk−1(D) for D ∈ D(k−1) in O(|D(k−1)| + |D(k)|) time. For a
fixed k that 0 < k ≤ |X |, the procedure partitions D(k) into |D(k)| 2-interval set C (k)

1 ,

C (k)
2 , . . . , C (k)

|D(k)|.
FALLDOWN(k) over all k can be implemented in O(n log n + ∑|D(k)|) time.

Procedure 3.1 FALLDOWN(k)
Next, we will give a procedure to compute Hk(D) for D ∈ P (k). From the fact that

there is not any pair of 2-intervals in P (k) that are ()-comparable, the height of D j ∈ P (k)

under D(k) can be calculated by Hk(D j ) = maxDi () D j Hk(Di ) + 1 if there is at least
one Di ∈ D(k) \ P (k) which cross D j . Otherwise, Hk(D j ) = 1.

Definition 2. For each 0 < h ≤ |D(k)|, define the boundary with respect to y,

B(k)
h (y) = min

D∈C (k)
h

{r(Left(D)) |r(Right(D)) < y}. (9)

Lemma 2. For any 0 < h1 < h2 ≤ |D(k)|, we have B(k)
h1

(y) < B(k)
h2

(y).

Proof: For a fixed k and y, let Dh2
denote the 2-interval from C (k)

h2
which

minimizes B(k)
h2

in Eq. (9). Since h2 > h1, there must be at leat one Dh1
∈ C (k)

h1

that Dh1
() Dh2

. Since r(Right(Dh1
)) < r(Right(Dh2

)) < y, therefore, we have

B(k)
h1

(y) ≤ r(Left(Dh1
)) < r(Left(Dh2

)) = B(k)
h2

(y). �

Procedure 3.2 JUMPUP(k)
The procedure JUMPUP(k) is used for computing the heights of 2-intervals in P (k)

under D(k). The sorting process in Line 2 and the merge process in Lines 12–14 can
be done in O(|D(k)|) time, if we first sort each P (k) in a global stage. Line 6 can
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Function: Compute Hk(D) for every D ∈ D(k−1) from Hk−1(D).
Notation:Let C (k)

h [i] denote the i th element in sorted C (k)
h .

1: Sort the 2-intervals in each C (k−1)
h according to the key l(Right(D)).

2: C (k)
1 ← C (k−1)

1 \ Q(k), sort it by the key r(Right(D))
3: for h ← 2 to |D(k−1)| do
4: C (k)

h ← C (k−1)
h ; Decreased = ∅; j ← 1, i ← 1; LEFTMOST ← +∞;

5: while j ≤ |C (k−1)
h | do

6: while r(Right(C (k)
h−1[i])) < l(Right(C (k−1)

h [ j])) do
7: LEFTMOST ← min

{
LEFTMOST,r(Left(C (k)

h−1[i]))
}

8: i ← i + 1
9: end while

10: if LEFTMOST < l(Left(C (k−1)
h [ j])) then

11: Do nothing. // the height of C (k−1)
h [ j] remains the same

12: else
13: Decreased ← Decreased ∪ {

C (k−1)
h [ j]

}
14: C (k)

h ← C (k)
h \ C (k−1)

h [ j]
15: end if
16: j ← j + 1
17: end while
18: C (k)

h−1 ← C (k)
h−1 ∪ Decreased

19: Sort the 2-intervals in C (k)
h by the key r(Right(D))

20: end for

Calculate the Heights of P (k) under D(k)

1: set B(k)
h ← ∞ for each 1 ≤ h ≤ |D(k)| and set B(k)

0 ← −∞
2: sort 2-intervals in D(k) according to key(D), where

key(D) =
{
r(Right(D)), if D ∈ D(k) \ P (k)

l(Right(D)), if D ∈ P (k)

If there is a tie, let the elements in P (k) go first.
3: for i ← 1 to |D(k)| do
4: let D be i th element in D(k)

5: if D ∈ P (k) then
6: find the largest h such that B(k)

h < l(Left(D))
7: Hk(D) ← h + 1
8: else
9: let h ← Hk(D), then set B(k)

h ← min{B(k)
h ,r(Left(D))}

10: end if
11: end for
12: for each 0 < h ≤ |D(k)| do
13: C (k)

h ← C (k)
h ∪ {

Hk(D) = h
∣∣ D ∈ P (k)

}
14: end for
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be implemented by binary search (Lemma 2) in O(log|D(k)|) time. Thus the total
complexity for all JUMPUP(k) is

∑
O

(|D(k)| + |P (k)| log|D(k)|) = O
( ∑|D(k)| + ∑|P (k)| log n

)
= O

( ∑|D(k)| + n log n
)
.

Combining procedures FALLDOWN(k) and JUMPUP(k), we finally obtain Algorithm
3.3. It is easy to see that the space complexity is O(n). By the equation

∑|D(k)| = L,
we have the total time complexity O (n log n + L).

The correctness of Algorithm 3.3 is based on the following facts:

Lemma 3. No 2-interval in P (k) will cross any element in D(k).

Corollary 1. The height of a 2-interval D ∈ D(k) \ P (k) under D(k) is the same to its
height under D(k)\P (k).

Theorem 3. Procedure FALLDOWN(k) correctly computes the heights of 2-intervals
in D(k)\P (k) under D(k).

Algorithm 3.3 { () }-STRUCTURED 2-INTERVAL PATTERN

1: sort the 2-intervals and their endpoints
2: calculate P (k) and Q(k) for each 1 ≤ k ≤ |X |
3: set C (0)

h = ∅ for all 1 ≤ h ≤ n
4: for k ← 1 to |X | do
5: call Procedure FALLDOWN(k) // compute Hk(D) for D ∈ D(k) \ P (k)

6: call Procedure JUMPUP(k) // compute Hk(D) for D ∈ P (k)

7: ω(D(k)) equals to the largest h such that C (k)
h �= ∅, or zero if D(k) = ∅

8: end for
9: return max ω(D(k))

Proposition 1. The { () }-STRUCTURED 2-INTERVAL PATTERN problem can be solved
in O(n log n + L) time.

For the case of disjoint support, it can be transformed to the problem of finding
a maximum clique in circle graphs (Golumbic, 1980). Each 2-interval maps to a
vertex, and two vertices are adjacent if and only if their corresponding 2-interval are
()-comparable. By the result of Masuda et al. (1990), we have

Proposition 2. The DISJOINT SUPPORT { () }-STRUCTURED 2-INTERVAL PATTERN prob-
lem can be solved in O (n log n + min{m, dn}) time, where m is the number of 2-
interval pairs that are ()-comparable.
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4 Improved algorithm for { <, � }-structured pattern

In this section, we will give an O(n log n + dn) algorithm for { <, � }-STRUCTURED

2-INTERVAL PATTERN problem, and it is O(n log n + L) for the case that no 2-intervals
share the same rightmost endpoint. Our algorithm improves the O(n2) upper bound
given by Vialette (2004), in the sense that if we parameterize d , which is rather small
when dealing with most of RNA sequences. What’s more, the case in this section
is also the exact model of most of RNA sequences. The algorithm is similar to the
maximum weighted independent set algorithm for circle graphs which is proposed
recently by Valiente (2003).

Definition 3. Let D[z1, z2] represent the 2-intervals lie in [z1, z2], where z1 < z2, i.e.
D[z1, z2] = {D ∈ D

∣∣ z1 ≤ l(Left(D)) < r(Right(D)) ≤ z2}.

Definition 4. Let α(D) be the cardinality of largest { <, � }-comparable subset of
D. Take α[z1, z2] instead of α(D[z1, z2]) for short. Let α(D) denote the cardinal-
ity of largest { <, � }-comparable subset of D[l(Left(D)),r(Right(D))]), with the
constraint that D must be in that largest cardinality subset.

Lemma 4. α(D) = 1 + α[r(LeftD) + 1,l(RightD) − 1].

Lemma 5. Let α′[z1, z2] = max {α [z1,l(LeftD) − 1] + α(D)}, where D ∈
D[z1, z2] and r(RightD)= z2. We have α[z1, z2] = max

{
α[z1, z2 − 1], α′[z1, z2]

}
.

Combining the two Lemmas above, we have a dynamic programming algorithm
working in O(n2) time. To achieve a tighter bound, we can first compute α(D) for
every D ∈ D in the order of their lengths (see next paragraph), and then calculate
α(D) = α[x1, x|X |] in O(|X |) time by Lemma 5 .

To compute the value of α(Di ), we only have to calculate α[r(Left(Di )) +
1,l(Right(Di )) − 1] due to Lemma 4. For a specific Di , let β[z] denote
α[r(Left(Di )) + 1, z], then after slightly modifying Lemma 5, we have

β[z] = max
D′

{β[z − 1], β[l(Left(D′)) − 1] + α(D′)}

where D′ goes through all 2-intervals which satisfies r(Right(D′)) = z and
l(Left(D′)) ≥ r(Left(Di )) + 1. The special case is that

β[z] = 0 for z ≤ r(Left(Di )) + 1.

Since the goal is to find out the value of α(Di ) = β[l(Right(Di )) − 1] + 1, we only
have to compute β[z] for r(Left(Di )) < z < l(Right(Di )). So only O(Length(Di ))
temporary space is required. The computational cost for an entry β[z] is in proportion
to the number of 2-intervals whose rightmost endpoint is z and its length is smaller
than Length(Di ). All these 2-intervals can be enumerated efficiently by constructing
a sorted list List(xk) for each xk ∈ X in total O(n log n) time at the preprocessing
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stage, where List(xk) contains all 2-intervals whose rightmost endpoint is xk , and the
2-intervals in each list is sorted by their lengths.

Theorem 4. For an 2-interval Di ∈ D, if we know the values of α(D′) for all D′ � Di

that LengthD′ < LengthDi , then we can compute α(Di ) in O(LengthDi + mi ) time
and only use O(LengthDi ) temporary space, where mi is the number of 2-intervals
nested in Di .

The total complexity is O(n log n + L + ∑
mi + |X |). It is not too difficult to see

that
∑

mi ≤ dn. If no 2-intervals share the same rightmost endpoint, then it is easy
to see that mi ≤ Length(Di ), hence we have

∑
mi ≤ L in this case.

Proposition 3. The { <, � }-STRUCTURED 2-INTERVAL PATTERN problem can be
solved in O(n log n + dn) time and O(n) space. If no 2-intervals share the same
rightmost endpoint, then the time complexity can be improved to O(n log n + L).

5 Improved algorithm for { �, () }-structured pattern

In this section, we will give an O(n log n + L) algorithm for the model R = { �, () }
with disjoint support. This improves the O(n2

√
n) algorithm given by Blin et al.

(2004).
In the case with disjoint support, define l(D) and r(D) to be the left and right

endpoints respectively for a 2-interval D ∈ D, i.e. l(D) = l(Left(D)) = r(Left(D))
and r(D) = l(Right(D)) = r(Right(D)).

Lemma 6. Let D′ be a { �, () }-comparable subset of D, then

max
D′

j ∈D′
l(D′

j ) < min
D′

i ∈D′
r(D′

i ).

Proof: Otherwise, there must be two 2-intervals D′
j and D′

i such that l(D′
j ) ≥ r(D′

i ).
If l(D′

j ) = r(D′
i ), then D′

j and D′
i are not comparable; if l(D′

j ) > r(D′
i ), then we

have D′
i < D′

j . Both cases lead to contradictions, because D′
j and D′

i should be either
�-comparable or ()-comparable! �

Define ϕ(D) to be the largest largest { �, () }-comparable subset of D with disjoint
support. Similar to Section 3, we have ϕ(D) = max ϕ(D(k)). Blin et al. calculate each
ϕ(D(k)) by finding the maximum cardinality matching in the corresponding bipartite
graphs. We still apply this idea, but the complexity is improved by discovering the
dynamic structure of the bipartite graphs.

Definition 5. For a fixed 0 < k ≤ |X |, let G(k) = (U (k), V (k), E (k)) be a bipartite graph
corresponding to D(k) defined as follows: U (k) = {x ∈ X | x ≤ xk}, and V (k) = {x ∈
X | x > xk}, the edges E (k) = {〈l(D),r(D)〉 | D ∈ D(k)}.
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Obviously, a maximum matching of G(k) corresponds to a maximum cardinality
{ �, () }-comparable subset of D(k). Let M (k) be a maximum matching in G(k).

Theorem 5. The cardinality of maximum matching in G(k) and G(k−1) differs at most
one, i.e. |M (k−1)| − 1 ≤ |M (k)| ≤ |M (k−1)| + 1.

Proof: Define the differences of E (k) and E (k−1) by

F (k)
+ = E (k) \ E (k−1) = {〈xk, x j 〉 | x j = r(D) for D ∈ D where l(D) = xk},

F (k)
− = E (k−1) \ E (k) = {〈xi , xk〉 | xi = l(D) for D ∈ D where r(D) = xk}.

Let M = M (k−1) \ {〈xi , xk〉} if there is an edge 〈xi , xk〉 ∈ F (k)
− , otherwise M = M (k−1).

Obviously, M is a matching of G(k), so |M (k−1)| − 1 ≤ |M | ≤ |M (k)|. The second part
of inequalities can be proved in the same way. Let M ′ = M (k) \ {〈xk, x j 〉} if there is

an edge 〈xk, x j 〉 ∈ F (k)
+ , otherwise M ′ = M (k). Now M ′ is a matching of G(k−1), so

|M (k)| − 1 ≤ |M ′| ≤ |M (k−1)|. �

Theorem 6 (Hopcroft and Karp (1973)). Let M1 and M2 be two matchings, if |M1|
= s, |M2| = r and r > s, then M1 ⊕ M2 contains at least r − s vertex disjoint aug-
menting paths relative to M1. Where the operation ⊕ means

M1 ⊕ M2 = {e | e ∈ M1 and e �∈ M2} ∪ {e | e �∈ M1 and e ∈ M2}.

By Theorems 5 and 6, we have Algorithm 5.1 to find the maximum matching of G(k)

for each 0 < k ≤ |X | efficiently. Since the number of edges is at most |D|, so the space
complexity is O(n). It is easy to see that the time complexity from Line 4 to Line 9
is O(

∑|E (k)|) = O(
∑|D(k)|) = O(L). Thus, our algorithm is worst-case quadratic,

which improves the previous best known upper bound O(n2
√

n).

Algorithm 5.1 DISJOINT SUPPORT { �, () }-STRUCTURED 2-INTERVAL PATTERN

1: sort the endpoints of D
2: calculate F (k)

+ and F (k)
− for every 0 < k ≤ |X |

3: E ← ∅, M ← ∅
4: for k ← 1 to |X | do
5: E ← E \ F (k)

− , M ← M \ F (k)
−

6: if there exist an augmenting path P ∈ E relative to M , then M ← M ⊕ P
7: E ← E ∪ F (k)

+
8: if there exist an augmenting path P ∈ E relative to M , then M ← M ⊕ P
9: end for

Proposition 4. The DISJOINT SUPPORT { �, () }-STRUCTURED 2-INTERVAL PAT-
TERN problem can be solved in O (n log n + L) time.
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6 Conclusions

In this paper, we give several improved algorithms for different models of 2-INTERVAL

PATTERN problem. The case of R = { () } and R = { �, () } with disjoint support are
solved both in O(n log n + L) time by sweep-line based method. An O(n log n + dn)
algorithm is given to solve the case R = { <, � }, which is similar to previous known
maximum independent set algorithm for circle graphs. All of our algorithms require
only linear space.

Acknowledgments Thanks to Hong Zhu, Binhai Zhu, Yunfeng Tao and the reviewers for their helpful
comments. Thanks to Prof. Yong Yu, the advisor of the undergraduate program in Department of Computer
Science and Engineering, Shanghai Jiao Tong University, for his support on this work.

References

Alber J, Gramm J, Guo J, Niedermeier R (2004) Computing the similarity of two sequences with nested
arc annotations. Theor Comput Sci 312(2–3):337–358
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