
J Comb Optim (2007) 13:321–336

DOI 10.1007/s10878-006-9023-7

Improved approximation algorithms for metric
MaxTSP

Zhi-Zhong Chen · Takayuki Nagoya

Published online: 8 December 2006
C© Springer Science + Business Media, LLC 2007

Abstract We present two polynomial-time approximation algorithms for the met-
ric case of the maximum traveling salesman problem. One of them is for directed
graphs and its approximation ratio is 27

35 . The other is for undirected graphs and its
approximation ratio is 7

8 − o(1). Both algorithms improve on the previous bests.

Keywords TSP . Max TSP . Metric Max TSP . Approximation Algorithms .

Randomized Algorithms . Derandomization

1 Introduction

The maximum traveling salesman problem (MaxTSP) is to compute a maximum-
weight Hamiltonian circuit (called a tour) in a given complete edge-weighted (undi-
rected or directed) graph. Usually, MaxTSP is divided into the symmetric and the
asymmetric cases. In the symmetric case, the input graph is undirected; we denote
this case by SymMaxTSP. In the asymmetric case, the input graph is directed; we
denote this case by AsymMaxTSP. Note that SymMaxTSP can be trivially reduced to
AsymMaxTSP.

A natural constraint one can put on AsymMaxTSP and SymMaxTSP is the triangle
inequality which requires that for every set of three vertices u1, u2, and u3 in the input
graph G, w(u1, u2) ≤ w(u1, u3) + w(u3, u2), where w(ui , u j) is the weight of the edge
from ui to u j in G. If we put this constraint on AsymMaxTSP, we obtain a problem

A preliminary version of this paper appeared in the Proceedings of 13th European Symposium on
Algorithms (ESA2005), Lecture Notes in Computer Science, Vol. 3669, pp. 179–190, 2005.

Z.-Z. Chen (�) . T. Nagoya
Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
e-mail:chen@r.dendai.ac.jp

T. Nagoya
e-mail: nagoya@r.dendai.ac.jp

Springer

322 J Comb Optim (2007) 13:321–336

called metric AsymMaxTSP. Similary, if we put this constraint on SymMaxTSP, we
obtain a problem called metric SymMaxTSP.

Both metric SymMaxTSP and metric AsymMaxTSP are Max-SNP-hard (Barvinok
et al., 1998) and there have been a number of approximation algorithms known for them
(Kostochka and Serdyukov, 1985; Hassin and Rubinstein, 2002; Kaplan et al., 2003).
In 1985, Kostochka and Serdyukov (1985) gave an O(n3)-time approximation al-
gorithm for metric SymMaxTSP that achieves an approximation ratio of 5

6 . Their
algorithm is very simple and elegant. Tempted by improving the ratio 5

6 , Hassin and
Rubinstein (2002) gave a randomized O(n3)-time approximation algorithm for metric
SymMaxTSP whose expected approximation ratio is 7

8 − o(1). This randomized al-
gorithm was recently (partially) derandomized by Chen et al. (2005); their result is a
(deterministic) O(n3)-time approximation algorithm for metric SymMaxTSP whose
approximation ratio is 17

20 − o(1). In this paper, we completely derandomize the ran-
domized algorithm, i.e., we obtain a (deterministic) O(n3)-time approximation algo-
rithm for metric SymMaxTSP whose approximation ratio is 7

8 − o(1). Our algorithm
also has the advantage of being easy to parallelize. Our derandomization is based on
the idea of Chen et al. (2005) and newly discovered properties of a folklore partition
of the edges of a 2n-vertex complete undirected graph into 2n − 1 perfect matchings.
These properties may be useful elsewhere. In particular, one of the properties says that
if G = (V, E) is a 2n-vertex complete undirected graph and M is a perfect matching of
G, then we can partition E − M into 2n − 2 perfect matchings M1, . . . , M2n−2 among
which there are at most k2 − k perfect matchings Mi such that the graph (V, M ∪ Mi)
has a cycle of length at most 2k for every natural number k. This property is interest-
ing because Hassin and Rubinstein (2002) prove that if G and M are as before and
M ′ is a random perfect matching of G, then with probability 1 − o(1) the multigraph
(V, M ∪ M ′) has no cycle of length at most

√
n. Our result shows that instead of

sampling from the set of all perfect matchings of G, it suffices to sample from M1,
. . . , M2n−2. This enables us to completely derandomize their algorithm.

As for metric AsymMaxTSP, Kostochka and Serdyukov (1985) gave an O(n3)-
time approximation algorithm that achieves an approximation ratio of 3

4 . Their result
remained the best in two decades until Kaplan et al. (2003) gave a polynomial-time
approximation algorithm whose approximation ratio is 10

13 . The key in their algorithm
is a polynomial-time algorithm for computing two cycle covers C1 and C2 in the input
graph G such that C1 and C2 do not share a 2-cycle and the sum of their weights is at
least twice the optimal weight of a tour of G. They then observe that the multigraph
formed by the edges in 2-cycles in C1 and C2 can be split into two subtours of G. In
this paper, we show that the multigraph formed by the edges in 2-cycles in C1 and
C2 together with a constant fraction of the edges in non-2-cycles in C1 and C2 can be
split into two subtours of G. This enables us to improve Kaplan et al.’s algorithm to a
polynomial-time approximation algorithm whose approximation ratio is 27

35 .

2 Basic definitions

Throughout this paper, a graph means a simple undirected or directed graph (i.e., it has
neither multiple edges nor self-loops), while a multigraph may have multiple edges
but no self-loops.

Springer

J Comb Optim (2007) 13:321–336 323

Let G be a multigraph. We denote the vertex set of G by V (G), and denote the edge
set of G by E(G). For a subset F of E(G), G − F denotes the graph obtained from
G by deleting the edges in F . Two edges of G are adjacent if they share an endpoint.

Suppose G is undirected. The degree of a vertex v in G is the number of edges
incident to v in G. A cycle in G is a connected subgraph of G in which each vertex is
of degree 2. A cycle cover of G is a subgraph H of G with V (H) = V (G) in which
each vertex is of degree 2. A matching of G is a (possibly empty) set of pairwise
nonadjacent edges of G. A perfect matching of G is a matching M of G such that each
vertex of G is an endpoint of an edge in M .

Suppose G is directed. The indegree of a vertex v in G is the number of edges
entering v in G, and the outdegree of v in G is the number of edges leaving v in G.
A cycle in G is a connected subgraph of G in which each vertex has indegree 1 and
outdegree 1. A cycle cover of G is a subgraph H of G with V (H) = V (G) in which
each vertex has indegree 1 and outdegree 1. A 2-path-coloring of G is a partition of
E(G) into two subsets E1 and E2 such that both graphs (V (G), E1) and (V (G), E2) are
collections of vertex-disjoint paths. G is 2-path-colorable if it has a 2-path-coloring.

Suppose G is undirected or directed. A path in G is either a single vertex of G or
a subgraph of G that can be transformed to a cycle by adding a single (new) edge.
The length of a cycle or path C is the number of edges in C . A k-cycle is a cycle of
length k. A 3+-cycle is a cycle of length at least 3. A tour (also called a Hamiltonian
cycle) of G is a cycle C of G with V (C) = V (G). A subtour of G is a subgraph H of
G which is a collection of vertex-disjoint paths.

A closed chain is a directed graph that can be obtained from an undirected k-cycle
C with k ≥ 3 by replacing each edge {u, v} of C with the two directed edges (u, v)
and (v, u). Similarly, an open chain is a directed graph that can be obtained from an
undirected path P by replacing each edge {u, v} of P with the two directed edges
(u, v) and (v, u). An open chain is trivial if it is a single vertex. A chain is a closed or
open chain. A partial chain is a subgraph of a chain.

For a graph G and a weighting functionw mapping each edge e of G to a nonnegative
real number w(e), the weight of a subset F of E(G) is w(F) = ∑

e∈F w(e), and the
weight of a subgraph H of G is w(H) = w(E(H)).

3 New algorithm for metric AsymMaxTSP

Throughout this section, fix an instance (G, w) of metric AsymMaxTSP, where G is a
complete directed graph and w is a function mapping each edge e of G to a nonnegative
real number w(e).

Let OPT be the weight of a maximum-weight tour in G. Our goal is to compute
a tour in G whose weight is large compared to OPT . We first review Kaplan et al.’s
algorithm and define several notations on the way.

3.1 Kaplan et al.’s algorithm

The key in their algorithm is the following:

Theorem 3.1 (Kaplan et al., 2003). We can compute two cycle covers C1, C2 in G in
polynomial time that satisfy the following two conditions:

Springer

324 J Comb Optim (2007) 13:321–336

1. C1 and C2 do not share a 2-cycle. In other words, if C is a 2-cycle in C1 (respectively,
C2), then C2 (respectively, C1) does not contain at least one edge of C.

2. w(C1) + w(C2) ≥ 2 · OPT.

Let G2 be the subgraph of G such that V (G2) = V (G) and E(G2) consists of all
edges in 2-cycles in C1 and/or C2. Then, G2 is a collection of vertex-disjoint chains.
For each closed chain C in G2, we can compute two edge-disjoint tours T1 and T2

(each of which is of length at least 3), modify C1 by substituting T1 for the 2-cycles
shared by C and C1, modify C2 by substituting T2 for the 2-cycles shared by C and C2,
and further delete C from G2. After this modification of C1 and C2, the two conditions
in Theorem 3.1 still hold. So, we can assume that there is no closed chain in G2.

For each i ∈ {1, 2}, let Wi,2 denote the total weight of 2-cycles in Ci , and let Wi,3 =
w(Ci) − Wi,2. For convenience, let W2 = 1

2 (W1,2 + W2,2) and W3 = 1
2 (W1,3 + W2,3).

Then, by Condition 2 in Theorem 3.1, we have W2 + W3 ≥ OPT . Moreover, using an
idea in Kostochka and Serdyukov (1985), Kaplan et al. observed the following:

Lemma 3.2 (Kaplan et al., 2003). We can use C1 and C2 to compute a tour T of G
with w(T) ≥ 3

4 W2 + 5
6 W3 in polynomial time.

Since each nontrivial open chain has a 2-path-coloring, we can use G2 to compute
a tour T ′ of G with w(T ′) ≥ W2 in polynomial time. Combining this observation,
Lemma 3.2, and the fact that W2 + W3 ≥ OPT , the heavier one between T and T ′ is
of weight at least 10

13 OPT .

3.2 Details of the new algorithm

The idea behind our new algorithm is to improve the second tour T ′ in Kaplan et al.’s
algorithm so that it has weight at least W2 + 1

9 W3. The tactics is to add some edges
of 3+-cycles in Ci with Wi,3 = max{W1,3, W2,3} to G2 so that G2 remains 2-path-
colorable. Without loss of generality, we may assume that W1,3 ≥ W2,3. Then, our goal
is to add some edges of 3+-cycles in C1 to G2 so that G2 remains 2-path-colorable.

We say that an open chain P in G2 spoils an edge (u, v) of a 3+-cycle in C1 if u
and v are the two endpoints of P . Obviously, adding a spoiled edge to G2 destroys
the 2-path-colorability of G2. Fortunately, there is no 3+-cycle in C1 in which two
consecutive edges are both spoiled. So, let C1, . . . , C� be the 3+-cycles in C1; we
modify each C j (1 ≤ j ≤ �) as follows (see Fig. 1):� For every two consecutive edges (u, v) and (v, x) of C j such that (u, v) is spoiled,

replace (u, v) by the two edges (u, x) and (x, v). (Comment: We call (u, x) a bypass
edge of C j , call the 2-cycle between v and x a dangling 2-cycle of C j , and call v the
articulation vertex of the dangling 2-cycle. We also say that the bypass edge (u, x)
and the dangling 2-cycle between v and x correspond to each other.)

We call the above modification of C j the bypass operation on C j . Note that applying
the bypass operation on C j does not decrease the weight of C j because of the triangle
inequality. Moreover, the edges of C j not contained in dangling 2-cycles of C j form a
cycle. We call it the primary cycle of C j . Note that C j may have neither bypass edges
nor dangling 2-cycles (this happens when C j has no spoiled edges).

Springer

J Comb Optim (2007) 13:321–336 325

Fig. 1 (1) A 3+-cycle C j (formed by the one-way edges) in C1 and the open chains (each shown by a
two-way edge) each of which has a parallel edge in C j . (2) The modified C j (formed by the one-way edges),
where bypass edges are dashed and dangling 2-cycles are painted

u u

v v

1 2

12

Fig. 2 A critical pair formed by
edges (u1, u2) and (v1, v2)

Let H be the union of the modified C1, . . . , C�, i.e., let H be the directed graph with
V (H) = ⋃

1≤ j≤� V (C j) and E(H) = ⋃
1≤ j≤� E(C j). We next show that E(H) can be

partitioned into three subsets each of which can be added to G2 without destroying
its 2-path-colorability. Before proceeding to the details of the partitioning, we need
several definitions and lemmas.

Two edges (u1, u2) and (v1, v2) of H form a critical pair if u1 and v2 are the
endpoints of some open chain in G2 and u2 and v1 are the endpoints of another
open chain in G2 (see Fig. 2). Note that adding both (u1, u2) and (v1, v2) to G2

destroys its 2-path-colorability. An edge of H is critical if it together with another
edge of H forms a critical pair. Note that for each critical edge e of H , there is a
unique edge e′ in H such that e and e′ form a critical pair. We call e′ the rival of
e. An edge of H is safe if it is not critical. A bypass edge of H is a bypass edge
of a C j with 1 ≤ j ≤ �. Similarly, a dangling 2-cycle of H is a dangling 2-cycle
of a C j with 1 ≤ j ≤ �. A dangling edge of H is an edge in a dangling 2-cycle
of H .

Lemma 3.3. No bypass edge of H is critical.

Proof: Suppose that e = (u1, u2) is a bypass edge of a C j with 1 ≤ j ≤ �. Then, u2

is the articulation vertex of a dangling 2-cycle C of C j . Let u3 be the vertex of C
other than u2. Then, there is an open chain P in G2 whose endpoints are u1 and u3.
Since e leaves u1 and e′ = (u2, u3) is the unique edge in C j entering u3, e′ has to be
the rival of e whenever e is critical. However, by the definition of criticalness, each
critical edge and its rival should not be adjacent. So, e cannot be critical. �

Springer

326 J Comb Optim (2007) 13:321–336

Lemma 3.4. Fix a j with 1 ≤ j ≤ �. Suppose that an edge e of C j is a critical dangling
edge of H. Let C be the dangling 2-cycle of C j containing e. Let e′ be the rival of e.
Then, the following statements hold:

1. e′ is also an edge of C j .
2. If e′ is also a dangling edge of H, then the primary cycle of C j consists of the two

bypass edges corresponding to C and C ′, where C ′ is the dangling 2-cycle of C j

containing e′.
3. If e′ is not a dangling edge of H, then e′ is the edge in the primary cycle of C j

whose head is the tail of the bypass edge corresponding to C.

Proof: Let u1 be the articulation vertex of C , and let u2 be the other vertex of C . Then,
there is an open chain P one of whose endpoints is u2. Let u3 be the other endpoint
of P . We now prove the statements separately as follows.

Statement 1. Note that u3 must be a vertex of C j (indeed, (u3, u1) is a bypass edge
of C j). By the definition of criticalness, the rival of e is an edge incident to u3.
However, every edge of H incident to u3 is in C j . Thus, the rival of e must be in C j

whenever e is critical.
Statement 2. Suppose that e′ is also a dangling edge of H . Then, since e′ is incident to

u3 (as observed in the proof of Statement 1) and u3 appears in the primary cycle of
C j , u3 must be the articulation vertex of the dangling 2-cycle C ′ containing e′. Let
u4 be the vertex of C ′ other than u3. Then, by the definition of criticalness, there is an
open chain in G2 whose endpoints are u4 and u1. Now, (u1, u3) has to be the bypass
edge corresponding to C ′. Recall that (u3, u1) is the bypass edge corresponding to
C . This completes the proof of Statement 2.

Statement 3. Suppose that e′ is not a dangling edge of H . Recall that e′ is incident to
u3 and (u3, u1) is a bypass edge of C j . By Lemma 3.3, e′ cannot be (u3, u1). So, e′

has to be the edge in the primary cycle of C j entering u3. �

Lemma 3.5. Fix a j with 1 ≤ j ≤ � such that the primary cycle C of C j contains
no bypass edge. Let u1, . . . , uk be a cyclic ordering of the vertices in C. Then, the
following hold:

1. Suppose that there is a chain P in G2 whose endpoints appear in C but not con-
secutively (i.e., its endpoints are not connected by an edge of C). Then, at least one
edge of C is safe.

2. Suppose that every edge of C is critical. Then, there is a unique C j ′ with j ′ ∈
{1, . . . , �} − { j} such that (1) the primary cycle C ′ of C j ′ has exactly k vertices
and (2) the vertices of C ′ have a cyclic ordering v1, . . . , vk such that for every
1 ≤ i ≤ k, ui and vk−i+1 are the endpoints of some chain in G2 (see Fig 4).

Proof: We prove the two statements separately as follows.

Statement 1. By the existence of P , we can find two vertices ui and uh in C with i < h
such that (1) neither (ui , uh) nor (uh, ui) is an edge of C , (2) there is a chain in G2

whose endpoints are ui and uh , and (3) there is no chain in G2 whose endpoints
both are in the set {ui+1, ui+2, . . . , uh−1}. Obviously, (ui , ui+1) is safe.

Springer

J Comb Optim (2007) 13:321–336 327

Statement 2. Each vertex ui of C is an endpoint of a chain Pi in G2 or else the two
edges incident to ui would be safe. Moreover, P1 	= P2, P2 	= P3, . . . , Pk−1 	= Pk ,
and Pk 	= P1 because we have applied the bypass operation on C j . Furthermore, by
Statement 1, there do not exist i and h with 1 ≤ i 	= h ≤ k with Pi = Ph . Therefore,
for every i ∈ {1, . . . , k}, the endpoint of Pi other than ui is not in C .

For each i ∈ {1, . . . , k}, let vk−i+1 be the endpoint of Pi other than ui . Obviously,
for each i ∈ {1, . . . , k − 1}, (vk−i , vk−i+1) has to be an edge of H because (ui , ui+1) is
a critical edge. Similarly, (vk, v1) has to be an edge of H because (uk, u1) is a critical
edge. So, v1, . . . , vk is a cyclic ordering of the vertices of some cycle C ′ in H . Let j ′

be the integer in {1, . . . , �} such that C ′ is a cycle in C j ′ .
It remains to show that C ′ is not a dangling 2-cycle of C j ′ . For a contradiction,

assume that C ′ is a dangling 2-cycle of C j ′ . Then, by Statement 1 in Lemma 3.4,
j = j ′ and C has to be the primary cycle of C j ′ . Moreover, since C ′ is a 2-cycle, C
is a 2-cycle, too. But then, {u1, u2} ∩ {v1, v2} 	= ∅, because the articulation vertex of
C ′ has to be a vertex of C . This contradicts the fact that for each i ∈ {1, . . . , k}, the
endpoint of Pi other than ui is not in C (as observed above). �

Now we are ready to describe how to partition E(H) into three subsets each of
which can be added to G2 without destroying its 2-path-colorability. We use the three
colors 0, 1, and 2 to represent the three subsets, and want to assign each edge of E(H)
a color in {0, 1, 2} so that the following conditions are satisfied:

(C1) For every critical edge e of H , e and its rival receive different colors.
(C2) For every dangling 2-cycle C of H , the two edges in C receive the same color.
(C3) If two adjacent edges of H receive the same color, then they form a 2-cycle of

H .

To compute a coloring of the edges of H satisfying the above three conditions, we
process C1, . . . , C� in an arbitrary order. While processing C j (1 ≤ j ≤ �), we color
the edges of C j by distinguishing four cases as follows (where C denotes the primary
cycle of C j):

Case 1: C is a 2-cycle. Then, C contains either one or two bypass edges. In the former
(respectively, latter) case, we color the edges of C j as shown in Fig. 3(2) (respec-
tively, Fig. 3(1)). Note that the colored edges satisfy Conditions (C1) through (C3)
above.

Fig. 3 Coloring C j when its primary cycle is a 2-cycle

Springer

328 J Comb Optim (2007) 13:321–336

Fig. 4 Coloring C j and C j ′
when all their edges are critical

Case 2: Every edge of C is critical. Then, by Lemma 3.3, C contains no bypass edge.
Let j ′ be the integer in {1, . . . , �} − { j} such that C j ′ satisfies the two conditions
(1) and (2) in Statement 2 in Lemma 3.5. Then, by Lemma 3.4 and Statement 2 in
Lemma 3.5, neither C j nor C j ′ has a bypass edge or a dangling 2-cycle. So, the
primary cycle of C j (respectively, C j ′) is C j (respectively, C j ′) itself. We color the
edges of C j and C j ′ simultaneously as follows (see Fig. 4). First, we choose one
edge e of C j , color e with 2, and color the rival of e with 0. Note that the uncolored
edges of C j form a path Q. Starting at one end of Q, we then color the edges of Q
alternatingly with colors 0 and 1. Finally, for each uncolored edge e′ of C j ′ , we color
it with the color h ∈ {1, 2} such that the rival of e′ has been colored with h − 1.
Note that the colored edges satisfy Conditions (C1) through (C3) above.

Case 3: Neither Case 1 nor Case 2 occurs and no edge of C j is a critical dangling
edge of H. Then, by Lemma 3.3 and Statement 1 in Lemma 3.5, C contains at least
one safe edge. Let e1, . . . , ek be the edges of C , and assume that they appear in
C cyclically in this order. Without loss of generality, we may assume that e1 is a
safe edge. We color e1 with 0, and then color the edges e2, . . . , ek in this order as
follows. Suppose that we have just colored ei with a color hi ∈ {0, 1, 2} and we
want to color ei+1 next, where 1 ≤ i ≤ k − 1. If ei+1 is a critical edge and its rival
has been colored with (hi + 1) mod 3, then we color ei+1 with (hi + 2) mod 3;
otherwise, we color ei+1 with (hi + 1) mod 3. If ek is colored 0 at the end, then we
change the color of e1 from 0 to the color in {1, 2} that is not the color of e2. Now,
we can further color each dangling 2-cycle C ′ of C j with the color in {0, 1, 2} that
has not been used to color the two edges of C incident to the articulation vertex of
C ′. Note that the colored edges satisfy Conditions (C1) through (C3) above.

Case 4: Neither Case 1 nor Case 2 occurs and some edge of C j is a critical dangling
edge of H. For each dangling edge e of H with e ∈ E(C j), we define the partner
of e to be the edge e′ of C leaving the articulation vertex u of the dangling 2-cycle
containing e, and define the mate of e to be the bypass edge e′′ of C j entering u (see
Fig. 6). We say that an edge e of C j is bad if e is a critical dangling edge of H and
its partner is the rival of another critical dangling edge of H . If C j has a bad edge
e, then Statement 3 in Lemma 3.4 ensures that C j is as shown in Fig. 5 and can be
colored as shown there without violating Conditions (C1) through (C3) above.

So, suppose that C j has no bad edge. We need one more definition (see Fig. 6).
Consider a critical dangling edge e of H with e ∈ E(C j). Let e′ and e′′ be the partner
and the rival of e, respectively. Let e′′′ be the edge of C entering the tail of e′′. Let
P be the open chain in G2 whose endpoints are the tails of e′ and e′′. We call e′′′ the
opponent of e′. Note that e′ 	= e′′′ because the endpoints of P are the tail of e′ and the

Springer

J Comb Optim (2007) 13:321–336 329

Fig. 5 C j (formed by the
one-way edges) and its coloring
when it has a bad edge e

Fig. 6 The rival, the mate, and
the partner of a critical dangling
edge e of H together with the
opponent of the partner of e

head of e′′′. Moreover, if e′ is a critical edge of H , then the rival of e′ has to be e′′′

because e is not bad and P exists. In other words, whenever an edge of C has both its
rival and its opponent, they must be the same. Similarly, if e′′′ is a critical edge of H ,
then its rival has to be e′. Obviously, neither e′ nor e′′′ can be the rival or the mate of
a critical dangling edge of H (because C j has no bad edge).

Now, let e1, . . . , eq be the edges of C none of which is the rival or the mate of a
critical dangling edge of C j . We may assume that e1, . . . , eq appear in C cyclically in
this order. Without loss of generality, we may further assume that e1 is the partner of
a critical dangling edge of H . Then, we color e1 with 0, and further color e2, . . . , eq in
this order as follows. Suppose that we have just colored ei with a color hi ∈ {0, 1, 2}
and we want to color ei+1 next, where 1 ≤ i ≤ q − 1. If ei+1 is a critical edge of H
and its rival or opponent has been colored with (hi + 1) mod 3, then we color ei+1

with (hi + 2) mod 3; otherwise, we color ei+1 with (hi + 1) mod 3. Note that the
colored edges satisfy Conditions (C1) through (C3) above, because the head of eq is
not the tail of e1.

We next show how to color the rival and the mate of each critical dangling edge
of C j . For each critical dangling edge e of C j , since its partner e′ and the opponent
of e′ have been colored, we can color the rival of e with the color of e′ and color the
mate of e with a color in {0, 1, 2} that is not the color of e′. Note that the colored
edges satisfy Conditions (C1) through (C3) above, because e′ and its opponent have
different colors.

Finally, for each dangling 2-cycle D of C j , we color the two edges of D with the
color in {0, 1, 2} that has not been used to color an edge incident to the articulation
vertex of D. Note that the colored edges satisfy Conditions (C1) through (C3) above,
because the rival of each critical dangling edge e of H has the same color as the partner
of e does. This completes the coloring of C j (and hence H).

We next want to show how to use the coloring to find a large-weight tour in G. For
each i ∈ {0, 1, 2}, let Ei be the edges of H with color i . Without loss of generality, we
may assume that w(E0) ≥ max{w(E1), w(E2)}. Then, w(E0) ≥ 1

3 W1,3 (see the begin-
ning of this subsection for W1,3). Consider the undirected graph U = (V (G), F1 ∪ F2),
where F1 consists of all edges {v1, v2} such that (v1, v2) or (v2, v1) is an edge in E0, and
F2 consists of all edges {v3, v4} such that v3 and v4 are the endpoints of an open chain

Springer

330 J Comb Optim (2007) 13:321–336

in G2. We further assign a weight to each edge of F1 as follows. We first initialize the
weight of each edge of F1 to be 0. For each edge (v1, v2) ∈ E0, we then add the weight
of edge (v1, v2) to the weight of edge {v1, v2}. Note that for each i ∈ {1, 2}, each
connected component of the undirected graph (V (G), Fi) is a single vertex or a single
edge because of Condition (C3) above. So, each connected component of U is a path
or a cycle. Moreover, each cycle of U contains at least three edges of F1 because of
Condition (C1) above. For eacy cycle D of U , we mark exactly one edge {v1, v2} ∈ F1

in D whose weight is the smallest among all edges {v1, v2} ∈ F1 in D. Let E3 be the
set of all edges (v1, v2) ∈ E0 such that {v1, v2} is marked. Then, w(E3) ≤ 1

3w(E0).
Consider the directed graph G ′

2 obtained from G2 by adding the edges of E0 − E3.
Obviously, w(G ′

2) ≥ (W1,2 + W2,2) + 1
9 W1,3. Moreover, G ′

2 is a collection of partial
chains and hence is 2-path-colorable. So, we can partition the edges of G ′

2 into two
subsets E ′

1 and E ′
2 such that both graphs (V (G), E ′

1) and (V (G), E ′
2) are subtours of

G. The heavier one among the two subtours can be completed to a tour of G of weight
at least 1

2 (W1,2 + W2,2) + 1
18 W1,3 ≥ W2 + 1

9 W3. Combining this with Lemma 3.2, we
now have:

Theorem 3.6. There is a polynomial-time approximation algorithm for
AsymMaxTSP achieving an approximation ratio of 27

35 .

4 New algorithm for metric SymMaxTSP

Throughout this section, fix an instance (G, w) of metric SymMaxTSP, where G is a
complete undirected graph with n vertices and w is a function mapping each edge e of
G to a nonnegative real number w(e). Because of the triangle inequality, the following
fact holds (see Chen et al. (2005) for a proof):

Fact 4.1 Suppose that P1, . . . , Pt are vertex-disjoint paths in G each containing at
least one edge. For each 1 ≤ i ≤ t , let ui and vi be the endpoints of Pi . Then, we can
use some edges of G to connect P1, . . . , Pt into a single cycle C in linear time such
that w(C) ≥ ∑t

i=1 w(Pi) + 1
2

∑t
i=1 w({ui , vi }).

Like Hassin and Rubinstein’s algorithm (H&R2-algorithm) for the problem, our
algorithm computes two tours T1 and T2 of G and outputs the one with the larger
weight. The first two steps of our algorithm are the same as those of H&R2-algorithm:

1. Compute a maximum-weight cycle cover C. Let C1, . . . , Cr be the cycles in G.
2. Compute a maximum-weight matching M in G.

Lemma 4.2 (Chen et al., 2005). In linear time, we can compute two disjoint subsets
A1 and A2 of

⋃
1≤i≤r E(Ci) − M satisfying the following conditions:

(a) For each j ∈ {1, 2}, each connected component of the graph (V (G), M ∪ A j) is
a path of length at least 1.

(b) For each j ∈ {1, 2} and each i ∈ {1, . . . , r}, |A j ∩ E(Ci)| = 1.

Springer

J Comb Optim (2007) 13:321–336 331

For a technical reason, we will allow our algorithm to use only 1 random bit (so
we can easily derandomize it, although we omit the details). The third through the
seventh steps of our algorithm are as follows:

3. Compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci) − M satisfying the two
conditions in Lemma 4.2.

4. Choose A from A1 and A2 uniformly at random.
5. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the

edges in A from C; and then connect these paths into a single (Hamiltonian) cycle
T1 as described in Fact 4.

6. Let S = {v ∈ V (G) | the degree of v in the graph (V, M ∪ A) is 1} and F =
{{u, v} ∈ E(G) | {u, v} ⊆ S}. Let H be the complete graph (S, F). Let � = 1

2 |S|.
(Comment: |S| is even, because of Condition (a) in Lemma 4.2.)

7. Let M ′ be the set of all edges {u, v} ∈ F such that some connected component of
the graph (V, M ∪ A) contains both u and v. (Comment: M ′ is a perfect matching
of H because of Condition (a) in Lemma 4.2.)

Lemma 4.3 (Chen et al., 2005). Let α = w(A1 ∪ A2)/w(C). For a random variable
X, let E[X] denote its expected value. Then, E[w(F)] ≥ 1

4 (1 − α)(2� − 1)w(C).

The next lemma shows that there cannot exist matchings of large weight in an
edge-weighted graph where the weights satisfy the triangle inequality:

Lemma 4.4. For every perfect matching N of H, w(N) ≤ w(F)/�.

Proof: Let the edges of N be {u1, u2}, {u3, u4}, . . . , {u2�−1, u2�}.

Case 1: � is odd. For each odd number i with 1 ≤ i ≤ �, we assign the vertices ui+2,
ui+3, . . . , u�+i of H to the edge {ui , ui+1} of N . For each even number j with
1 ≤ j ≤ �, we assign the vertices u1, u2, . . . , u j , u�+ j+2, u�+ j+3, . . . , u2� of H to
the edge {u�+ j , u�+ j+1} of N . Note that each edge in N is assigned exactly � − 1
vertices of H . For each edge ei = {ui , ui+1} ∈ N and each vertex uh assigned to ei ,
we then assign the two edges {ui , uh} and {ui+1, uh} of H to ei . Since w({ui , uh}) +
w({ui+1, uh}) ≥ w(ei) by the triangle inequality, the total weight of edges assigned
to each edge ei ∈ N is at least (� − 1)w(ei). Obviously, no edge of N is assigned
to itself or another edge of N . Moreover, a simple but crucial observation is that no
edge of H is assigned to two or more edges of N . Thus, w(F − N) ≥ (� − 1)w(N).
Hence, w(N) ≤ w(F)/�.

Case 2: � is even. Let N1 = {{u1, u2}, {u3, u4}, . . . , {un−1, un}} and N2 = N − N1.
We assume that w(N1) ≥ w(N2); the other case is similar. For each odd number
i with 1 ≤ i ≤ � − 1, we assign the vertices ui+2, ui+3, . . . , u�+i+1 of H to the
edge {ui , ui+1} of N , and assign the vertices u1, u2, . . . , ui−1, u�+i+2, u�+i+3, . . . ,
u2� of H to the edge {u�+i , u�+i+1} of N . Note that each edge in N1 (respectively,
N2) is assigned exactly � (respectively, � − 2) vertices of H . For each edge ei =
{ui , ui+1} ∈ N and each vertex uh assigned to ei , we then assign the two edges
{ui , uh} and {ui+1, uh} of H to ei . Since w({ui , uh}) + w({ui+1, uh}) ≥ w(ei) by
the triangle inequality, the total weight of edges assigned to each edge ei ∈ N1

Springer

332 J Comb Optim (2007) 13:321–336

(respectively, ei ∈ N2) is at least �w(ei) (respectively, (� − 2)w(ei)). Obviously, no
edge of N is assigned to itself or another edge of N . Moreover, a simple but crucial
observation is that no edge of H is assigned to two or more edges of N . Thus,
w(F − N) ≥ �w(N1) + (� − 2)w(N2) ≥ (� − 1)w(N). Hence, w(N) ≤ w(F)/�.

�

The following is our main lemma and will be proved in Section 4.1:

Lemma 4.5. We can partition F − M ′ into 2� − 2 perfect matchings M1, . . . , M2�−2

of H in linear time satisfying the following condition:� For every natural number q, there are at most q2 − q matchings Mi with 1 ≤ i ≤
2� − 2 such that the graph (S, M ′ ∪ Mi) has a cycle of length at most 2q.

Now, the eighth through the thirteenth steps of our algorithm are as follows:

8. Partition F − M ′ into 2� − 2 perfect matchings M1, . . . , M2�−2 of H in linear time
satisfying the condition in Lemma 4.5.

9. Let q = 3
√

��. Find a matching Mi with 1 ≤ i ≤ 2� − 2 satisfying the following
two conditions:

(a) The graph (S, M ′ ∪ Mi) has no cycle of length at most 2q .
(b) w(Mi) ≥ w(M j) for all matchings M j with 1 ≤ j ≤ 2� − 2 such that the graph

(S, M ′ ∪ M j) has no cycle of length at most 2q.

10. Construct the graph G ′
i = (V (G), M ∪ A ∪ Mi). (Comment: Mi ∩ (M ∪ A) = ∅

and each connected component of G ′
i is either a path, or a cycle of length 2q + 1

or more.)
11. For each cycle D in G ′

i , mark exactly one edge e ∈ Mi ∩ E(D) such that w(e) ≤
w(e′) for all e′ ∈ Mi ∩ E(D).

12. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the
marked edges from G ′

i ; and then connect these paths into a single (Hamiltonian)
cycle T2 as described in Fact 4.

13. If w(T1) ≥ w(T2), output T1; otherwise, output T2.

Theorem 4.6. There is an O(n3)-time approximation algorithm for metric
SymMaxTSP achieving an approximation ratio of 7

8 − O(1/ 3
√

n).

Proof: Let OPT be the maximum weight of a tour in G. It suffices to prove
that max{E[w(T1)], E[w(T2)]} ≥ (7

8 − O(1/ 3
√

n))OPT . By Fact 4.1, E[w(T1)] ≥ (1 −
1
2α + 1

4α)w(C) ≥ (1 − 1
4α)OPT .

We claim that |S| ≥ 1
3 n. To see this, consider the graphs G M = (V (G), M) and

G A = (V (G), M ∪ A). Because the length of each cycle in C is at least 3, |A| ≤ 1
3 n

by Condition (b) in Lemma 4.2. Moreover, since M is a matching of G, the degree of
each vertex in G M is 0 or 1. Furthermore, G A is obtained by adding the edges of A to
G M . Since adding one edge of A to G M increases the degrees of at most two vertices,
there exist at least n − 2|A| ≥ 1

3 n vertices of degree 0 or 1 in G A. So, by Condition (a)

Springer

J Comb Optim (2007) 13:321–336 333

in Lemma 4.2, there are at least 1
3 n vertices of degree 1 in G A. This establishes that

|S| ≥ 1
3 n. Hence, � ≥ 1

6 n.
Now, let x be the number of matchings M j with 1 ≤ j ≤ 2� − 2 such that the

graph (S, M ′ ∪ Mi) has a cycle of length at most 2q. Then, by Lemmas 4.4 and 4.5,
the weight of the matching Mi found in Step 4 is at least (1 − x+1

�
) · w(F) · 1

2�−2−x . So,
w(Mi) ≥ 1

�
· (1 − �−1

2�−2−q2+q) · w(F) because x ≤ q2 − q . Let Ni be the set of edges

of Mi marked in Step 11. Then, w(Mi − Ni) ≥ q
q+1 · �−q2+q−1

�(2�−2−q2+q) · w(F). Hence,

by Lemma 4.3 and the inequality � ≥ 1
6 n, we have E[w(Mi − Ni)] ≥ 1

4 (1 − α)(1 −
O(1/ 3

√
n))w(C).

Obviously, E[w(T2)] ≥ E[w(M ∪ A)] + E[w(Mi − Ni)] ≥ (1
2 − 1

2n)OPT +
1
2αw(C) + E[w(Mi − Ni)]. Hence, by the last inequality in the previous para-
graph, E[w(T2)] ≥ (3

4 + 1
4α − O(1/ 3

√
n))OPT . Combining this with the in-

equality E[w(T1)] ≥ (1 − 1
4α)OPT , we finally have E[max{w(T1), w(T2)}] ≥

(7
8 − O(1/ 3

√
n))OPT .

The running time of the algorithm is dominated by the O(n3) time needed for
computing a maximum-weight cycle cover and a maximum-weight matching. �

As observed in Chen et al. (2005), the subsets A1 and A2 in Lemma 4.2 can be
computed in O(log3 n) time using a linear number of processors. So, our algorithm
for metric Max TSP is parallelizable because maximum-weight cycle covers and
maximum-weight matchings can be computed by fast parallel algorithms (Karp et al.,
1986; Mulmuley et al., 1987). We omit the details here.

4.1 Partitioning into perfect matchings

Let the vertices of H be ∞, 0, 1, . . . , 2� − 2, and let the edges of M ′ be

{∞, 0}, {1, 2� − 2}, {2, 2� − 3}, . . . , {� − 1, �}.

Then, a folklore partitioning of F − M ′ into 2� − 2 perfect matchings M1, . . . , M2�−2

of H is as follows:

M1 : {∞, 1}, {2, 0}, {3, 2� − 2}, . . . , {�, � + 1}
M2 : {∞, 2}, {3, 1}, {4, 0}, . . . , {� + 1, � + 2}
...

M2�−2 : {∞, 2� − 2}, {0, 2� − 3}, {1, 2� − 4}, . . . , {� − 2, � − 1}.

For each integer j 	∈ {0, 1, . . . , 2� − 2}, we identify j with the vertex h of H such
that h ≡ j (mod 2� − 1). Then, for each integer i ∈ {0, 1, . . . , 2� − 2}, Mi consists of
edge {∞, i} and all edges { j, − j + 2i} with j ∈ {0, 1, . . . , 2� − 2} − {i}. Obviously,
for each i ∈ {1, . . . , 2� − 2}, the graph Hi = (S, Mi ∪ M ′) is a collection of vertex-
disjoint cycles; we call the cycle containing vertex ∞ the main cycle of Hi and denote

Springer

334 J Comb Optim (2007) 13:321–336

it by Di . For two natural numbers x and y, let gcd(x, y) denote the greatest common
divisor of x and y, and let lcm(x, y) denote the least common multiple of x and y.

Lemma 4.7. For each i ∈ {1, . . . , 2� − 2}, the length of Di is (2�−1
gcd(2�−1,i) + 1).

Proof: Recall that for each integer i ∈ {0, 1, . . . , 2� − 2}, Mi consists of edge {∞, i}
and all edges { j, − j + 2i} with j ∈ {0, 1, . . . , 2� − 2} − {i}. Fix an i ∈ {1, . . . , 2� −
2}. Let 2h be the length of Di . Suppose that we traverse Di by starting at vertex ∞,
then visiting i , and proceeding along the cycle until reaching vertex 0. This traversal
should give the following ordering of the vertices of Di :

∞, i, −i, 3i, −3i, 5i, . . . ,−(2h − 3)i, (2h − 1)i

where (2h − 1)i ≡ 0 (mod 2� − 1) because vertex 0 is the last one in the traversal.
Note that for every odd x ∈ {1, 2, . . . , 2h − 1}, xi is a vertex of Di .

Since (2h − 1)i ≡ 0 (mod 2� − 1), (2h − 1)i is a common multiple of integers
2� − 1 and i , and hence there exists an integer α ≥ 1 such that

(2h − 1)i = α lcm(2� − 1, i) =
(

α · 2� − 1

gcd(2� − 1, i)

)
i. (4.1)

The last equality follows from the fact that (2� − 1) i = gcd(2� − 1, i) lcm(2� − 1, i).
By Eq. (4.1), 2h − 1 = α · 2�−1

gcd(2�−1,i) . Therefore, α is an odd integer because 2�−1
gcd(2�−1,i)

is an integer and 2h − 1 is odd.
We claim that α = 1. For a contradiction, assume that α is an odd integer greater

than 1. Then, by Eq. (4.1), (2h − 1)i − (α − 1) lcm(2� − 1, i) = lcm(2� − 1, i) and
hence

2h − 1 − (α − 1) · 2� − 1

gcd(2� − 1, i)
= lcm(2� − 1, i)

i
. (4.2)

Since α − 1 is a possitive even integer, the left side of Eq. (4.2) is an odd integer less
than 2h − 1. Moreover, recall that 2h − 1 = α · 2�−1

gcd(2�−1,i) . So, the left side of Eq. (4.2)

is a positive odd integer less than 2h − 1. Hence, (2h − 1 − (α − 1) · 2�−1
gcd(2�−1,i)) i is

an integer in the subsequence i , 3i , 5i , . . . , (2h − 3)i , and is a multiple of 2� − 1 by
Eq. (4.2). However, this implies that vertex 0 of Di is in the subsequence i , 3i , 5i , . . . ,
(2h − 3)i , a contradiction. Thus, the claim holds.

By the claim, 2h − 1 = 2�−1
gcd(2�−1,i) and so the length of Di is 2h = 2�−1

gcd(2�−1,i) + 1.�

Corollary 4.8. If gcd(2� − 1, i) = 1, then Di is a tour of Hi .

We next show that if Di is not a tour of Hi , then Di is the shortest cycle in Hi .

Lemma 4.9. Fix an i such that 1 ≤ i ≤ 2� − 2 and gcd(2� − 1, i) 	= 1. Then, each
cycle of Hi other than Di is of length 2(2�−1)

gcd(2�−1,i) .

Proof: Fix a cycle D of Hi other than Di . Let 2h be the length of D. Consider an
arbitrary vertex j of D. As in the proof of Lemma 4.7, a traversal of D started at

Springer

J Comb Optim (2007) 13:321–336 335

vertex j and ended at vertex − j produces the following ordering of the vertices of D:

j, − j + 2i, j − 2i, − j + 4i, j − 4i, − j + 6i, . . . , j − 2(h − 1)i, − j + 2hi

where − j + 2hi ≡ − j (mod 2� − 1). Note that for every even x ∈ {2, 3, . . . , 2h},
− j + xi is a vertex of D.

Since 2hi ≡ 0 (mod 2� − 1), 2hi is a common multiple of integers 2� − 1 and i ,
hence there exists an integer α ≥ 1 such that

2hi = α lcm(2� − 1, i) =
(

α · 2� − 1

gcd(2� − 1, i)

)
i. (4.3)

By Eq. (4.3), 2h = α · 2�−1
gcd(2�−1,i) . Therefore, α is an even integer.

We claim that α = 2. For a contradiction, assume that α is an even number greater
than 2. Then, by Eq. (4.3), 2hi − (α − 2)lcm(2� − 1, i) = 2 lcm(2� − 1, i) and hence

2h − (α − 2) · 2� − 1

gcd(2� − 1, i)
= 2 lcm(2� − 1, i)

i
. (4.4)

Since α − 2 is a possitive even integer, the left side of Eq. (4.4) is an even integer
less than 2h. Moreover, recall that 2h = α · 2�−1

gcd(2�−1,i) . So, the left side of Eq. (4.4) is

a positive even integer less than 2h. Hence, − j + (2h − (α − 2) · 2�−1
gcd(2�−1,i)) i is an

integer in the subsequence − j + 2i , − j + 4i , . . . , − j + 2(h − 1)i , and is congruent
to − j modulo 2� − 1 by Eq. (4.4). However, this implies that vertex − j of Di is in
the subsequence − j + 2i , − j + 4i , . . . , − j + 2(h − 1)i , a contradiction. Thus, the
claim holds.

By the claim, 2h = 2(2�−1)
gcd(2�−1,i) and so the length of Di is 2h = 2(2�−1)

gcd(2�−1,i)
. �

Corollary 4.10. For every i ∈ {1, 2, . . . , 2� − 2}, Di is the shortest cycle in Hi .

Proof: Fix an i ∈ {1, 2, . . . , 2� − 2}. If gcd(2� − 1, i) = 1, then Di is the unique
cycle (and hence the shortest cycle) in Hi by Corollary 4.8. Otherwise, by Lemmas 4.7
and 4.9, Di is shorter than the other cycles in Hi . �

Now, we are ready to prove Lemma 4.5:

Proof of Lemma 4.5: Fix a natural number q . By Corollary 4.10, it suffices to show
that there are at most q2 − q integers i ∈ {1, 2, . . . , 2� − 2} such that Di is of length
at most 2q.

Consider a natural number p ≤ q. For each i ∈ {1, 2, . . . , 2� − 2}, if the length of
Di is exactly 2p, then by Lemma 4.7, 2�−1

gcd(2�−1,i) + 1 = 2p and so

gcd(2� − 1, i) = 2� − 1

2p − 1
.

Springer

336 J Comb Optim (2007) 13:321–336

Since each integer i satisfying the above equality has to be a multiple of 2�−1
2p−1 , there

can be at most 2p − 2 such integers in {1, 2, . . . , 2� − 2}.
Hence, there can be at most

∑q
p=1(2p − 2) = q2 − q integers i ∈ {1, 2, . . . , 2� −

2} such that Hi has a cycle of length at most 2q. �

Acknowledgments Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Edu-
cation, Science, Sports and Culture of Japan, under Grant No. 17500012.

References

Barvinok AI, Johnson DS, Woeginger GJ, Woodroofe R (1998) Finding maximum length tours under
polyhedral norms. Proceedings of the Sixth International Conference on Integer Programming and
Combinatorial Optimization (IPCO), Lecture Notes in Computer Science 1412:195–201

Chen ZZ, Wang L (2005) An improved randomized approximation algorithm for Max TSP. J Comb Optim
9:401–432

Chen ZZ, Okamoto Y, Wang L (2005) Improved deterministic approximation algorithms for Max TSP. Inf
Process Lett 95:333–342

Hassin R, Rubinstein S (2002) A 7/8-Approximation approximations for metric Max TSP. Inf Process Lett
81:247–251

Kaplan H, Lewenstein M, Shafrir N, Sviridenko M (2003) Approximation algorithms for asymmetric TSP
by decomposing directed regular multigraphs. Proceeding of the 44th Annual IEEE Symposium on
Foundations Computer Science pp 56–75

Karp RM, Upfal E, Wigderson A (1986) Constructing a perfect matching is in random NC. Combinatorica
6:35–48

Kostochka AV, Serdyukov AI (1985) Polynomial algorithms with the estimates 3
4 and 5

6 for the traveling
salesman problem of maximum (in Russian). Upravlyaemye Sistemy 26:55–59

Mulmuley K, Vazirani UV, Vazirani VV (1987) Matching is as easy as matrix inversion. Combinatorica
7:105–113

Springer

