
J Comb Optim (2007) 13:123–135

DOI 10.1007/s10878-006-9016-6

Some inverse min-max network problems under weighted
l1 and l∞ norms with bound constraints on changes

Xiaoguang Yang · Jianzhong Zhang

Published online: 20 October 2006
C© Springer Science + Business Media, LLC 2006

Abstract We consider some inverse min-max (or max-min) network problems. Such an

inverse problem is to modify the weights with bound constraints so that a given feasible

solution becomes an optimal solution of a min-max (or max-min) network problem, and

the deviation of the weights, measured by the weighted l1 norm or weighted l∞ norm, is

minimum. In this paper, we present strongly polynomial time algorithms to solve the inverse

min-max spanning tree problem and the inverse maximum capacity path problem.

Keywords Inverse min-max network problem . Weighted l1 norm . Weighted l∞ norm .

Bound constraints . Polynomial time algorithms

1 Introduction

The inverse optimization problems have attracted increasing interest in recent years. The

research was motivated by its background in traffic planning, and people have found more

and more applications, such as high speed communication, computerized tomography,

conjoint analysis, behavioral decision making, geophysical science, performance evaluation,

etc. (For example, see (Ahuja and Orlin, 2001; Heuburger, 2004; Orlin, 2003).) We believe

that the research on inverse optimization problems has a great potential both in theory and

in real applications.

Generally speaking, an inverse optimization problem is to find a minimal modification cost

of changing parameter values of an optimization problem such that some given solutions be-

come optimum under the new parameter values. The most commonly considered parameters

are cost coefficients in the original optimization problems. Among the published literatures

X. Yang (�)

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

e-mail: xgyang@iss.ac.cn

J. Zhang

Department of System Engineering and Engineering Management,

The Chinese University of Hong Kong, Hong Kong, China

Springer

124 J Comb Optim (2007) 13:123–135

on inverse optimization problems, most of original problems have min-sum (or max-sum)

format, i.e., the objective functions are of the format min
∑

i∈I ci xi (or max
∑

i∈I ci xi), see

for example (Ahmed and Guan, 2005; Ahuja and Orlin, 2000, 2001; Burkard et al., 2004;

Burton and Toint, 1992, 1994; Cai and Yang, 1995; Hochbaum, 2003; Iyengar and Kang,

2005; Sakkalingam et al., 1999; Xu and Zhang, 1995; Yang and Zhang, 1999; Zhang and Liu,

1999; Zhang and Ma, 1996; Zhang et al., 1997) ; or of the format min
∑

i∈I ci Hi (xi) where

Hi (x) is a discrete function, see for example (He et al., 2005; Liu and He, 2006). However,

when the optimization problems have min-max (or max-min) format, i.e., the objective func-

tions are of the format min max{ci xi | i ∈ I } (or max min{ci xi | i ∈ I }), there are only very

few results on the corresponding inverse optimization problems. Among these results, Cai

et al. (1999) proved that the inverse center location problem is strongly NP-hard, noting that

the original problem, the center location problem, is of min-max format and polynomially

solvable. Yang and Zhang (1998) discussed some inverse max-min optimization problems

and showed that they are polynomially solvable, under the conditions that l1 norm is used to

measure the deviations of parameters and there is no restriction on the change of weights.

In this paper, we consider two inverse min-max (or max-min) network problems: inverse

min-max spanning tree problem and inverse maximum capacity path problem. In fact we have

also studied other inverse min-max problems such as inverse problem of min-max base of

matroid and the inverse min-max arborescence problem, but due to space limitation, we would

concentrate on only the two types of inverse problems. The paper has two main contributions.

First we consider inverse min-max (max-min) network problems with bound constraints,

which make the problems more practical but harder than their unbounded counterparts.

Second we extend the research to the l∞ norm case. As we can see, the l1 and l∞ cases have

different features. Moreover, we consider weighted norms, i.e. weighted l1 and l∞ norms

which are more general.

Like inverse min-sum problems, inverse min-max problems also have a big application

potential. For example, in some computer networks, the real capacity of each link in a network

differs from its designed one because of wearing-down of the link after years of operation.

As the maximum capacity path between a pair of nodes can be observed by sending a large

file through the network, if we reasonably assume that the real capacities of links are not far

from their designed ones, then we may use the inverse maximum capacity path problem to

estimate the real capacities of the links.

The paper is organized as follows. In Section 2, we consider inverse min-max spanning

tree problem and inverse maximum capacity path problem under weighted l1 norm with

bound constraints. In Section 3, we consider inverse min-max spanning tree problem and

inverse maximum capacity path problem under weighted l∞ norm with bound constraints.

We present some strongly polynomial combinatorial algorithms to solve the problems in

these situations. In Section 4, we give some concluding remarks.

2 Inverse min-max spanning tree problem and inverse capacity path problem
under weighted l1 norm with bound constraints

In this section, we consider inverse min-max spanning tree problem and inverse maximum

capacity path problem under weighted l1 norm with bound constraints. In order to make our

analysis clear, we first consider the inverse min-max spanning tree with a fixed objective

value. Then we relax the restriction of fixed objective value to a free objective value. In the

last subsection, we extend the technique developed in the first two subsections to inverse

maximum capacity path problem.

Springer

J Comb Optim (2007) 13:123–135 125

2.1 Inverse min-max spanning tree under weighted l1 norm with a fixed objective value

Let G = (V, E) be a connected graph and w be a weight vector defined on E . LetT denote the

collection of all spanning trees of G. For a spanning tree T ∈ T , write w(T) = max{w(e) | e ∈
T } and call it the weight of T . The min-max spanning tree problem is to find a T ∗ ∈ T such

that w(T ∗) = min{w(T) | T ∈ T }. Camerini (1978) gave an O(|E |) algorithm to solve the

min-max spanning tree problem in 1978.

It is straightforward to see that

Lemma 1. A spanning tree T of G is a min-max spanning tree under a weight vector w if
and only if G becomes disconnected after deleting the edges whose weights are not less than
w(T).

Now we consider the inverse min-max spanning tree problem. For a given connected

graph G = (V, E) and a given spanning tree T ∗ ∈ T , we want to modify the weights of the

edges such that T ∗ is a min-max spanning tree under the new weight vector w∗. Moreover,

let b+, b− ≥ 0 be two bound vectors defined on E , and let c+, c− > 0 be two cost func-

tions defined on E . We require that w − b− ≤ w∗ ≤ w + b+, and
∑

e∈E [c−(e) max{w(e) −
w∗(e), 0} + c+(e) max{w∗(e) − w(e), 0}] is minimum. Note that the objective function of

the inverse problem is an (asymmetric) weighted l1 norm of deviations of the modified

weights from the original weights. Thus we call it the inverse problem under weighted
l1 norm.

Let T + be a min-max spanning tree under w, and assume w(T ∗) > w(T +) for otherwise

we need nothing to do. We give a range for the value w∗(T ∗). First, we claim that

Lemma 2. w∗(T ∗) ≤ w(T ∗).

Proof: In fact, if w∗(T ∗) > w(T ∗), we can construct a new weight vector w̄ such that

w̄(e) = w(T ∗) for e ∈ T ∗ and w∗(e) > w(T ∗), and w̄(e) = w∗(e) otherwise. Clearly, we

have w̄(T ∗) = w(T ∗). Moreover, for any spanning tree T , we have w∗(T) ≥ w∗(T ∗). Let

w∗(eT) = w∗(T) for some eT ∈ T . Then if eT /∈ T ∗, we have w̄(eT) = w∗(eT) = w∗(T) >

w(T ∗); if eT ∈ T ∗, we have w̄(eT) = w(T ∗). Therefore w̄(T) ≥ w̄(T ∗), and hence w̄ is an

optimal solution too. Obviously, the cost incurred by w̄ is less than that by w∗. This is a

contradiction. �

On the other hand, we have that

Lemma 3. w(T +) ≤ w∗(T ∗).

Proof: Let w(T +) = ρ and w∗(T ∗) = τ , and we prove the lemma by contradiction. Suppose

ρ > τ, (1)

and we show that w∗ would not be an optimal solution. Let

�ρ = {e ∈ T ∗ | w(e) ≥ ρ},
�τ = {e ∈ T ∗ | w(e) ≥ τ }.

Springer

126 J Comb Optim (2007) 13:123–135

Under (1), obviously �ρ ⊆ �τ . Let the cost of adjusting w to w∗ be C∗, which includes at

least the cost of reducing the weights w(e) for e ∈ �τ to τ . Thus

C∗ ≥
∑
e∈�τ

{c−(e)(w(e) − τ)} >
∑
e∈�ρ

{c−(e)(w(e) − ρ)}.

Now we define w̃ as follows:

w̃(e) =
{

ρ, if e ∈ �ρ ;

w(e), otherwise.

For each spanning tree T , as w(T) ≥ ρ, we see that w̃(T) ≥ ρ. On the other hand, the

definition of w̃ shows that w̃(T ∗) = ρ, i.e., under w̃, T ∗ becomes the minimum weight tree.

The cost of adjusting w to w̃, denoted by C̃ , is

C̃ =
∑
e∈�ρ

{c−(e)(w(e) − ρ)} < C∗,

which shows that w∗ is not an optimal (minimum cost) solution, a contradiction. �

Moreover, since there are lower bounds on the reduction of weights, the smallest possi-

ble value of w∗(T ∗) is max{w(e) − b−(e) | e ∈ T ∗}. Write w = max{w(T +), max{w(e) −
b−(e) | e ∈ T ∗}}, and from the above analysis we know that w ≤ w∗(T ∗) ≤ w(T ∗).

Before we consider how to solve the inverse min-max spanning tree problem directly,

let us consider a restricted version of the inverse min-max spanning tree problem. That is,

for a given value p, we first consider how to make T ∗ a min-max spanning tree under a

weight vector wp such that wp(T ∗) = p, and wp satisfies the bound restrictions and makes

the modification cost minimum. We may call this restricted version of the inverse min-max

spanning tree problem the inverse min-max spanning tree problem with value p. Due to the

range obtained for the value of w∗(T ∗), we need only consider p in the interval [w, w(T ∗)].

Let T ∗(p) = {e ∈ T ∗ | w(e) ≥ p}. Clearly, for each edge e ∈ T ∗(p), we need reduce

the weight of e to p in order to let the maximum weight on T ∗ be equal to p. Define

C(T ∗(p)) = ∑{c−(e)(w(e) − p) | e ∈ T ∗(p)}, i.e. C(T ∗(p)) is the cost to let the largest

weight of T ∗(p) be p.

Moreover, for each edge e ∈ E \ T ∗ such that w(e) ≥ p, we need not reduce its weight,

but for e ∈ E(p) := {e ∈ E | w(e) < p}, we may increase its weight to p. Clearly, if p′ < p,

then E(p′) ⊆ E(p).

Consider the graph G(p) = (V, E(p)). If G(p) is not connected, we know that T ∗ is

already a min-max spanning tree with respect to the modified weight vector wp and wp(T ∗) =
p, where wp(e) = p for e ∈ T ∗(p) and wp(e) = w(e) for e ∈ E \ T ∗(p).

Thus we need only consider the case that G(p) is a connected graph. Denote by T (p)

the collection of spanning trees of G(p). In this situation, we need increase weights of some

edges in E(p) to p such that wp(T) = p for every spanning tree T ∈ T (p).

A cut K of G(p) is called feasible with respect to p if w(e) + b+(e) ≥ p for every e ∈ K .

For each value of p, we denote by K(p) the collection of feasible cuts of G(p).

Definition 1. We call p feasible if every spanning tree T ∈ T (p) contains an edge eT with

w(eT) + b+(eT) ≥ p.

We claim that p is feasible if and only if K(p)
= ∅.

Springer

J Comb Optim (2007) 13:123–135 127

We know that a set of edges is a cut if and only if it intersects every spanning tree. Hence if

p is feasible, then by definition, D(p) := ⋃
T ∈T (p){e ∈ T | w(e) + b+(e) ≥ p} is a feasible

cut, which means that K(p)
= ∅.

Conversely if K(p)
= ∅, then there is a feasible cut K ∈ K(p) such that w(e) + b+(e) ≥
p, ∀e ∈ K . Thus for each spanning tree T ∈ T (p), there is an edge e ∈ T

⋂
K , thus w(e) +

b+(e) ≥ p. So, p is feasible by definition, and the claim holds.

Let us define a modification cost cp for each edge e in E(p) as follows:

cp(e) =
{

c+(e)(p − w(e)), e ∈ E(p) and p − w(e) ≤ b+(e),

+∞, e ∈ E(p) and p − w(e) > b+(e).

Taking cp(e) as the capacities of edges in E(p), we have C p(K) = ∑{cp(e) | e ∈ K } for the

capacity of each cut K . Clearly for each K ∈ K(p), as p − w(e) ≤ b+(e) for each e ∈ K ,

we have C p(K) < +∞. If we increase the weight of each edge in a cut K to p in G(p), then

it is guaranteed that the weight of every spanning tree T in G(p) is increased to p. Denote

by K (p) the minimum cut of G(p) with respect to cp(e). The value C p(K (p)) is in fact the

minimum cost to make every spanning tree of G(p) have a weight p.

Note that if p is feasible, then K(p)
= ∅, hence we have C p(K (p)) < +∞. On the other

hand if C p(K (p)) < +∞, then for each e ∈ K (p), w(e) + b+(e) ≥ p, which means that

K (p) is a feasible cut, i.e., K(p)
= ∅. Thus p is feasible. So, the existence of feasible cut

can be judged by the finiteness of the value C p(K (p)).

Based on the above analysis, we can see that under the weighted l1 norm, it is optimal to

make T ∗ a min-max spanning tree of G with wp(T ∗) = p by increasing weights of the edges

in K (p) to p and decreasing weights of the edges in T ∗(p) to p, and the optimal modification

cost is

φ(p) := C(T ∗(p)) + C p(K (p)). (2)

Notice that computing T ∗(p) and C(T ∗(p)) is straightforward, and the main computation is

to find K (p). Therefore we can conclude that

Lemma 4. Solving a restricted version of the inverse min-max spanning tree problem with
value p under weighted l1 norm can be reduced to finding a minimum cut in G(p).

2.2 General inverse min-max spanning tree problem under weighted l1 norm

with bound constraints

Now we turn to the method of solving the original version of the inverse min-max spanning

tree problem.

We know that the optimal solution w∗ corresponds to a value p∗ such that w ≤ w∗(T ∗) =
p∗ ≤ w(T ∗), and the cost φ(p∗) is the minimum one among φ(p) for all feasible p. We now

aim to search for this p∗.

Denote by C+(p) the minimum cost to make every spanning tree T of G(p) have wp(T) =
p. Based on the analysis above, we have that: if G(p) is not connected, C+(p) = 0; if G(p) is

connected, then C+(p) = C p(K (p)) which includes a special case that if there is no feasible

cut, then C+(p) = C p(K (p)) = +∞.

Clearly, if C+(p) = +∞, then C+(q) = +∞ for all q ≥ p. Thus if we meet a value p
such that C+(p) = +∞, we need not search the interval [p, w(T ∗)].

Springer

128 J Comb Optim (2007) 13:123–135

Consider the collection of distinct values of the original weights and the upper bounds of

weights within the interval [w, w(T ∗)], i.e. the set ({w(e) | e ∈ E} ∪ {w(e) + b+(e)| e ∈ E} ∪
{w}) ∩ [w, w(T ∗)]. We sort these values in a strictly increasing order, say w = q1 < q2 <

· · · < qm = w(T ∗). Here each qk (k ≥ 2) corresponds to edges with w(e) = qk or w(e) +
b+(e) = qk .

We claim that

Lemma 5. C+(p) is a non-decreasing function.

Proof: Consider two values p′ < p. Without loss of generality, we assume that C+(p′) > 0

and C+(p) < +∞.

Consider the feasible cut K (p). Let B = {e ∈ K (p) | w(e) < p′}. Then B is a cut of G(p′)
with the same partition of V as what K (p) makes in G(p). Also, it is a feasible cut of G(p′)
because each edge e ∈ B satisfies w(e) + b+(e) ≥ p > p′.

Hence we obtain C p(K (p)) ≥ C p(B) ≥ C p′ (B) ≥ C p′ (K (p′)), namely C+(p) ≥ C+(p′).
This shows that C+(p) is a non-decreasing function. �

Lemma 6. If there exists p′ ∈ (qk, qk+1) such that C+(p′) < +∞, then C+(p) < +∞ for all
p ∈ [qk, qk+1]. Moreover C+(p) is a concave function in (qk, qk+1], and limp→q+

k
C+(p) ≥

C+(qk).

Proof: Suppose there exists p′ ∈ (qk, qk+1) such that 0 < C+(p′) < +∞. Since C+(p) is a

non-decreasing function, we have C+(qk) < +∞.

For any p ∈ (qk, qk+1), by the definition of {qk}, it is easy to see that G(qk+1) = G(p).

Moreover, for any edge e in these two subgraphs, w(e) + b+(e) ≥ p if and only if

w(e) + b+(e) ≥ qk+1.K(p) = K(qk+1) for all p ∈ (qk, qk+1]. By the definition of C p(K (p)),

we obtain that C+(p) = min{∑e∈K c+(e)(p − w(e)) | K ∈ K(qk+1)}. Hence in the interval

(qk, qk+1], C+(p) is a concave piecewise linear function, and C+(p) < +∞.

Finally, as C+(p) is a non-decreasing function, which is continuous in the interval

(qk, qk+1], we have limp→q+
k

C+(p) ≥ C+(qk). �

Lemma 7. The minimizer of φ(p) in each interval [qk, qk+1] is reached at one of the end-
points of the interval, i.e., qk or qk+1 is the minimizer of φ(p) in the interval [qk, qk+1].

Proof: Recall that φ(p) = C(T ∗(p)) + C+(p). We already know that C+(p) is a concave

function on (qk, qk+1]. Now consider C(T ∗(p)). It is easy to see that T ∗(p) = T ∗(qk+1) for

p ∈ (qk, qk+1]. Moreover,

c(T ∗(qk)) =
∑

e∈T ∗(qk+1)

c−(e)(w(e) − qk) +
∑

e∈T ∗(qk),w(e)=qk

c−(e)(w(e) − qk)

=
∑

e∈T ∗(qk+1)

c−(e)(w(e) − qk).

Therefore, for p ∈ [qk, qk+1], C(T ∗(p)) = ∑
e∈T ∗(qk+1) c−(e)(w(e) − p) which is a linear

function in the interval [qk, qk+1].

Hence we know that φ(p) is a continuous and concave function on (qk, qk+1], and

limp→q+
k

φ(p) ≥ φ(qk).

Springer

J Comb Optim (2007) 13:123–135 129

By the concavity of function φ(p), if limp→q+
k

φ(p) ≥ φ(qk+1), then φ(p) ≥ φ(qk+1) for

every p ∈ (qk, qk+1], and the minimizer of φ(p) in [qk, qk+1] is attained at qk or qk+1. If

limp→q+
k

φ(p) < φ(qk+1), then φ(p) ≥ limp→q+
k

φ(p) ≥ φ(qk) for every p ∈ (qk, qk+1], and

the minimizer of φ(p) in [qk, qk+1] is attained at qk . Hence no matter which case happens,

the minimizer of φ(p) is one of qk and qk+1. �

From Lemma 6, we need only check φ(p) values at {qi }m
1 , then we can find the optimal

solution of the inverse min-max spanning tree problem. In fact, if φ(qk) = ∞ for 1 ≤ k ≤ m,

then the inverse min-max spanning tree problem is infeasible, otherwise the restricted version

of inverse min-max spanning tree problem with value qk gives the optimal solution, where

qk = arg min{φ(qi) | i = 1, 2, . . . , m}.
Notice that m, the number of restricted versions of the inverse min-max spanning tree

problems to be concerned, is at most 2|E | + 1. In each restricted version of the inverse min-

max spanning tree problem, we need find a minimum cut, which can be solved in strongly

polynomial time (Hao and Orlin, 1994; Nagamochi and Ibaraki, 1992). Therefore we can

obtain the following result.

Theorem 1. The inverse min-max spanning tree problem under weighted l1 norm can be
solved in strongly polynomial time.

Remark 1. Notice that if Cqk (K (qk)) = +∞, then Cqi (K (qi)) = +∞ for all i ≥ k. Hence in

the real implementation, we need not check each qk one by one, but use the binary-search

strategy to determine the smallest h such that Cqh (T ∗(qh)) < +∞. Then we check the values

qk within the interval [q1, qh].

2.3 Inverse maximum capacity path problem under weighted l1 norm

with bound constraints

The max-min form path problem is usually called maximum capacity path problem with

applications in reliability of network (see Schrijver, 2003).

In this section, we will employ the technique developed in the previous two sections to

handle the inverse maximum capacity path problem under weighted l1 norm with bound

restriction on the change of capacities.

Let G = (V, E) be a connected graph and w be a capacity vector defined on E . Let

P(s, t) denote the collection of all paths of G between two specific nodes s and t . For a path

P ∈ P(s, t), let w(P) = min{w(e) | e ∈ P}, which is called the capacity of the path. The

maximum capacity path problem is to find a P ′ ∈ P(s, t) such that w(P ′) = max{w(P) | P ∈
P(s, t)}. The problem is also called the maximum reliability problem which can be solved

in O(|E | + |V | log(|V |)) time (see Schrijver, 2003, p. 117).

The inverse maximum capacity path problem under weighted l1 norm is to modify the

capacities of the edges such that a given P∗ ∈ P(s, t) becomes a maximum capacity path

under a new capacity vector w∗ which meets the requirements that
∑

e∈E [c−(e) max{w(e) −
w∗(e), 0} + c+(e) max{w∗(e) − w(e), 0}] is minimum, and w(e) − b−(e) ≤ w∗(e) ≤ w(e) +
b+(e) for all e ∈ E .

Let P+ ∈ P(s, t) be the max-min s-t path under w. w := min{w(P+), min{w(e) +
b+(e) | e ∈ P∗}}. It is easy to see that w(P∗) ≤ w∗(P∗) ≤ w.

Springer

130 J Comb Optim (2007) 13:123–135

For any value p ∈ [w(P∗), w], let Ê(p) = {e ∈ E | w(e) > p} and define a modification

cost cp for every edge in Ê(p) as follows:

cp(e) =
{

c−(e)(w(e) − p), e ∈ Ê(p) and w(e) − p ≤ b−(e);

+∞, e ∈ Ê(p) and w(e) − p > b−(e).

Taking cp(e) as the capacity of edge e and let K̂ (p) be a minimum capacity s-t cut on Ê . It is

easy to show that the cheapest way to make P∗ a maximum capacity path with wp(P∗) = p
is to increase capacities to p for those edges on P∗ whose original capacities are less than

p, and to decrease capacities of the edges in K̂ (p) to p.

Similar to Section 2.2, we need only search the points in ({w(e) | e ∈ E} ∪ {w(e) −
b−(e) | e ∈ E} ∪ {w}) ∩ [w(P∗), w]. The number of such target points is at most 2|E | + 1,

and at each point the main computation is to find a minimum s-t cut. Therefore we conclude

that

Theorem 2. The inverse maximum capacity path problem under weighted l1 norm can be
solved in strongly polynomial time.

3 Inverse min-max spanning tree problem and inverse maximum capacity
path problem under weighted l∞ norm with bound constraints

In this section, we consider inverse min-max spanning tree problem and inverse maximum

capacity path problem under weighted l∞ norm with bound constraints. Similar to the last

section, we consider how to solve inverse min-max spanning tree problem first, and then

extend the technique to solve inverse maximum capacity path problem.

3.1 Inverse min-max spanning tree problem under weighted l∞ norm

with bound constraints

Now we consider the inverse min-max spanning tree problem under the weighted l∞ norm.

That is, we want to minimize

max
e∈E

max{c−(e) max{w(e) − w∗(e), 0}, c+(e) max{w∗(e) − w(e), 0}}.

Again, we first consider, for a given value p, the restricted version of the inverse min-

max spanning tree problem which is how to make T ∗ a min-max spanning tree under the

new weight vector wp such that wp(T ∗) = p, wp satisfies the bound restrictions and the

modification cost under the weighted l∞ norm is minimum.

Using the similar arguments as in the last section, we only need to consider p ∈
[w, w(T ∗)]; and for each p, if G(p) is not connected, then only the cost

ĉ(T ∗(p)) = max{c−(e)(w(e) − p) | e ∈ T ∗(p)} (3)

is involved and the solution can be obtained with great ease. So, we now assume that G(p)

is connected. In this case we should find a cut K such that w(e) + b+(e) ≥ p for all e ∈ K ,

Springer

J Comb Optim (2007) 13:123–135 131

and

ĉp(K) := max{c+(e)(p − w(e)) | e ∈ K } (4)

is minimum among all feasible cuts.

Let cp(e) be defined the same as in the last section. So, a cut is feasible if and only if every

edge e of the cut has a finite value cp(e). Let T ′ be the max-sum spanning tree of G(p) with

respect to cp(e). Let eT ′ ∈ T ′ be an edge with the smallest value cp(e) in the tree. Clearly

if cp(eT ′) = ∞, then ĉp(K) = ∞ for every cut K , as K must contain an edge of T ′. In this

case it is impossible to make T ∗ a min-max spanning tree with wp(T ∗) = p.

So we assume that cp(eT ′) < ∞. Let K̂ (eT ′) be the fundamental cut of eT ′ with respect to

T ′ in G(p). Then cp(e) ≤ cp(eT ′) for every e ∈ K̂ (eT ′) as T ′ is the max-sum spanning tree.

Thus K̂ (eT ′) is feasible and ĉp(K̂ (eT ′)) = cp(eT ′).

We claim that K̂ (eT ′) is the minimum cost cut with respect to the value ĉp(K) among

all feasible cuts K . Indeed, as each K contains at least one edge e′ ∈ T ′, ĉp(K) ≥ cp(e′) ≥
cp(eT ′) = ĉp(K̂ (eT ′)).

Therefore we can see that under the weighted l∞ norm, the minimum cost adjustment to

make T ∗ a min-max spanning tree of G(p) with wp(T ∗) = p is to increase weights of the

edges in K̂ (eT ′) to p and to decrease weights of the edges in T ∗(p) to p, and the optimal

modification cost is

ψ(p) := max{ĉ(T ∗(p)), ĉp(K̂ (eT ′))} = max{ĉ(T ∗(p)), cp(eT ′)},

where ĉ(T ∗(p)) is given by (3).

Since the main computation is to find the max-sum spanning tree T ′, we obtain that

Lemma 8. Solving the restricted version of the inverse min-max spanning tree problem with
value p under the weighted l∞ norm can be reduced to finding a max-sum spanning tree
under the edge weight cp(e) on G(p).

Let us turn to the original version of the inverse min-max spanning tree prob-

lem under the weighted l∞ norm. Once again, we consider the sequence of values

w = q1 < q2 < · · · < qm = w(T ∗), and denote by Ĉ(p) the minimum cost to make every

spanning tree T of G(p) satisfy wp(T) ≥ p. If G(p) is not connected, then Ĉ(p) = 0;

otherwise Ĉ(p) = ĉp(K̂ (p)), where K̂ (p) is the minimum cost cut of G(p). Using the same

arguments as in Section 2, we have that

(a) Ĉ(p) is a non-decreasing function;

(b) if Ĉ(p′) < +∞ for a p′ ∈ (qk, qk+1), then Ĉ(p) < +∞ for all p ∈ [qk, qk+1];

(c) For all p ∈ (qk, qk+1],K(p) = K(qk+1), and

Ĉ(p) = min
K∈K(qk+1)

max
e∈K

{c+(e)(p − w(e))}; (5)

(d) limp→q+
k

Ĉ(p) ≥ Ĉ(qk).

From (5) above we know that over the interval (qk, qk+1], Ĉ(p) is a piecewise linear

function; by (3), we see that ĉ(T ∗(p)) is also a piecewise linear function. Therefore ψ(p) is

Springer

132 J Comb Optim (2007) 13:123–135

a piecewise linear function in (qk, qk+1]. More exactly, over this subinterval,

ψ(p) = max

{
max

e∈T ∗(qk+1)
{c−(e)(w(e) − p)}, min

K∈K(qk+1)
max
e∈K

{c+(e)(p − w(e))}
}
.

Note that not like φ(p), function ψ(p) is in general not a concave one in each interval,

and its minimizer on each [qk, qk+1] is not necessary an endpoint of the interval. But as ψ is

piecewise linear, its minimizer over (qk, qk+1] must be located at either some points where

two linear functions of the following group intersect:

{c−(e)(w(e) − p) | e ∈ T ∗(qk+1)} ∪ {c+(e)(p − w(e)) | e ∈ K(qk+1)},

or an endpoint of the interval.

Therefore, we need check only sequence {qi }m
1 and the intersection points of linear func-

tions {c−(e)(w(e) − p) | e ∈ T ∗} ∪ {c+(e)(p − w(e)) | e ∈ E} within interval [q1, qm]. As

the number of linear functions under consideration is |E | + |V | − 1, the number of such in-

tersection points is at most 1
2
(|E | + |V | − 1)(|E | + |V | − 2). The total number of values p to

be checked in order to find min ψ(p) is at most 2|E | + 1 + 1
2
(|E | + |V | − 1)(|E | + |V | − 2),

and for each such p, the main computation is to find a max-sum spanning tree which can be

completed in O(|E | + |V | log(|V |)) time (see Schrijver, 2003). Hence,

Theorem 3. The inverse min-max spanning tree problem under weighted l∞ norm can be
solved in strongly polynomial time.

Remark 2. Let us consider the case that all modification costs are equal but the modification of

weights has bound restrictions. It is straightforward to see that over the subinterval (qk, qk+1],

the cost function ψ(p) becomes

ψ(p) = max

{
w(T ∗) − p, min

K∈K(qk+1)
max
e∈K

{(p − w(e))}
}
.

Hence the minimizer of ψ(p) over [qk, qk+1] must be located at either some intersect points of

the linear function w(T ∗) − p with a linear function in the group {p − w(e) | e ∈ K(qk+1)}, or

an endpoint of the interval. That is, the minimizer of ψ(p) over [qk, qk+1] must be contained

in the set

{qk, qk+1} ∪
{

1

2
(w(T ∗) + w(e)) | e ∈ K(qk+1)

}
.

So, the overall minimizer of ψ(p) must be contained in the following set

� = {qi }m
1 ∪

{
1

2
(w(T ∗) + w(e)) | e ∈ E

}
.

Therefore, in order to find the minimizer of ψ(p), we need check only the points in the

set �, which contains at most 3|E | + 1 points. So we can solve the case more efficiently than

the general one.

Springer

J Comb Optim (2007) 13:123–135 133

Remark 3. If there are no bounds on the restriction of modifications and all modification

costs are equal, say c+(e) = c−(e) = 1 for all e ∈ E , then the inverse min-max spanning tree

problem under l∞ norm becomes quite easy. First, it is easy to see that the minimum cost

ψ(p∗) ≥ 1
2
(w(T ∗) − w(T +)), where T + is any min-max spanning tree with respect to the

original weights, and p∗ represents the value of w∗(T ∗) under the optimal solution w∗. In

fact, we have ψ(p∗) ≥ max{w(T ∗) − w∗(T ∗), w∗(T +) − w(T +)}, and w∗(T ∗) ≤ w∗(T +).

Hence ψ(p∗) ≥ 1
2
(w(T ∗) − w(T +)).

Second, the lower bound τ := 1
2
(w(T ∗) − w(T +)) can be reached, and hence the minimum

cost is ψ(p∗) = τ . In fact, let us set p∗ = 1
2
(w(T ∗) + w(T +)) and define a new weight vector

w∗(e) =
⎧⎨⎩

min{w(e), p∗}, ∀e ∈ T ∗,

p∗, ∀e ∈ K̂ (eρ),

w(e), otherwise,

where K̂ (eρ) is the fundamental cut of eρ with respect to Tρ in G(p∗), Tρ is the min-sum

spanning tree of G(p∗) with respect to w, and eρ is the largest edge of Tρ with respect to w.

Note that w(eρ) ≤ w(e) for all e ∈ K̂ (eρ) as Tρ is the min-sum spanning tree of G(p∗)

under w. Hence Tρ is also a min-max spanning tree of G under w and w(eρ) = w(Tρ) =
w(T +). It is easy to verify that w∗(T ∗) = p∗ and T ∗ is a min-max spanning tree under w∗.

Now let us show that the l∞ cost for changing w to w∗ is indeed τ . The cost for changing

weights of some edges in T ∗ is max{w(e) − p∗ | e ∈ T ∗, w(e) ≥ p∗} = w(T ∗) − p∗ = τ ,

and the cost for changing weights of the edges in K̂ (eρ) is max{p∗ − w(e) | e ∈ K̂ (eρ)} =
p∗ − min{w(e) | e ∈ K̂ (eρ)} = p∗ − w(eρ) = τ . Hence the minimum cost ψ(p∗) = τ .

3.2 Inverse maximum capacity path problem under weighted l∞ norm

with bound constraints

We now turn to the inverse maximum capacity path problem under the weighted l∞ norm.

Let cp(e) be defined the same as in Section 2.3 and let T̂ (p) be the max-sum spanning tree

of Ĝ(p) = (V, Ê(p)) with respect to cp(e). There is a unique path between s and t on T̂ (p),

say P̂(p). Let ê be an edge in P̂(p) with the smallest value cp(e). Clearly if cp(ê) = ∞, then

cp(e) = ∞ for all e ∈ P̂(p). In this case for each s-t cut K , as P̂(p) ∩ K
= ∅,

cp(K) = max{cp(e) | e ∈ K } = ∞,

i.e., it is impossible to make P∗ a maximum capacity path with wp(P∗) = p.

So we assume that cp(ê) < ∞. Let K (ê) be the fundamental cut of ê with respect to

T̂ (p) in Ĝ(p). Clearly K (ê) is an s-t cut, and cp(e) ≤ cp(ê) for all e ∈ K (ê) as T̂ (p) is the

max-sum spanning tree. Hence K (ê) is a feasible s-t cut and cp(K (ê)) = cp(ê).

We claim that K (ê) is the minimum cost s-t cut with respect to the weighted l∞ cost cp(K)

among all s-t cuts K . Indeed, as every K contains an edge e′ of P̂(p), cp(K) ≥ cp(e′) ≥
cp(ê) = cp(K (ê)).

Therefore, in order to make P∗ a maximum capacity path and wp(P∗) = p under weighted

l∞ norm, it is optimal to increase capacities to p for those edges on P∗ whose original

capacities are less than p, and to decrease capacities of the edges in K (ê) to p.

Similar to Section 3.1, we need only check the intersection points of every two lines

among {c+(e)(p − w(e)) | e ∈ P∗} ∪ {c−(e)(w(e) − p) | e ∈ E} and the points in the set

Springer

134 J Comb Optim (2007) 13:123–135

{w(e) | e ∈ E} ∪ {w(e) − b−(e) | e ∈ E} ∪ {w} which lie in the interval [w(P∗), w]. At each

of these points, the main computation is to find a max-sum spanning tree. Thus we have the

following result.

Theorem 4. The inverse maximum capacity path problem under weighted l∞ norm can be
solved in strongly polynomial time.

Remark 4. Similar to the inverse min-max spanning tree problem, if there are no restrictions

on the modification of edge capacities, and the modification costs on all edges are equal, say

c+(e) = c−(e) = 1 for all e ∈ E , then the inverse maximum path problem under l∞ norm is

easy to solve. The optimal solution can be written directly as follows.

w∗(e) =

⎧⎪⎨⎪⎩
max{w(e), w(P∗) + δ}, ∀e ∈ P∗,
min{w(e), w(P∗) − δ}, ∀e ∈ K (eT +),

w(e), otherwise,

where K (eT +) is the fundamental cut of eT + with respect to a max-sum spanning tree T + in

G under the original capacity vector w, and eT + is the minimum capacity edge on the unique

s-t path in T +. In this case the minimum cost is

δ = w(eT +) − w(P∗)

2
.

4 Concluding remarks

In this paper, we present some technique to solve the inverse min-max spanning tree problems

under weighted l1 norm and weighted l∞ norm with bound constraints on changes of weights.

The technique can also be extended to handle the inverse problem of min-max base of matroid

and the inverse min-max arborescence problem, under both weighted l1 norm and weighted

l∞ norm.

Acknowledgments The research work is supported by the Hong Kong University Grand Council under the

grant CERG CUHK103105 (formerly CityU 103105). X.G. Yang’s work is also supported by the National Key

Research and Development Program of China (2002CB312004) and the National Natural Science Foundation

of China (No. 70425004).

References

Ahmed S, Guan YP (2005) The inverse optimal value problem. Math Program 102:91–110

Ahuja RK, Orlin JB (2001) Inverse optimization, part i: linear programming and general problem. Oper Res

35:771–783

Ahuja RK, Orlin JB (2000) A faster algorithm for the inverse spanning tree problem. J Algorithms 34:177–193

Burkard R, Pleschiutschnig C, Zhang JZ (2004) Inverse median problems. Discrete Optim 1:23–39

Burton D, Toint PhL (1992) On an instance of the inverse shortest paths problem. Math Program 53:45–61

Burton D, Toint PhL (1994) On the use of an inverse shortest paths algorithm for recovering linearly correlated

costs. Math Program 63:1–22

Cai MC, Yang XG (1995) Inverse shortest path problems. Operations research and its applications. In: First

international symposium ISORA’95 Beijing PR China

Springer

J Comb Optim (2007) 13:123–135 135

Cai MC, Yang XG, Zhang J (1999) The complexity analysis of the inverse center location problem. J Global

Optim 15:213–218

Camerini PM (1978) The min-max spanning tree problem and some extensions. Inf Proc Lett 7:10–14

Hao J, Orlin JB (1994) A faster algorithm for finding the minimum cut in a directed graph. J Algorithms

17:424–446

Heuburger C (2004) Inverse optimization, a survey on problems, methods, and results. J Comb Optim 8:329–

361

Hochbaum DS (2003) Efficient algorithms for the inverse spanning tree problem. Oper Res 51:785–797

He Y, Zhang B, Yao E (2005) Weighted inverse minimum spanning tree problems under Hamming distance.

J Comb Optim 9:91–100

Iyengar G, Kang WM (2005) Inverse conic programming with applications. Oper Res Lett 33:319–330

Liu LC, He Y (2006) Inverse minimum spanning tree problem and reverse shortest-path problem with discrete

values. Prog Nat Sci 16:649–655

Nagamochi H, Ibaraki T (1992) Computing edge-connectivity in multigraphs and capacitated graphs. SIAM

J Discrete Math 5:54–66

Orlin JB (2003) Inverse optimization and partial inverse optimization. PPT presentation on Optimization Day

Columbia University November 3

Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer-Verlag Berlin and

Heidelberg

Sokkalingam PT, Ahuja RK, Orlin JB (1999) Solving inverse spanning tree problems through network flow

techniques. Oper Res 47:291–298

Xu S, Zhang J (1995) An inverse problem of the weighted shortest path problem. Japan J Ind Appl Math

12:47–59

Yang C, Zhang J (1998) Inverse maximum capacity problems. OR Spektrum 20:97–100

Yang C, Zhang J (1999) Two general methods for inverse optimization problems. Appl Math Lett 12:69–72

Zhang J, Liu Z (1999) A further study on inverse linear programming problems. J Comput Appl Math 106:345–

359

Zhang J, Ma Z (1996) A network flow method for solving some inverse combinatorial optimization problems.

Optimization 37:59–72

Zhang J, Xu S, Ma Z (1997) An algorithm for inverse minimum spanning tree problem. Optim Meth Soft

8:69–84

Springer

