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Abstract In this paper, we continue the study of paired-domination in graphs introduced

by Haynes and Slater (1998) Networks 32: 199–206. A paired-dominating set of a graph

G with no isolated vertex is a dominating set of vertices whose induced subgraph has a

perfect matching. The paired-domination number of G, denoted by γpr(G), is the minimum

cardinality of a paired-dominating set of G. Let G be a connected graph of order n with

minimum degree at least two. Haynes and Slater (1998) Networks 32: 199–206, showed

that if n ≥ 6, then γpr(G) ≤ 2n/3. In this paper, we show that there are exactly ten graphs

that achieve equality in this bound. For n ≥ 14, we show that γpr(G) ≤ 2(n − 1)/3 and we

characterize the (infinite family of) graphs that achieve equality in this bound.

Keywords Bounds . Paired-domination . Minimum degree two

1 Introduction

Domination and its variations in graphs are now well studied. The literature on this subject

has been surveyed and detailed in the two books by Haynes et al. (1998a,b). In this paper

we investigate bounds on the paired-domination of a graph with minimum degree at least

two.

A matching in a graph G is a set of independent edges in G. A perfect matching M in G is

a matching in G such that every vertex of G is incident to an edge of M . A paired-dominating
set, abbreviated PDS, of a graph G is a set S of vertices of G such that every vertex is adjacent

to some vertex in S and the subgraph G[S] induced by S contains a perfect matching M (not

necessarily induced). Two vertices joined by an edge of M are said to be paired and are also

called partners in S. Every graph without isolated vertices has a PDS since the end-vertices
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of any maximal matching form such a set. The paired-domination number of G, denoted by

γpr(G), is the minimum cardinality of a PDS. A PDS of cardinality γpr(G) we call a γpr(G)-

set. Paired-domination was introduced by Haynes and Slater (1998, 1995) as a model for

assigning backups to guards for security purposes, and is studied, for example, in Chellali

and Haynes (2004a,b, 2005), Favaron and Henning (2004), Fitzpatrick and Hartnell (1998),

Haynes and Henning (2006), Henning (2006), Henning and Plummer (2005), Proffitt et al.

(2001), and Qiao et al. (2003) and elsewhere.

For notation and graph theory terminology we in general follow Haynes et al. (1998a).

Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E . For a

set S ⊆ V , the subgraph induced by S is denoted by G[S]. We denote the degree of a vertex

v in G by dG(v), or simply by d(v) if the graph G is clear from context. A vertex of degree k
we call a degree-k vertex. The minimum degree (resp., maximum degree) among the vertices

of G is denoted by δ(G) (resp., �(G)). If δ(G) ≥ 2, then we define a vertex of G as small
if it has degree 2 in G, and large if it has degree more than 2 in G. The open neighbor-
hood of v ∈ V is N (v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is N [v] = {v}
∪ N (v).

A star is the tree K1,n−1 of order n ≥ 2. A subdivided star is a star where each edge is

subdivided exactly once. A cycle on n vertices is denoted by Cn and a path on n vertices by

Pn . For m ≥ 3 and n ≥ 1, we denote by Lm,n the graph obtained by joining with an edge a

vertex in Cm to an end-vertex of Pn . The graph Lm,n is called a key.

A daisy with k ≥ 2 petals is a connected graph that can be constructed from k ≥ 2 disjoint

cycles by identifying a set of k vertices, one from each cycle, into one vertex. In particular, if

the k cycles have lengths n1, n2, . . . , nk , we denote the daisy by D(n1, n2, . . . , nk). Further,

if n = n1 = n2 = · · · = nk , then we write D(n1, n2, . . . , nk) simply as Dk(n).

2 Known results

The decision problem to determine the paired-domination number of a graph is known to be

NP-complete (Haynes and Slater, 1998). Hence it is of interest to determine upper bounds on

the paired-domination number of a graph. Haynes and Slater (1998) obtained the following

upper bound on the paired-domination number of a connected graph in terms of the order of

the graph.

Theorem 1 (Haynes and Slater, 1998). If G is a connected graph of order n ≥ 3, then
γpr(G) ≤ n − 1 with equality if and only if G is C3, C5 or a subdivided star.

If we restrict the minimum degree to be at least two and the order to be at least six, then

the upper bound in Theorem 1 on the paired-domination number can be improved from one

less than its order to two-thirds its order.

Theorem 2 (Haynes and Slater, 1998). If G is a connected graph of order n ≥ 6 with δ(G) ≥
2, then γpr(G) ≤ 2n/3.

Haynes and Slater (1998) remark that “the bound of Theorem 2 is sharp as can be seen

with the cycle C6. Although there is no known infinite family of graphs which achieves this

upper bound, the family of graphs shown in Fig. 1 has γpr(G) approaching 2n/3 for large n.”
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· · ·

Fig. 1 γpr(G) approaching 2n/3

for large n

Our aim in this paper is threefold: First to characterize the graphs that achieve equality

in the bound of Theorem 2. Second to prove that if G is a connected graph of order n ≥ 10

with δ(G) ≥ 2, then γpr(G) ≤ 2(n − 1)/3. Third to characterize (the infinite family of) such

graphs of order n ≥ 14 that achieve equality in this bound.

3 The families B, C, D, F , G and H

In this section, we define six families of graphs. Let B = {B1, B2, . . . , B12} be the family

of twelve graphs shown in Fig. 2. If G ∈ B, we call a degree-2 vertex of G with two large

neighbors a special vertex of G.

Let

C = {C3, C4, C5, C6, C7, C9, C10, C13}, and

D = {D(3, 5), D(5, 5), D(5, 6), D(5, 9), D3(5)},

be a family of cycles and daisies, respectively. The family D of five daisies is shown in Fig. 3.

Let F = {F1, F2, . . . , F6} be the family of six graphs shown in Fig. 4.

Let U1, U2, . . . , U13 be the thirteen graphs shown in Fig. 5. We define a unit to be a graph

that is isomorphic to the graph Ui for some i , 1 ≤ i ≤ 13. The vertex named v in each unit

B1 B2 B3 B4 B5

B6 B7 B8 B9

B10 B11 B12

Fig. 2 The family B of twelve graphs
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D(3, 5) D(5, 5) D(5, 6) D(5, 9) D3(5)

Fig. 3 The family D of five daisies

F1 F2 F3 F4 F5 F6

Fig. 4 The family F of six graphs
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Fig. 5 The thirteen units

in Fig. 5 we call the link vertex of the unit. For i = 1, 2, . . . , 13, we call a unit isomorphic to

the graph Ui a type-i unit.
For n = n1 + n2 + n3 + n4 ≥ 2, let G = G(n1, n2, n3, n4) be the graph obtained from

the disjoint union of n1 units of type-1, n2 units of type-2, n3 units of type-3 and n4 units of

type-4, by identifying the n link vertices, one from each unit, into one new vertex which we

call the identified vertex of G. Let G denote the family of all such graphs G. We call each

graph in the familyG a good graph. Observe that for k ≥ 2, the graph G(k, 0, 0, 0) is the daisy

Dk(4), while the family of graphs illustrated in Fig. 1 is the family {G(0, k, 0, 0) | k ≥ 2}.
The graph G(2, 3, 1, 1) with seven units and with identified vertex v is shown in Fig. 6.

Let H be the graph obtained from the disjoint union of n ≥ 2 units by identifying the n
link vertices, one from each unit, into one new vertex. Let H denote the family of all such

graphs H . Notice that the family G is a subfamily of the family H.
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v

Fig. 6 A graph G in the family G

4 Main results

We will refer to a graph G as a 2
3
-minimal graph if G is edge-minimal with respect to

satisfying the following three conditions: (i) δ(G) ≥ 2, (ii) G is connected, and (iii) γpr(G) ≥
2(n − 1)/3, where n is the order of G. The following result, a proof of which is given in

Section 5.2, characterizes 2
3
-minimal graphs

Theorem 3. A graph G is a 2
3
-minimal graph if and only if G ∈ B ∪ C ∪ D ∪ G.

As a consequence of Theorem 3 we have the following result which gives the Haynes-

Slater 2n/3-bound of Theorem 2 and characterizes the graphs that achieve equality in this

bound. A proof of Theorem 4 is given in Section 5.3.

Theorem 4. If G is a connected graph of order n ≥ 6 with δ(G) ≥ 2, then γpr(G) ≤ 2n/3.
Furthermore, γpr(G) = 2n/3 if and only if G ∈ {B1, C6, C9, D(5, 5)} ∪ F .

Our main result provides a characterization of connected graphs with minimum degree at

least two and order at least fourteen that have maximum possible paired-domination number.

A proof of Theorem 5 is given in Section 5.4.

Theorem 5. If G is a connected graph of order n ≥ 10 with δ(G) ≥ 2, then

γpr(G) ≤ 2(n − 1)

3
.

Furthermore for n ≥ 14, γpr(G) = 2(n − 1)/3 if and only if G ∈ H.

5 Proof of main results

To prove our main results we introduce the concept of a near-paired-dominating set. Let

G = (V, E) be a graph and let v ∈ V . We define a near-paired-dominating set, abbreviated

near-PDS, of G relative to v as a set S ⊆ V such that v ∈ S, S dominates V , and G[S − {v}]
contains a perfect matching. The near-paired-domination number of G relative to v, denoted

γnpr(G; v), is the minimum cardinality of a near-PDS of G relative to v. A near-PDS of G
relative to v of cardinality γnpr(G; v) we call a γnpr(G; v)-set. (Note that it is possible that v

itself may not be adjacent to any vertex of a γnpr(G; v)-set.)
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5.1 Preliminary results

Before presenting a proof of our main results, we first establish some preliminary results. We

omit the proofs of these preliminary results which can be readily checked by the reader.1

We begin with the following observation about graphs in the families B ∪ C ∪ D ∪ G.

Observation 6. Let G ∈ B ∪ C ∪ D ∪ G have order n. Then, G is a connected graph with

δ(G) = 2, and γpr(G) = 4 if G = C5, γpr(G) = 2n/3 if G ∈ {B1, C3, C6, C9, D(5, 5)} and

γpr(G) = 2(n − 1)/3, otherwise.

Observation 7. Each graph in B ∪ C ∪ D ∪ G is a 2
3
-minimal graph.

Observation 8. Let G ∈ B ∪ C ∪ D ∪ G have order n, and let v ∈ V (G). Then, (i) there is a

γpr(G)-set that contains v; (ii) if v is neither a special vertex of B3 or B6 nor the identified

vertex of a good graph, then γnpr(G; v) = γpr(G) − 1; (iii) if G ∈ {B1, C9, D(5, 5)} and if v

is not a special vertex of B1, then γpr(G − v) = γpr(G) − 2.

Observation 9. Let G be a connected graph with δ(G) ≥ 2 and let F be obtained from G by

subdividing any edge four times. Then, γpr(F) ≤ γpr(G) + 2.

Next we establish the value of γpr(Cn) for a cycle Cn and we characterize the 2
3
-minimal

graphs that are cycles.

Observation 10. For n ≥ 3, γpr(Cn) = 2� n
4
	.

Corollary 11. A cycle G is a 2
3
-minimal graph if and only if G ∈ C.

The daisies with large paired-domination numbers are characterized in Observation 12.

Observation 12. If G is a daisy of order n, then γpr(G) ≤ 2n/3. Furthermore, γpr(G) = 2n/3

if and only if G = D(5, 5), while γpr(G) = 2(n − 1)/3 if and only if G = Dk(4) where k ≥ 2

or G ∈ {D(3, 5), D(5, 6), D(5, 9), D3(5)}.

As observed earlier, for k ≥ 2 the daisy Dk(4) = G(k, 0, 0, 0) ∈ G. Hence we have the

following characterization of 2
3
-minimal graphs that are daisies.

Corollary 13. A daisy G is a 2
3
-minimal graph if and only if G ∈ D ∪ G.

The following lemma characterizes 2
3
-minimal graphs of small order.

Observation 14. If G is a 2
3
-minimal graph of order n, 3 ≤ n ≤ 7, then G ∈ B ∪ G.

1 We provide proofs of some of these preliminary results in the appendix.
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5.2 Proof of Theorem 3

The sufficiency follows from Observation 7. To prove the necessary, we proceed by induction

on the order n ≥ 3 of a 2
3
-minimal graph. By Observation 14, the result is true for n ≤ 7.

Let n ≥ 8, and assume that the result is true for all 2
3
-minimal graphs G ′ of order n′, where

3 ≤ n′ < n. Let G = (V, E) be a 2
3
-minimal graph of order n. Before proceeding further,

we present two observations that will be useful in what follows. If e is an edge of G, then

γpr(G − e) ≥ γpr(G). Hence, by the minimality of G, we have the following observation.

Observation 15. If e ∈ E , then either e is a bridge of G or δ(G − e) = 1.

Since the paired-domination number of a graph cannot decrease if edges are removed, the

next result is a consequence of the inductive hypothesis.

Observation 16. If G ′ is a connected subgraph of G of order n′ < n with δ(G ′) ≥ 2, then

either G ′ ∈ B ∪ C ∪ D ∪ G or γpr(G ′) < 2(n′ − 1)/3.

We now return to the proof of Theorem 3. Suppose G = Cn (and still n ≥ 8). Then, by

Corollary 11, G ∈ C. So we may assume that G is not a cycle. LetL be set of all large vertices

of G, i.e., L = {v ∈ V | dG(v) ≥ 3}. By assumption, |L| ≥ 1. If |L| = 1, then G is a daisy,

and so, by Corollary 13, G ∈ D ∪ G. Hence we may assume |L| ≥ 2.

Let C be any component of G − L; it is a path. If C has only one vertex, or has at least

two vertices but the two ends of C are adjacent in G to different large vertices, then we say

that C is a 2-path. Otherwise we say that C is a 2-handle.

Lemma 17. If L is not an independent set, then G = B5 or G ∈ G.

Proof: Suppose e = uv is an edge, where u, v ∈ L. By Observation 15, e must be a bridge

of G. Let G1 = (V1, E1) and G2 = (V2, E2) be the two components of G − e where u ∈
V1. For i = 1, 2, let |Vi | = ni . Each Gi satisfies δ(Gi ) ≥ 2 and is connected. Hence by

Observation 16, for i = 1, 2, Gi ∈ B ∪ C ∪ D ∪ G or γpr(Gi ) < 2(ni − 1)/3. If γpr(Gi ) ≤
2(ni − 1)/3 for i = 1, 2, then γpr(G) ≤ γpr(G1) + γpr(G2) ≤ 2(n − 2)/3, a contradiction.

Hence we may assume that γpr(G1) ≥ 2n1/3.

Suppose first that G1 = C5. We show then that G = B5. Let G1 be the 5-cycle

u1, u2, . . . , u5, u1, where u = u1. Suppose that G2 /∈ B ∪ C ∪ D ∪ G. Then, γpr(G2) <

2(n2 − 1)/3, implying that γpr(G2) ≤ 2(n2 − 2)/3 = 2(n − 7)/3 since γpr(G2) is an even

integer. If γpr(G2) < 2(n − 7)/3, then γpr(G) ≤ γpr(G1) + γpr(G2) < 2(n − 1)/3, a contra-

diction. Hence, γpr(G2) = 2(n − 7)/3. Let G∗ be the graph of order n∗ = n − 3 obtained

from G by deleting the three vertices u3, u4, u5 and adding the edge u2v. Since G is

a 2
3
-minimal graph, it follows from construction that either G∗ is a 2

3
-minimal graph or

γpr(G∗) < 2(n∗ − 1)/3. If G∗ is a 2
3
-minimal graph, then, by the inductive hypothesis,

G∗ ∈ B ∪ C ∪ D ∪ G, a contradiction since G∗ contains a vertex, namely v, of degree 4 that

belongs to a triangle. Hence, γpr(G∗) < 2(n∗ − 1)/3 = 2(n − 4)/3. By construction of G∗,

there exists a γpr(G∗)-set S∗ that does not contain the vertex u2 (if there is a γpr(G∗)-set that

contains u2, simply replace u2 and its partner in this set with u1 and v). But then S∗ ∪ {u3, u4}
is a PDS of G, and so γpr(G) ≤ |S∗| + 2 < 2(n − 4)/3 + 2 = 2(n − 1)/3, a contradiction.

Hence, G2 ∈ B ∪ C ∪ D ∪ G. If G2 �= C5, then γpr(G2) ≤ 2n2/3 = 2(n − 5)/3 and, by Ob-

servation 8(i), there exists a γpr(G2)-set containing v. Such a γpr(G2)-set can be extended to a
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PDS of G by adding to it the pair {u3, u4}, and so γpr(G) ≤ 2(n − 5)/3 + 2 = 2(n − 2)/3, a

contradiction. Hence we must have that G2 = C5, and so G = B5. Therefore we may assume

that neither G1 nor G2 is a 5-cycle, for otherwise G = B5. This implies that γpr(G1) = 2n1/3.

By Observation 6, G1 ∈ {B1, C3, C6, C9, D(5, 5)}. By Observation 8(ii), γnpr(G1; u) =
γpr(G1) − 1 ≤ 2n1/3 − 1. If γpr(G2) < 2(n2 − 1)/3, then γpr(G) ≤ γpr(G1) + γpr(G2) <

2(n − 1)/3, a contradiction. Hence, G2 ∈ B ∪ C ∪ D ∪ G. Since G is a 2
3
-minimal graph,

we cannot have that G2 ∈ {B3, B6} with v a special vertex of G2. Hence if G2 /∈ G or if

G2 ∈ G and v is not the identified vertex of G2, then, by Observation 8(ii), γnpr(G2; v) =
γpr(G2) − 1 ≤ 2n2/3 − 1. But then γpr(G) ≤ γnpr(G1, u) + γnpr(G2, v) ≤ 2n/3 − 2, a con-

tradiction. Hence we must have that G2 ∈ G with v the identified vertex of G2. Suppose

that G1 ∈ {B1, C9, D(5, 5)}. Since G is a 2
3
-minimal graph, we cannot have that G1 = B1

with u a special vertex of B1. Hence, by Observation 8(iii), γpr(G1 − u) = γpr(G1) − 2 =
2n1/3 − 2. By Observation 8(i), there exists a γpr(G2)-set containing v. Such a γpr(G2)-

set can be extended to a PDS of G by adding to it the vertices in a γpr(G1 − u)-set,

and so γpr(G) ≤ γpr(G1 − u) + γpr(G2) ≤ 2n1/3 − 2 + 2n2/3 = 2n/3 − 2, a contradiction.

Hence, G1 /∈ {B1, C9, D(5, 5)}. Thus, G1 ∈ {C3, C6}, and so G ∈ G. �

By Lemma 17, we may assume that L is an independent set, for otherwise G ∈ B ∪ G.

Lemma 18. If G contains a path on six vertices with the two ends of the path not adjacent
and with every internal vertex of the path a degree-2 vertex in G, then G ∈ {B6, B7, B8, B12}.

Proof: Let u and v be two nonadjacent vertices that are joined by a path u, u1, u2, u3, u4, v

every internal vertex of which has degree 2 in G. Let G ′ be the graph obtained from G
by removing the vertices u1, u2, u3, u4, and adding the edge e = uv. Then, G ′ is a con-

nected graph of order n′ = n − 4 with δ(G ′) ≥ 2. By Observation 9, γpr(G) ≤ γpr(G ′) + 2.

If γpr(G ′) < 2n′/3, then γpr(G) < 2(n − 1)/3, a contradiction. Hence, γpr(G ′) ≥ 2n′/3.

On the one hand, suppose G ′ − e is disconnected or G ′ − e is connected and δ(G ′ − e) =
1. Then since G is a 2

3
-minimal graph, it follows that G ′ is a 2

3
-minimal graph. The degree

of each large vertex is unchanged in G and G ′, and so the graph G ′ has at least two large

vertices. Hence applying the inductive hypothesis to G ′, G ′ = B1 by Observation 6, whence

G ∈ {B6, B7}.
On the other hand, suppose G ′ − e is a connected subgraph of G and δ(G ′ − e) ≥ 2. Since

γpr(G ′ − e) ≥ γpr(G ′) = 2n′/3, Observations 6 and 16 imply that G ′ − e ∈ {B1, C3, C5, C6,

C9, D(5, 5)}. If G ′ − e = B1, then n = 10 and γpr(G) = 4 = 2(n − 4)/3, a contradiction.

Since the set L is independent in G, G ′ − e �= C3. If G ′ − e = C5, then n = 9 and γpr(G) =
4 = 2(n − 3)/3, a contradiction. Suppose G ′ − e = C6. Then, n = 10. If u and v are at

distance 3 apart in G ′ − e, then γpr(G) = 4 = 2(n − 4)/3, a contradiction. Hence, u and v

are at distance 2 apart in G ′ − e, whence G = B8. Suppose G ′ − e = C9. Then, n = 13. If u
and v are at distance 2 or 3 apart in G ′ − e, then γpr(G) = 6 = 2(n − 4)/3, a contradiction.

Hence, u and v are at distance 4 apart in G ′ − e, whence G = B12. If G ′ − e = D(5, 5), then

n = 13 and γpr(G) = 6 = 2(n − 4)/3, a contradiction. �

By Lemma 18, we may assume that there is no path on six vertices in G with the two ends
of the path not adjacent and with every internal vertex of the path a degree-2 vertex in G, for

otherwise G ∈ B. With this assumption, every 2-path in G contains at most three vertices,

while every 2-handle of G contains at most five vertices.
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Lemma 19. If G contains a degree-3 vertex that is adjacent to the ends of a 2-handle, then
G ∈ G.

Proof: Suppose that G contains a degree-3 vertex v that is adjacent to the ends of a 2-handle

C . Let P be the 2-path that has an end adjacent with v, and let u be the other large vertex

adjacent with an end of P . Let C contain r − 1 vertices and P contain s vertices. By our

earlier assumptions, 3 ≤ r ≤ 6 and 1 ≤ s ≤ 3.

Let G1 = G[V (C) ∪ {v} ∪ V (P)] and let G2 = G − V (G1). Then, G1 is a key Lr,s , while

G2 is a connected graph with δ(G2) ≥ 2. For i = 1, 2, let Gi have order ni , and so n =
n1 + n2. It is a simple exercise to check that γpr(G1) ≤ 2n1/3 with equality if and only if

G1 ∈ {L3,3, L4,2, L5,1, L6,3}. If γpr(G2) < 2(n2 − 1)/3, then γpr(G) ≤ γpr(G1) + γpr(G2) <

2(n − 1)/3, a contradiction. Hence, by Observation 16, G2 ∈ B ∪ C ∪ D ∪ G.

If G2 = C5, then γpr(G) ≤ 2(n − 1)/3 with equality if and only if G1 ∈ {L3,2, L4,1, L5,3,

L6,2}, i.e., if and only if G ∈ {G(1, 0, 0, 1), G(0, 1, 0, 1), G(0, 0, 1, 1), G(0, 0, 0, 2)}. How-

ever G is a 2
3
-minimal graph, and so γpr(G) ≥ 2(n − 1)/3, whence γpr(G) = 2(n − 1)/3 and

G ∈ G. Thus we may assume that G2 �= C5, and so γpr(G2) ≤ 2n2/3.

Suppose γpr(G2) = 2n2/3. Then, by Observation 6, G2 ∈ {B1, C3, C6, C9, D(5, 5)}. If

G2 = B1, then since L is an independent set, u is a vertex of degree-3 in B1 and

a simple check shows that γpr(G) ≤ 2(n − 2)/3, a contradiction. If G2 = C3, then γpr(G) ≤
2(n − 1)/3 with equality if and only if G ∈ {G(0, 2, 0, 0), G(0, 1, 0, 1), G(0, 1, 1, 0)}. If

G2 = C6, then γpr(G) ≤ 2(n − 1)/3 with equality if and only if G ∈ {G(0, 1, 1, 0),

G(0, 0, 2, 0), G(0, 0, 1, 1)}. Hence if G2 ∈ {C3, C6}, then γpr(G) = 2(n − 1)/3 and G ∈ G.

Since every 2-handle of G contains at most five vertices, G2 �= C9. If G2 = D(5, 5), then

either u is the vertex of degree-3 in D(5, 5) or u is a degree-2 vertex with two small neigh-

bors. In either case, a simple check shows that γpr(G) ≤ 2(n − 2)/3, a contradiction.

Hence if γpr(G2) = 2n2/3, then G2 ∈ {C3, C6} and G ∈ G. Thus we may assume that

γpr(G2) < 2n2/3, i.e., γpr(G2) ≤ 2(n2 − 1)/3. However, G2 ∈ B ∪ C ∪ D ∪ G, and so, by

Observation 6, γpr(G2) = 2(n2 − 1)/3.

If γpr(G1) < 2n1/3, then γpr(G) ≤ γpr(G1) + γpr(G2) ≤ 2(n − 2)/3, a contradiction.

Hence, γpr(G1) = 2n1/3, whence, as observed earlier, G1 ∈ {L3,3, L4,2, L5,1, L6,3}. Sup-

pose G1 �= L5,1. Then, by Observation 8(i), there exists a γpr(G2)-set that contains u. Any

such γpr(G2)-set can be extended to a PDS of G by adding 2(n1 − 3)/3 vertices of G1,

implying that γpr(G) ≤ 2(n − 3)/3, a contradiction. Hence, G1 = L5,1. Let w be the degree-

1 vertex of G1. Then, γnpr(G1; w) = γpr(G1) − 1. Since L is an independent set, u is not

a special vertex of a graph in B. If G2 /∈ G or if G2 ∈ G and u is not the identified ver-

tex of G2, then γnpr(G2; u) = γpr(G2) − 1, whence γpr(G) ≤ γnpr(G1; w) + γnpr(G2; u) =
γpr(G1) + γpr(G2) − 2 < 2(n − 1)/3, a contradiction. Hence we must have that G2 ∈ G and

u is the identified vertex of G2, implying that G ∈ G. �

By Lemma 19, we may assume that if G contains a 2-handle, then the large vertex adjacent
to the ends of this 2-handle has degree at least 4.

Lemma 20. If G has a 2-handle containing three or four vertices, then G ∈ {B9, B11} or
G ∈ G.

Proof: Suppose that G contains a 2-handle C with |C | ∈ {3, 4}. Let v be the vertex of L
adjacent to the two ends of C . By assumption, dG(v) ≥ 4. Let C be the path v1, v2, . . . , vt ,

and so 3 ≤ t ≤ 4.
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Let G ′ = G − V (C). Then, G ′ is a connected subgraph of G of order n′ = n − t with

δ(G ′) ≥ 2. By Observation 16, G ′ ∈ B ∪ C ∪ D ∪ G or γpr(G ′) < 2(n′ − 1)/3. The degree

of each large vertex other than v is unchanged in G and G ′, and so the graph G ′ has at least

one large vertex. In particular, G ′ is not a cycle, and so by Observation 6, γpr(G ′) ≤ 2n′/3.

Any γpr(G ′)-set can be extended to a PDS of G by adding to it the two vertices v2 and v3,

and so γpr(G) ≤ γpr(G ′) + 2.

Suppose t = 4. If γpr(G ′) < 2n′/3 = 2(n − 4)/3, then γpr(G) < 2(n − 1)/3, a contradic-

tion. Hence, γpr(G ′) ≥ 2n′/3, and so, by Observation 6, G ′ ∈ {B1, D(5, 5)}. If G ′ = B1, then,

since L is an independent set, the vertex v must be one of the two degree-3 vertices in B1,

whence G = B9. If G ′ = D(5, 5), then since L is an independent set and |L| ≥ 2, the vertex

v must be a degree-2 vertex of D(5, 5) with two small neighbors, whence G = B11.

Suppose that t = 3. If γpr(G ′) < 2(n′ − 1)/3, then γpr(G) < 2(n − 1)/3, a contradiction.

Hence, γpr(G ′) ≥ 2(n′ − 1)/3, and so, Observation 6, G ′ ∈ B ∪ C ∪ D ∪ G. Since L is an

independent set, if G ′ ∈ B, then v is not a special vertex of G ′. Hence if G ′ /∈ G or if

G ′ ∈ G and v is not the identified vertex of G ′, then by Observation 8(ii), γnpr(G ′; v) =
γpr(G ′) − 1. Any γnpr(G ′; v)-set can be extended to a PDS of G by adding the vertex v1 (with

v and v1 paired), and so γpr(G) ≤ γnpr(G ′; v) + |{v1}| = γpr(G ′) ≤ 2n′/3 = 2(n − 3)/3, a

contradiction. Hence we must have that G ′ ∈ G with v the identified vertex of G ′, implying

that G ∈ G. �

By Lemma 20, we may assume that every 2-handle of G contains two vertices or five
vertices.

Lemma 21. Every 2-path of G contains one vertex or two vertices.

Proof: Assume that G has a 2-path P: v1, v2, v3 containing three vertices. Let u and v

be the large vertices adjacent to v1 and v3, respectively. Let G ′ = G − V (P). Then, G ′

is a subgraph of G of order n′ = n − 3 with δ(G ′) ≥ 2. Any γpr(G ′)-set can be extended

to a PDS of G by adding to it two adjacent vertices of P , and so γpr(G) ≤ γpr(G ′) + 2.

Hence if γpr(G ′) < 2(n′ − 1)/3, then γpr(G) < 2(n − 1)/3, a contradiction. Consequently,

γpr(G ′) ≥ 2(n′ − 1)/3.

Assume first that G ′ is disconnected. Let G1 = (V1, E1) and G2 = (V2, E2) be the two

components of G ′ where u ∈ V1. For i = 1, 2, let |Vi | = ni , and so n = n1 + n2 + 3. Each

Gi satisfies δ(Gi ) ≥ 2 and is connected. Our assumption that no large vertex of degree-3

is adjacent to the ends of a 2-handle implies that Gi is not a cycle. Hence by Observa-

tion 16, for i = 1, 2, Gi ∈ B ∪ D ∪ G or γpr(Gi ) < 2(ni − 1)/3. If γpr(Gi ) ≤ 2(ni − 1)/3

for i = 1, 2, then γpr(G) ≤ γpr(G1) + γpr(G2) + 2 ≤ 2(n1 + n2 − 2)/3 + 2 = 2(n − 2)/3, a

contradiction. Hence we may assume that γpr(G1) = 2n1/3. By our earlier assumption, no

2-handle of G contains five vertices. Hence, since G1 is not a cycle, it follows from Ob-

servation 6 that G = B1. Since L is an independent set in G, the vertex u is a degree-3

vertex in G1. But then any γpr(G2)-set can be extended to a PDS of G by adding to it

four additional vertices, namely v1 and v2 and the two vertices in G1 at distance 2 from

u. Hence, γpr(G) ≤ γpr(G2) + 4 ≤ 2n2/3 + 4 = 2(n − 9)/3 + 4 = 2(n − 3)/3, a contradic-

tion. Therefore, G ′ is connected.

As observed earlier, γpr(G ′) ≥ 2(n′ − 1)/3. Hence, by Observation 16, G ′ ∈ B ∪ C ∪ D ∪
G. By our earlier assumptions, we recall that n ≥ 8 (and so, n′ ≥ 5), L is an independent

set in G, every 2-handle in G, if any, contains two or five vertices, no 2-path in G contains

four or more vertices, and the large vertex adjacent to the ends of a 2-handle has degree at
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least 4. In particular, we observe that the vertices u and v are not adjacent in G, and that if

G ′ has a 2-path containing four or more vertices or a 2-handle that does not contain two or

five vertices, then such a 2-path or 2-handle contains at least one of u and v. It follows that

G ′ /∈ {B5, C3, D(5, 9), D3(5)} and if G ′ ∈ G, then G ′ contains exactly two units. With these

restrictions, it is a simple exercise to check that γpr(G) ≤ 2(n − 2)/3, a contradiction. �

Lemma 22. There is no 2-handle in G.

Proof: Assume that G contains a 2-handle C . Let v be the vertex in L adjacent to the

two ends of C . By our earlier assumptions, |C | = 2 or |C | = 5 and dG(v) ≥ 4. Let C be

the path v1, v2, . . . , vt , where t ∈ {2, 5}. Since |L| ≥ 2, there is a 2-path P with one of its

ends adjacent to v. Let u be the large vertex adjacent to the other end of P . By our earlier

assumptions, 1 ≤ |P| ≤ 2.

Suppose that |P| = 1. Let V (P) = {x}, and so N (x) = {u, v}. Let G ′ = G − x . Then, G ′

is a subgraph of G of order n′ = n − 1 with δ(G ′) ≥ 2. Since v is adjacent to the ends of the 2-

handle C , and |C | ∈ {2, 5}, there exists a γpr(G ′)-set containing v. Such a γpr(G ′)-set is a PDS

of G, implying that γpr(G) ≤ γpr(G ′). Let Gv be the component of G ′ containing v (possibly,

Gv = G ′). Since v is adjacent to the ends of the 2-handle C in Gv , and since dGv
(v) ≥

3, the component Gv is not a cycle and Gv /∈ {B1, D(5, 5)}. Hence, by Observation 16,

γpr(Gv) ≤ 2(|V (Gv)| − 1)/3. If G ′ is connected, then G ′ = Gv , and so γpr(G) ≤ 2(n − 2)/2,

a contradiction. Therefore, G ′ is disconnected. Let Gu be the component of G ′ containing

u. Since every large vertex adjacent to the ends of a 2-handle in G has degree at least 4,

the component Gu is not a cycle. In particular, Gu �= C5, and so γpr(Gu) ≤ 2|V (Gu)|/3 by

Observation 16. Hence, γpr(G) ≤ γpr(Gu) + γpr(Gv) ≤ 2(|V (Gv)| − 1)/3 + 2|V (Gu)|/3 =
2(n − 2)/3, a contradiction. Hence, |P| = 2 and we may assume that every 2-path with one

end adjacent to v contains two vertices.

Suppose that v is adjacent to the end of at least two 2-handles (each containing two

or five vertices) in G. Let F = G − V (C). Then, F is not a cycle, dF (v) ≥ 3 and v is

adjacent to the ends of a 2-handle in F (containing two or five vertices). Thus by Obser-

vation 16, γpr(F) ≤ 2(|V (F)| − 1)/3 = 2(n − t − 1)/3. Furthermore, there exists a γpr(F)-

set containing v. Hence if t = 2, then γpr(G) ≤ γpr(F) ≤ 2(n − 3)/3, while if t = 5, then

γpr(G) ≤ γpr(F) + 2 ≤ 2(n − 6)/3 + 2 = 2(n − 3)/3. Both cases produce a contradiction.

Hence, C is the only 2-handle with its ends adjacent to v.

Since dG(v) ≥ 4, there are at least two 2-paths with one end adjacent to v. By assumption,

every such 2-path contains two vertices. Let the 2-path P be given by x, y where x is the end

of P adjacent to v (and y the end adjacent to u). Let P1, . . . , Pr , r ≥ 1, be the other 2-paths

with one end adjacent to v. For i = 1, . . . , r , let xi be the end of the 2-path Pi adjacent to

v and let yi be the other end of Pi . Let G ′ be obtained from G − V (C) − {v} by adding

the edges xxi for i = 1, . . . , r . Then, G ′ is a connected graph of order n′ = n − |V (C)| − 1

with δ(G ′) ≥ 2. Observe that every edge e incident with x in G ′ is a bridge of G ′ or satisfies

δ(G ′ − e) = 1, while every edge f ∈ E(G ′) that is a bridge in G or satisfies δ(G − f ) = 1

is also a bridge of G ′ or satisfies δ(G ′ − f ) = 1.

Assume that γpr(G ′) ≥ 2(n′ − 1)/3. It follows that since G is a 2
3
-minimal graph, so is G ′,

whence, by the inductive hypothesis, G ′ ∈ B ∪ C ∪ D ∪ G. Since G ′ is not a cycle, G ′ /∈ C.

Since L is an independent set in G, the set of large vertices in G ′ is an independent set in

G ′. By construction of the graph G ′, if dG(v) = 4, then r = 1 and y, x, x1, y1 is either a

2-path or a 2-handle in G ′ of cardinality 4, while if dG(v) ≥ 5, then r ≥ 2 and the 2-paths

P1, P2, . . . , Pr in G are also 2-paths in G ′ with x the large vertex in G ′ adjacent to the ends xi

of each 2-path Pi , 1 ≤ i ≤ r . Thus, G ′ has either a 2-path or a 2-handle (namely, y, x, x1, y1)
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of cardinality 4 or a large vertex (namely, x) that is adjacent only to the ends of 2-paths

with one such 2-path (namely, the 2-path consisting of the vertex y) of cardinality 1 and

the remaining 2-paths (namely, the 2-paths P1, P2, . . . , Pr ) of cardinality 2. By our earlier

assumptions, every 2-handle in G ′, except possibly for one 2-handle (namely, y, x, x1, y1

which occurs if r = 1 and if y and y1 are adjacent to the common large vertex u), contains

two or five vertices, while every large vertex, except possibly for the vertex u, adjacent to

the ends of a 2-handle in G ′ has degree at least 4. The only graphs in B ∪ D ∪ G that satisfy

our earlier assumptions and have either a 2-path or a 2-handle of cardinality 4 or a large

vertex that is adjacent only to the ends of 2-paths, all but one of which have cardinality 2,

are graphs in the subfamily {B4, B8, B9, B12, D(3, 5), D(5, 6), G(0, 1, 0, 1), G(0, 0, 1, 1)}.
Thus, G ′ must be a graph in this subfamily. In all cases, it is a simple exercise to check that

γpr(G) < 2(n − 1)/3, a contradiction. Hence, γpr(G ′) ≤ 2(n′ − 2)/3.

Let S′ be a γpr(G ′)-set. Assume that x /∈ S′ or if x ∈ S′, then x is not paired with xi

in S′ for some i , 1 ≤ i ≤ r . Let S = S′ ∪ {v, v1} if t = 2 and let S = S′ ∪ {v, v1, v2, v3} if

t = 5. Then, S is a PDS of G, and so γpr(G) ≤ |S| ≤ 2(n − 2)/3, a contradiction. Hence,

renaming vertices if necessary, we may assume that {x, x1} ⊂ S′ with x and x1 paired in S′.
Let u1 be the degree-2 vertex adjacent with x1 in G. Let S = S′ ∪ {v, u1} if t = 2 and let

S = S′ ∪ {v, u1, v2, v3} if t = 5. Then, S is a PDS of G (with v paired with x , and with u1

paired with x1), and so γpr(G) ≤ |S| ≤ 2(n − 2)/3, a contradiction. �

By our assumptions to date, L is independent and every 2-path of G contains one vertex

or two vertices. Further, G contains no 2-handle by Lemma 22. In particular, this implies

that G contains no triangle.

Lemma 23. If G contains a 4-cycle, then G ∈ {B1, B2}.

Proof: Suppose that G contains a 4-cycle u, v, w, x, u. Since G has no 2-handle, we may

assume that u and w are large vertices of G (and so v and x are small vertices). Let G ′ =
G − v have order n′ = n − 1. Then, δ(G ′) ≥ 2 and G ′ is connected. Any γpr(G ′)-set contains

at least one of u and w and is therefore a PDS of G. Thus, γpr(G) ≤ γpr(G ′). Hence if

γpr(G ′) < 2n′/3, then γpr(G) < 2(n − 1)/3, a contradiction. Therefore, γpr(G ′) ≥ 2n′/3. By

Observation 16, G ′ ∈ {B1, C3, C5, C6, C9, D(5, 5)}. By our earlier assumptions and results,

G ′ /∈ {C3, C6, C9, D(5, 5)}. If G ′ = C5, then G = B1, while if G ′ = B1, then G = B2. �

By Lemma 23, we may assume that G contains no 4-cycle. Hence the smallest cycle in
G has length 5.

Lemma 24. If G contains a large vertex that is adjacent only to the ends of 2-paths on one
vertex, then G = B10.

Proof: Let v be a large vertex of G that is adjacent only to the ends of 2-paths on one vertex.

By our assumption that G contains no 4-cycle, the vertex v is the only common neighbor of

two vertices in N (v). Let G ′ = G − N [v] and let G ′ have order n′ = n − dG(v) − 1 ≤ n − 4.

Then, δ(G ′) ≥ 2.

We show first that G ′ has no C5-component. Assume, to the contrary, that G ′ has a C5-

component C : a, b, c, d, e, a. By our earlier assumptions, this component contains two large

vertices, say a and c, of G at distance 2 apart on the cycle. Let v1 be the common neighbor

of a and v, and let v2 be the common neighbor of c and v. If d(v) = 3, let G1 = G ′ − V (C),
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while if d(v) ≥ 4, let G1 = G − V (C) − {v1, v2}. Let G1 have order n1. In both cases, G1

is a connected graph with δ(G1) ≥ 2.

Assume that d(v) = 3. Then, n1 = n − 9. Let u be the vertex of G1 that has a common

neighbor with v in G. If γpr(G ′) ≤ 2(n′ − 2)/3 = 2(n − 11)/3, then γpr(G) ≤ γpr(G ′) + 6 ≤
2(n − 2)/3, a contradiction. Hence, γpr(G ′) ≥ 2(n′ − 1)/3. By Observation 16, G ′ ∈ B ∪ C ∪
D ∪ G. By our earlier assumptions, G1 is not a cycle, and so γpr(G1) ≤ 2n′/3 = 2(n − 9)/3.

By Observation 8(i), there is a γpr(G1)-set that contains u. Such a γpr(G1)-set can be extended

to a PDS of G by adding to it the four vertices a, c, v1, v2, implying that γpr(G) ≤ γpr(G ′) +
4 ≤ 2(n − 9)/3 + 4 = 2(n − 3)/3, a contradiction. Hence, d(v) ≥ 4, and so n1 = n − 7. By

our earlier assumptions, G1 is not a cycle and G1 /∈ {B1, D(5, 5)}. Hence, by Observations 6

and 16, γpr(G1) ≤ 2(n′ − 1)/3 = 2(n − 8)/3. Any γpr(G ′)-set can be extended to a PDS

of G by adding to it the four vertices a, c, v1, v2, implying that γpr(G) ≤ γpr(G ′) + 4 ≤
2(n − 8)/3 + 4 = 2(n − 2)/3, a contradiction. Hence, G ′ has no C5-component.

Applying the inductive hypothesis to each component of G ′, γpr(G ′) ≤ 2n′/3 ≤ 2(n −
4)/3. Any γpr(G ′)-set can be extended to a PDS of G by adding to it v and a neighbor

of v. Hence, 2(n − 1)/3 ≤ γpr(G) ≤ γpr(G ′) + 2 ≤ 2(n − 1)/3. Consequently we must have

equality throughout this inequality chain, implying that d(v) = 3 and that each component

of G ′ is from the family {B1, C3, C6, C9, D(5, 5)}. Since the smallest cycle in G has length 5,

no component of G ′ is B1 or C3. If some component of G ′ is a 9-cycle, then G ′ = C9 with the

three large vertices of G from V (G ′) pairwise at distance 3 apart in G ′. But then n = 13 and

γpr(G) = 6 = 2(n − 4)/3, a contradiction. If some component of G ′ is D(5, 5), then G ′ =
D(5, 5) with the three large vertices of G from V (G ′) consisting of the central vertex of G ′

and the two vertices at distance 4 apart in G ′. But then n = 13 and γpr(G) = 6 = 2(n − 4)/3,

a contradiction. Hence every component of G ′ must be a 6-cycle. But then G ′ = C6, implying

that G = B10. �

By Lemma 24, we may assume that every large vertex is adjacent to the end of at least
one 2-path on two vertices.

Lemma 25. Every large vertex of G is adjacent to the ends of at least two 2-paths that
contain two vertices.

Proof: Assume that G contains a large vertex v that is adjacent to the end of exactly one

2-path P on two vertices. By assumption, the smallest cycle in G has length 5. We consider

two possibilities.

Case 1. The vertex v belongs to a 5-cycle C : v, w, x, y, z, v. Necessarily, V (P) ⊂ V (C).

We may assume that P is the 2-path w, x , and so y is a large vertex and z a small vertex.

Let G ′ be obtained from G be deleting all neighbors of v not on C . Then, δ(G ′) ≥ 2 and G ′

has order n′ = n − d(v) + 2 ≤ n − 1. Notice that in G ′, the vertex v belongs to a 2-handle,

namely z, v, w, x , on four vertices.

Suppose that G ′ contains a C5-component F : a, b, c, d, e, a. By our earlier assumptions,

this component contains two large vertices, say a and c, of G at distance 2 apart on the

cycle F . Let v1 be the common neighbor of a and v, and let v2 be the common neighbor

of c and v. Let G1 = G − V (F) − {v1, v2}. Then, G1 is a connected graph with δ(G1) ≥ 2.

Let G1 have order n1 = n − 7. Since G1 is not a cycle and G1 /∈ {B1, D(5, 5)}, it follows

by Observations 6 and 16 that γpr(G1) ≤ 2(n′ − 1)/3 = 2(n − 8)/3. Any γpr(G ′)-set can
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be extended to a PDS of G by adding to it the four vertices a, c, v1, v2, implying that

γpr(G) ≤ γpr(G ′) + 4 ≤ 2(n − 8)/3 + 4 = 2(n − 2)/3, a contradiction. Hence, G ′ has no

C5-component.

Applying the inductive hypothesis to each component of G ′, γpr(G ′) ≤ 2n′/3 with equality

if and only if each component of G ′ belongs to the family {B1, C3, C6, C9, D(5, 5)}. Let S′

be a γpr(G ′)-set. If v /∈ S′, then {w, x, y} ⊂ S′ with w and x paired in S′. Replacing x in S′

with the vertex v, produces a new γpr(G ′)-set (with v and w paired). Hence we may assume

v ∈ S′. But then S′ is a PDS of G, implying that γpr(G) ≤ |S′| = γpr(G ′) ≤ 2n′/3. If d(v) ≥ 4,

then γpr(G) ≤ 2n′/3 ≤ 2(n − 2)/3, a contradiction. Hence, d(v) = 3. If γpr(G ′) < 2n′/3,

then γpr(G ′) ≤ 2(n′ − 1)/3 = 2(n − 2)/3, implying once again that γpr(G) ≤ 2(n − 2)/3, a

contradiction. Hence, γpr(G ′) = 2n′/3. This implies that the component of G ′ containing

the vertex v must be D(5, 5). However then G is obtained from D(5, 5) by adding a new

vertex and joining it to two vertices at distance 4 apart in D(5, 5), whence n = 10 and

γpr(G) = 4 = 2(n − 4)/3, a contradiction.

Case 2. The vertex v belongs to no 5-cycle. Let G ′ be obtained from G by removing the

vertices in N [v] and both vertices on the 2-path that contain two vertices with one end

adjacent to v.

Suppose that G ′ contains a C5-component C . By our earlier assumptions, this component

contains two large vertices of G at distance 2 apart on the cycle. On the one hand, suppose

that d(v) = 3. Let G1 = G ′ − V (C). Then, G1 is a connected graph with δ(G1) ≥ 2 of

order n1 = n − 10. By our earlier assumptions, G1 is not a cycle and G1 �= D(5, 5). If

G1 = B1, then n = 16 and γpr(G) ≤ 8 = 2(n − 4)/3, a contradiction. Hence, G1 �= B1. It

follows from Observations 6 and 16 thatγpr(G1) ≤ 2(n1 − 1)/3 = 2(n − 11)/3. Anyγpr(G1)-

set can be extended to a PDS of G by adding to it six vertices, implying that γpr(G) ≤
γpr(G1) + 6 ≤ 2(n − 11)/3 + 6 = 2(n − 2)/3, a contradiction. On the other hand, suppose

that d(v) ≥ 4. Let G∗ be obtained from G by deleting V (C) and the vertices on the two 2-paths

that have an end adjacent with one of the two large vertices of C . Then, G∗ is a connected

graph with δ(G∗) ≥ 2 of order n∗ where n∗ = n − 7 or n∗ = n − 8. Further, by our earlier

assumptions, we know that the smallest cycle in G∗ has length 5 and G∗ contains at least

two large vertices. In particular, G∗ is not a cycle and G∗ /∈ {B1, D(5, 5)}. It follows from

Observations 6 and 16 that γpr(G∗) ≤ 2(n∗ − 1)/3 ≤ 2(n − 8)/3. Any γpr(G∗)-set can be

extended to a PDS of G by adding to it four vertices, implying that γpr(G) ≤ γpr(G∗) + 4 ≤
2(n − 8)/3 + 4 = 2(n − 2)/3, a contradiction. We deduce, therefore, that G ′ contains no

C5-component.

Applying the inductive hypothesis to each component of G ′, γpr(G ′) ≤ 2n′/3 ≤ 2(n −
5)/3. Any γpr(G ′)-set can be extended to a PDS of G by adding to it the vertex v and its

neighbor on the 2-path that contains two vertices. Hence,γpr(G) ≤ γpr(G ′) + 2 ≤ 2(n − 2)/3,

a contradiction. �

By Lemma 25, every large vertex of G is adjacent to the ends of at least two 2-paths that

contain two vertices. Let S1 be the set of small vertices in G with both neighbors in L (and

so, each vertex in S1 is a 2-path on one vertex). Let L1 be the set of large vertices in G that

are dominated by S1. Let S2 be the set of small vertices in G that belong to 2-paths on two

vertices and are dominated by L1 (and so, each vertex in S2 is adjacent to exactly one large

vertex and this large vertex is adjacent to a vertex of S1). Let S3 be the set of small vertices

that are not dominated by L1. Let L2 be the set of large vertices that are dominated by S3.
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For i = 1, 2, let |Li | = �i and for j = 1, 2, 3, let |S j | = s j . Let n1 = �1 + s1 + s2 and let

n2 = �2 + s3. Then, n = n1 + n2. By Lemma 25, s2 ≥ 2�1.

For sets A and B, let [A, B] denote the set of edges between A and B. Then,

3�1 ≤ |[L1,S1 ∪ S2]| = 2s1 + s2 = 2(n1 − �1) − s2 ≤ 2(n1 − �1) − 2�1 = 2n1 − 4�1, im-

plying that �1 ≤ 2n1/7. Moreover, 3�2 ≤ |[L2,S3]| = s3 = n1 − �2, implying that �2 ≤
n2/4. We now construct a PDS S of G as follows. Initially, let S consist of the (independent)

set L which dominates V (G). We then consider each vertex v ∈ L in turn. If N (v) ⊂ S,

then delete v from S; otherwise, add a neighbor of v to S. The PDS S of G constructed in

this way is such that |S| ≤ 2|L| = 2�1 + 2�2 ≤ 4n1/7 + n2/2 ≤ 4n/7 < 2(n − 1)/3 since

n > 7. Consequently, γpr(G) ≤ |S| < 2(n − 1)/3, a contradiction. This completes the proof

of Theorem 3.

5.3 Proof of Theorem 4

Let G be a connected graph of order n ≥ 6 with δ(G) ≥ 2. Since the paired-domination

number of a graph cannot decrease if edges are removed, it follows from Theorem 3 and Ob-

servation 6 that γpr(G) ≤ 2n/3. Further, suppose γpr(G) = 2n/3. Then by removing edges of

G, if necessary, we produce a 2
3
-minimal graph G ′ satisfying γpr(G ′) = 2n/3. By Theorem 3

and Observation 6, G ′ ∈ {B1, C6, C9, D(5, 5)}. In all cases it can be readily checked that

G = G ′ or G ′ ∈ F where F is the family of six graphs shown in Fig. 4.

5.4 Proof of Theorem 5

Let G be a connected graph of order n ≥ 10 with δ(G) ≥ 2. Since the paired-domination

number of a graph cannot decrease if edges are removed, it follows from Theorem 3 and

Observation 6 that γpr(G) ≤ 2(n − 1)/3. Further, suppose n ≥ 14 and γpr(G) = 2(n − 1)/3.

Then by removing edges of G, if necessary, we produce a 2
3
-minimal graph G ′ satisfying

γpr(G ′) ≥ 2(n − 1)/3. Since n ≥ 14, G ′ ∈ G by Theorem 3 and Observation 6. It can now

be readily checked that G = G ′ or G ′ ∈ H where H is the family of graphs constructed in

Section 3.

Appendix

In this Appendix, we provide proofs of some of the preliminary results in Section 5.1.

Recall Observation 9.

Observation 9. Let G be a connected graph with δ(G) ≥ 2 and let F be obtained from G by

subdividing any edge four times. Then, γpr(F) ≤ γpr6(G) + 2.

Proof: Let uv be the edge of G that is subdivided four times to obtain the graph F , and let

u, u1, u2, u3, u4, v be the resulting path in F . Let S be a γpr(G)-set. Then, S can be extended

to a PDS of F as follows. If {u, v} ⊆ S with u and v paired in G[S], let S′ = S ∪ {u1, u4}
(with u paired with u1 and v paired with u4 in F[S]); if {u, v} ⊆ S with u and v not paired in

G[S] or if {u, v} ∩ S = ∅, let S′ = S ∪ {u2, u3}; if exactly one of u and v is in S, say u ∈ S,

then let S′ = S ∪ {u3, u4}. Then, S′ is a PDS of F , and so γpr(F) ≤ |S′| = γpr(G) + 2. �
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Recall Observation 10.

Observation 10. For n ≥ 3, γpr(Cn) = 2
⌈

n
4

⌉
.

Proof: We proceed by induction on the order n of a cycle Cn . The result is straightforward

to verify for n ∈ {3, 4, 5, 6}. Assume then that n ≥ 7 and that the result is true for all cycles

on fewer than n vertices. Consider an n-cycle G given by v1, v2, . . . , vn, v1. Let G ′ = (G \
{v1, v2, v3, v4}) ∪ {v5vn}. Then, G ′ is a cycle of order n − 4 ≥ 3. By the inductive hypothesis,

γpr(G ′) = 2�(n − 4)/4	 = 2�n/4	 − 2.

It remains for us to show that γpr(G) = γpr(G ′) + 2. Let D be a γpr(G)-set. Then each com-

ponent of G[D] is a P2 or a P4. Suppose G[D] contains no P2-component. Then, since n ≥ 7,

we may assume (renaming vertices if necessary) that {v1, v2, v3, v4} ⊆ D and v5 /∈ D. On the

one hand, if v6 ∈ D, then {v6, v7, v8, v9} ⊆ D, in which case (D\{v3, v6, v7}) ∪ {v5} is a PDS

of G. On the other hand, if v6 /∈ D, then {v7, v8, v9, v10} ⊆ D, (D\{v3, v4, v7, v8}) ∪ {v5, v6}
is a PDS of G. Both cases produce a PDS of cardinality γpr(G) − 2, which is impossi-

ble. Hence, G[D] contains a P2-component. We may assume (renaming vertices if nec-

essary) that D ∩ {v1, v2, v3, v4} = {v2, v3}. Therefore, D\{v2, v3} is a PDS of G ′, and so

γpr(G ′) ≤ |D| − 2 = γpr(G) − 2. However, by Observation 9, γpr(G) ≤ γpr(G ′) + 2. Conse-

quently, γpr(G) = γpr(G ′) + 2 = 2�n/4	. �

Recall Observation 12.

Observation 12. If G is a daisy of order n, then γpr(G) ≤ 2n/3. Furthermore, γpr(G) = 2n/3

if and only if G = D(5, 5), while γpr(G) = 2(n − 1)/3 if and only if G = Dk(4) where k ≥ 2

or G ∈ {D(3, 5), D(5, 6), D(5, 9), D3(5)}.

A proof of Observation 12 follows from Observations 26 and 27.

Observation 26. If G is a daisy of order n with two petals, then γpr(G) ≤ 2n/3. Furthermore,

γpr(G) = 2n/3 if and only if G = D(5, 5), while γpr(G) = 2(n − 1)/3 if and only if G ∈
{D(3, 5), D(4, 4), D(5, 6), D(5, 9)}.

Proof: If n = 5, then G = D(3, 3), while if n = 6, then G = D(3, 4). Hence if n ∈ {5, 6},
γpr(G) = 2 < 2(n − 1)/3. If n = 7, then G = D(3, 5) or G = D(4, 4). In both cases,

γpr(G) = 2(n − 1)/3. Assume, then, that n ≥ 8.

Let G = D(n1 + 1, n2 + 1), and so n = n1 + n2 + 1. Let v denote the vertex of degree 4

in G and let F1 and F2 denote the two cycles passing through v, where Fi
∼= Cni +1 for i = 1, 2.

Let F1 be the cycle v, v1, v2, . . . , vn1
, v and let F2 be the cycle v, u1, u2, . . . , un2

, v. Let S2

be a γpr(F2)-set that contains v. By Observation 10, |S2| = (n2 + 4)/2 if n2 ≡ 0 (mod 4) and

|S2| ≤ (n2 + 3)/2 otherwise. Let S1 = {vi | i ≡ 0 or 3 (mod 4)}.
Suppose n1 ≡ 2 (mod 4) (and still n ≥ 8). Then, |S1| = (n1 − 2)/2 and γpr(G) ≤ |S1 ∪

S2| ≤ (n + 1)/2 < 2(n − 1)/3. Hence we may assume ni �≡ 2 (mod 4) for i = 1, 2.

Suppose n1 ≡ 3 (mod 4) (and still n ≥ 8). Let D1 = {vi | i ≡ 0 or 1 (mod 4)}, and

so |D1| = (n1 − 1)/2. Let D2 = {ui | i ≡ 2 or 3 (mod 4)}, and so |D2| ≤ (n2 + 1)/2.

Thus, γpr(G) ≤ |D1 ∪ D2 ∪ {v}| ≤ (n + 1)/2 < 2(n − 1)/3. Hence we may assume ni �≡
3 (mod 4) for i = 1, 2, and so ni ≥ 4. Thus, n ≥ 9.

Suppose n1 ≡ 1 (mod 4). Then, n ≥ 10 and |S1| = (n1 − 1)/2. Thus, γpr(G) ≤ |S1 ∪
S2| ≤ (n + 2)/2 ≤ 2(n − 1)/3 with strict inequality if n ≥ 11. Hence, γpr(G) < 2(n − 1)/3

unless G = D(5, 6), in which case γpr(G) = 2(n − 1)/3.
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Suppose, finally, that ni ≡ 0 (mod 4) for i = 1, 2. Then, |S1| = n1/2 and |S2| = (n2 +
4)/2. Further, n ≡ 1 (mod 4) and n ≥ 9. If n = 9, then G = D(5, 5) and γpr(G) = 2n/3. If

n = 13, then G = D(5, 9) and γpr(G) = 2(n − 1)/3. Hence we may assume n ≥ 17. Then,

γpr(G) ≤ |S1 ∪ S2| ≤ (n + 3)/2 < 2(n − 1)/3. �

Observation 27. If G is a daisy of order n and G �= D(5, 5), then γpr(G) ≤ 2(n − 1)/3 with

equality if and only if G = Dk(4) where k ≥ 2 or G ∈ {D(3, 5), D(5, 6), D(5, 9), D3(5)}.

Proof: We proceed by induction on the order n ≥ 5 of a daisy G, where G �= D(5, 5). If

n = 5, then G = D(3, 3), while if n = 6, then G = D(3, 4). This establishes the base cases.

Assume, then, that n ≥ 7 and that the result holds for all daisies of order less than n. Let G
be a daisy of order n with k ≥ 2 petals where G �= D(5, 5).

If k = 2, then the result follows from Observation 26. Hence we may assume k ≥ 3. Let v

denote the vertex of degree 2k in G, and let F1, F2, . . . , Fk denote the k cycles passing through

v, where Fi
∼= Cni +1 for i = 1, 2, . . . , k. Thus, n = 1 + ∑k

i=1 ni . Renaming if necessary, we

may assume n1 = min(n1, n2, . . . , nk). Let F1 be the cycle v, v1, v2, . . . , vn1
, v.

Let G ′ = D(n2, . . . , nk). Then, G ′ is a daisy of order n′ = n − n1. If G ′ = D(5, 5), then

either G ∈ {D(3, 5, 5), D(4, 5, 5)}, in which case γpr(G) = 6 < 2(n − 1)/3, or G = D3(5),

in which case n = 13 and γpr(G) = 2(n − 1)/3. Hence we may assume G ′ �= D(5, 5). Ap-

plying the inductive hypothesis to G ′, γpr(G ′) ≤ 2(n′ − 1)/3 with equality if and only if

G ′ = Dk−1(4) or G ′ ∈ {D(3, 5), D(5, 6), D(5, 9), D3(5)}.
Let S′ be a γpr(G ′)-set. The restriction of S′ to the vertices of at least one cycle in G ′ must

be a PDS in that cycle. Hence we may choose S′ to contain the vertex v. If n1 = 2, then S′ is a

PDS of G, and so γpr(G) ≤ |S′| < 2(n − 1)/3. Hence we may assume that n1 ≥ 3.

We now extend S′ to a PDS of G as follows. If n1 ≡ 1 or 2 (mod 4), let S1 = {vi |
i ≡ 0 or 3 (mod 4)}. If n1 ≡ 0 or 3 (mod 4), let S1 = {vi | i ≡ 2 or 3 (mod 4)}. Then,

|S1| ≤ (n1 + 1)/2 and γpr(G) ≤ |S′ ∪ S1| ≤ 2(n′ − 1)/3 + (n1 + 1)/2 ≤ 2(n − 1)/3 + (3 −
n1)/6 ≤ 2(n − 1)/3. Furthermore, if γpr(G) = 2(n − 1)/3, then we must have equal-

ity throughout this inequality chain. In particular, γpr(G ′) = 2(n′ − 1)/3 and n1 = 3.

Thus, G ′ = Dk−1(4) or, by our choice of n1, G ′ ∈ {D(5, 6), D(5, 9), D3(5)}. However if

G ′ = D(5, 6), then n = 13, G = D(4, 5, 6) and γpr(G) = 6 < 2(n − 1)/3; if G ′ = D(5, 9),

then n = 16, G = D(4, 5, 9) and γpr(G) = 8 < 2(n − 1)/3; if G ′ = D3(5), then n = 16,

G = D(4, 5, 5, 5) and γpr(G) = 8 < 2(n − 1)/3. Hence if γpr(G) = 2(n − 1)/3, then G ′ =
Dk−1(4), and so G = Dk(4). �

Recall Observation 14.

Observation 14. If G is a 2
3
-minimal graph of order n, 3 ≤ n ≤ 7, then G ∈ B ∪ G.

Proof: Let G = (V, E) and let � = �(G). If 3 ≤ n ≤ 6, then G = Cn or G = B1. Suppose

n = 7. Then, γpr(G) ≥ 4, and so � ≤ 4. If � = 2, then G = C7. Suppose � = 3. Let u be

a vertex of degree 3. If some vertex in V − N [u] is not adjacent to any vertex in N (u),

then G = B3 or G = G(1, 1, 0, 0) or G = G(0, 2, 0, 0). If every vertex is within distance 2

from u, then G = B4 or G = G(1, 1, 0, 0). Suppose � = 4. Let u be a vertex of degree 4

in G, and let V − N [u] = {v, w}. If v and w have a common neighbor, then γpr(G) = 2, a

contradiction. Hence, v and w have no common neighbor. If both v and w are adjacent to

exactly one vertex in N (u), then G = D(3, 5). If exactly one of v and w is adjacent to only

one vertex in N (u), then G = B2. If both v and w are adjacent to two vertices in N (u), then

G = G(2, 0, 0, 0). �
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