
J Comb Optim (2006) 12:363–386

DOI 10.1007/s10878-006-9005-9

Separating online scheduling algorithms with the relative
worst order ratio

Leah Epstein · Lene M. Favrholdt · Jens S. Kohrt

Published online: 20 September 2006
C© Springer Science + Business Media, LLC 2006

Abstract The relative worst order ratio is a measure for the quality of online algorithms.

Unlike the competitive ratio, it compares algorithms directly without involving an optimal

offline algorithm. The measure has been successfully applied to problems like paging and

bin packing. In this paper, we apply it to machine scheduling. We show that for preemptive

scheduling, the measure separates multiple pairs of algorithms which have the same compet-

itive ratios; with the relative worst order ratio, the algorithm which is “intuitively better” is

also provably better. Moreover, we show one such example for non-preemptive scheduling.

Keywords Online algorithms . Relative worst order ratio . Scheduling

1 Introduction

The relative worst order ratio is a relatively new quality measure for online algorithms,

inspired by the Max/Max ratio (Ben-David and Borodin, 1994) and the random order ratio

(Kenyon, 1996) and defined in Boyar and Favrholdt (2003). Since it compares two algorithms

directly, it sometimes gives more detailed information than the competitive ratio. So far, the

results on the relative worst order ratio have been either consistent with competitive analysis

or closer to empirical results and/or intuition than results on the competitive ratio.

L. Epstein (�)

Department of Mathematics, University of Haifa, Israel

e-mail: lea@math.haifa.ac.il

L. M. Favrholdt . J. S. Kohrt

Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

L. M. Favrholdt

e-mail: lenem@imada.sdu.dk

J. S. Kohrt

e-mail: svalle@imada.sdu.dk

Springer

364 J Comb Optim (2006) 12:363–386

In this paper we analyze several scheduling problems where the competitive ratio does not

give the right separation of algorithms, in the hope that the relative worst order ratio would

do better. In most of the cases considered, the relative worst order ratio prefers the intuitively

best algorithm whereas the competitive ratio does not distinguish the algorithms. Analyzing

the relative worst order ratio is often more straightforward than competitive analysis. Unlike

the optimal offline algorithm, which is generally not known, we know exactly what the two

compared algorithms do on a given input. In many cases, this can simplify the analysis.

We first define the two quality measures.

The quality measures. For any algorithm A and any sequence σ of jobs, let A(σ) be the

makespan obtained by A when scheduling σ . Similarly, let OPT(σ) be the makespan obtained

by an optimal offline algorithm.

The general definition of the competitive ratio of an algorithm A is

CRA = inf {c | ∃b : ∀σ : A(σ) ≤ c · OPT(σ) + b} .

However, scheduling problems are typically scalable. This means that all job lengths of an

adversarial instance can be scaled by any factor, and thus the additive constant b has no effect.

Hence, for the problems considered in this paper, the definition reduces to

CRA = sup
σ

A(σ)

OPT(σ)
.

For the problems considered in this paper, the relative worst order ratio is defined in the

following way (a general, and thus slightly more involved, definition can be found in Boyar

et al. (2005)). For any algorithm A and any input sequence σ , let AW(σ) be the makespan of

A on its worst permutation of σ , i.e., AW(σ) = maxp A(p(σ)), where p is a permutation on

|σ | elements. If AW(σ) ≥ BW(σ) for every sequence σ , we say that the two algorithms are

comparable, and the relative worst order ratio of A to B is

WRA,B = sup
σ

AW(σ)

BW(σ)
.

For some pairs of algorithms, there are sequences σ such that AW(σ) > BW(σ) and

other sequences σ ′ such that AW(σ ′) < BW(σ ′). In this case we say that the two algo-

rithms are incomparable. For comparable algorithms, the measure is transitive. Specifi-

cally, it is shown in Boyar and Favrholdt (2003) that given three algorithms A, B, C such

that WRC,B ≥ 1 and WRB,A ≥ 1, then WRC,A ≥ 1 and moreover min{WRC,B, WRB,A} ≤
WRC,A ≤ WRC,B · WRB,A.

The relative worst order ratio has previously been applied to bin packing (Boyar and

Favrholdt, 2003), paging (Boyar et al., 2005), seat reservation (Boyar and Medvedev, 2004),

and bin coloring (Kohrt, 2004). In this paper, the measure is applied to scheduling.

The scheduling problems. In the basic scheduling problem, we are given m machines and a

sequence of jobs, each characterized by the time it takes to execute it on a unit speed machine.

For problems where the machines have different speeds, a job of size p requires time
p
s when

run on a machine of speed s. The load of a machine is the total size of jobs or parts of jobs

scheduled on this machine. The goal is to minimize the makespan, i.e., the time when all

jobs are completed. The jobs arrive one by one. Each job must be scheduled at arrival, and

this schedule cannot be changed afterwards. In the non-preemptive case, a job has to run

without interruption on a single machine. In the preemptive case, the algorithms are allowed

Springer

J Comb Optim (2006) 12:363–386 365

to preempt the job and run parts of it on different machines, as long as two parts of a job are

never run at the same time. For preemptive algorithms it may make sense to use idle time.

However, the algorithms stated and defined in this paper do not use idle time.

We study four scheduling problems, preemptive and non-preemptive scheduling on iden-

tical machines and on two uniformly related machines.

Results. We first consider the preemptive problems. For identical machines, we define a class

of algorithms. This class generalizes two previously known algorithms, those of Seiden (2001)

and of Chen et al. (1995). For any pair of algorithms in this class, one algorithm A is better

than the other algorithm B in the sense that A is never worse than B and on some sequences

it is better. In contrast to the competitive ratio which is the same for all these algorithms,

the relative worst order ratio shows this separation. The previously known algorithms are

the two extremes of this class, being the best and the worst algorithms in the class. For two
uniformly related machines we again consider two previously known algorithms, of Wen and

Du (1998) and Epstein et al. (2001). We generalize the first of them into a class of algorithms,

all having the optimal competitive ratio. All the new algorithms in the class turn out to be

better than the original one. We compare all these algorithms to the second one, and find that

this algorithm is strictly better than all the algorithms in the class. Again, we show a clear

separation between any two algorithms in the presented class.

For non-preemptive scheduling on two related machines, we again show a clear separation

between two algorithms having the same competitive ratio. For non-preemptive scheduling

on identical machines, the three algorithms considered are shown to be incomparable.

2 Preemptive scheduling to minimize makespan

We use the following notation. For any sequence σ of n jobs with sizes p1, p2, . . . , pn , we

let P and pmax denote the total and maximum size of the jobs in σ , respectively. Similarly,

Pt and pt
max denote the total and maximum size of the first t jobs J1, J2, . . . , Jt in σ . For

any machine mi and any job Jt , Lt
i denotes the load of machine mi just after scheduling

J1, J2, . . . , Jt . For any algorithm A, A(σ) denotes the makespan of A’s schedule for σ . In

particular, OPT(σ) denotes the makespan of an optimal offline algorithm OPT.

2.1 Identical machines

For the scheduling problem studied in this section, we have m ≥ 2 identical machines avail-

able, and preemption is allowed. We study two known algorithms and a generalization of the

two.

Two algorithms with optimal competitive ratio. Two online algorithms with optimal com-

petitive ratio have been suggested for this problem, PREEMPTIVE (PRE) by Chen (1995) and

MODIfiED PREEMPTIVE (MPRE) by Seiden (2001). In short, they both keep track of a max-

imal allowable makespan Mt , where Mt is defined differently for the two algorithms. The

algorithm MPRE is defined so that it uses at most one preemption per job. The other algorithm

PRE is defined to use up to m − 1 preemptions for each job. It is explained in Chen et al.

(1995), however, that it is not difficult to adapt it so that it also uses at most one preemption

per job. Moreover, with the same definition of Mt , the two algorithms would maintain the

same set of loads.

MPRE schedules each job Jt in the following way. Let m be the currently most loaded

machine just before Jt is scheduled. The job is scheduled completely on m, if this gives a

Springer

366 J Comb Optim (2006) 12:363–386

makespan of at most Mt . Otherwise, as much as possible of the job is scheduled on the least

loaded machine m ′ among those on which the job cannot finish earlier than Mt , and the rest

of it is scheduled on the most loaded machine among those that have load less than m ′, giving

a makespan of exactly Mt .

Let m1, . . . , mm be the sequence of machines sorted by non-decreasing load. PRE assigns

the (t + 1)st job Jt+1 as follows. First, a new maximal allowable makespan Mt+1 is computed.

Then, on each machine m j , the time interval I j is reserved for job Jt+1, where

Im = [
Lt

m , Mt+1
]

and I j = [
Lt

j , Lt
j+1

]
, for 1 ≤ j ≤ m − 1.

Those intervals are disjoint. The total processing time that can be assigned on all intervals is

m−1∑
j=1

(
Lt

j+1 − Lt
j

) + Mt+1 − Lt
m = Mt+1 − Lt

1.

To assign Jt+1, go from Im to I1, putting a part of the job, as large as possible in each interval,

until all the job is assigned. After the assignment there will be some fully occupied intervals

Iz+1, . . . , Im , some empty intervals I1, . . . , Iz−1 and a partially or fully occupied interval Iz .

Chen et al. (1995) prove that using this strategy always results in a feasible schedule, if

Mt
PRE

= max

{
β

Pt

m
, β pt

max

}
, where β = θm

θm − 1
, θ = m

m − 1

is used as Mt . Since the optimal offline makespan is max{ P
m , pmax} (McNaughton, 1959),

the competitive ratio obtained is β. Even if randomization is allowed, this is the optimal

competitive ratio. As m approaches infinity, β approaches e
e−1

≈ 1.58 from below. Note that

β/m < 1, for m ≥ 2.

Seiden (2001) proves that using

Mt
MPRE

= max

{
β

Pt

m
,

m − β

m − 1
pt

max + β − 1

m − 1
Pt

}
also gives a feasible schedule for any job sequence. For any input sequence, the makespan

of MPRE is never more, and sometimes less, than the makespan of PRE, since

for pmax >
P

m
,

m − β

m − 1
pmax + β − 1

m − 1
P < β pmax.

In contrast to the competitive ratio, the relative worst order ratio reflects the fact that MPRE

is never worse than PRE and sometimes better (Corollary 1).

A generalized algorithm. We define a generalized algorithm with a parameter b, 0 ≤ b ≤
β−1

m−1
, ADAPTED PREEMPTIVEb (APREb), and use

Mt
b = max

{
β

Pt

m
, (β − mb) pt

max + bPt

}
as Mt . In the analysis of the algorithm, we assume that the algorithm, like PRE, may use

several preemptions per job (but, of course, the results are also valid for the algorithm using

at most one preemption per job, like MPRE). Note that, for b = 0, Mt
b = Mt

PRE
, whereas using

b = β−1

m−1
leads to Mt

b = Mt
MPRE

. Also note that β − mb is always positive.

Springer

J Comb Optim (2006) 12:363–386 367

We prove that APREb is well-defined and has competitive ratio β (Theorem 1). The relative

worst order ratio shows that a larger value of b implies a better algorithm (Theorem 2) even

though all these algorithms have the same competitive ratio.

The algorithms maintain the following three invariants. These invariants are the same as

the invariants defined in Seiden (2001), except the change of M into Mt
b.

1. At any time t , Lt
1 ≤ Lt

2 ≤ · · · ≤ Lt
m .

2. At any time t , Lt
m ≤ Mt

b.

3. At any time t , for every 1 ≤ k ≤ m,
∑k

i=1 Lt
i ≤ θ k−1

θm−1
· Pt

The first two invariants follow from the definition of the algorithms. The third is proved

in Lemma 3. First, we use the invariants to show that it is always possible to partition a job

among its designated intervals (Lemma 2). Lemma 2 uses the following lemma, showing that

which term is maximum in the definition of Mt
b depends only on Pt , pt

max, and m; not on b.

Lemma 1. After t jobs, APREb has Mt
b = β Pt

m if and only if Pt

m ≥ pt
max.

Proof: This follows from

β
Pt

m
≥ (β − mb)pt

max + bPt ⇔
(

β

m
− b

)
Pt ≥ (β − mb)pt

max ⇔ Pt

m
≥ pt

max.

�

Lemma 2. If the invariants are fulfilled at step t, then the reserved intervals are sufficient
to assign Jt+1.

Proof: We consider two cases and show that the assignment is successful in both cases.

– Case 1: pt+1 > Pt+1

m . The total size of the reserved intervals is

Mt+1
b − Lt

1 ≥ (β − mb) pt+1
max + bPt+1 − θ − 1

θm − 1
Pt ,

by Lemma 1 Mb and the third invariant

≥ (β − mb + b)pt+1 +
(

b − θ − 1

θm − 1

)
Pt ,

since pt+1
max ≥ pt+1 and Pt+1 = pt+1 + Pt .

Note that b − θ−1
θm−1

= b − β−1

m−1
:

β − 1

m − 1
= θ − 1

θm − 1

⇔ θm

θm − 1
− 1 = θ − 1

θm − 1
(m − 1)

⇔ θm − (θm − 1) = (θ − 1)(m − 1)

⇔ 1 =
(

m

m − 1
− 1

)
(m − 1) = m − (m − 1)

Springer

368 J Comb Optim (2006) 12:363–386

Using Pt < (m − 1)pt+1 (which follows from pt+1 > Pt+1

m and Pt+1 = pt+1 + Pt), we

get

Mt+1
b − Lt

1 ≥ (β − mb + b)pt+1 +
(

b − β − 1

m − 1

)
(m − 1)pt+1 = pt+1 .

Therefore pt+1 can be assigned into the intervals.

– Case 2: pt+1 ≤ Pt+1

m . The total size of the reserved intervals is

Mt+1
b −Lt

1 ≥ β

m
Pt+1− β − 1

m − 1
Pt = β

m

(
Pt + pt+1

)− β − 1

m − 1
Pt ≥ β

m
pt+1+ m − β

m(m − 1)
Pt .

Using Pt ≥ (m − 1)pt+1 we get, Mt+1
b − Lt

1 ≥ pt+1. Therefore pt+1 can be assigned into

the intervals in this case as well. �

To complete the proof that the algorithm is well-defined, we need to show that all invariants

are kept after an assignment of a new job. For the first two invariants, this is clear from the

definition of the algorithm. Since all loads are initially zero, it suffices to prove the following

lemma for the last invariant.

Lemma 3. If the third invariant is fulfilled after step t, then it is also satisfied after step t + 1

Proof: According to the definition of the algorithm, there exists a machine mz such that for

i < z, Lt+1
i = Lt

i , for z < i ≤ m, Lt+1
i = Lt

i+1, and Lt
z < Lt+1

z ≤ Lt
z+1 (for convenience

let Lt
m+1 = Mt

b).

– For k < z,

k∑
i=1

Lt+1
i =

k∑
i=1

Lt
i ≤ θ k − 1

θm − 1
Pt ≤ θ k − 1

θm − 1
Pt+1 .

– For k ≥ z, it is sufficient to show the inequality

Pt+1 −
k∑

i=1

Lt+1
i =

m∑
i=k+1

Lt+1
i ≥ θm − θ k

θm − 1
Pt+1 = Pt+1 − θ k − 1

θm − 1
Pt+1 .

Since k + 1 > z, Lt+1
i = Lt

i+1, and the left hand side is equal to

m∑
i=k+1

Lt+1
i =

(m∑
i=k+2

Lt
i

)
+ Mt+1

b =
(

Pt −
k+1∑
i=1

Lt
i

)
+ Mt+1

b

≥ θm − θ k+1

θm − 1
Pt + Mt+1

b ≥ θm − θ k+1

θm − 1

(
Pt+1 − pt+1

max

) + Mt+1
b

Hence, it suffices to show

Mt+1
b ≥ θm − θ k+1

θm − 1
pt+1

max + θ k+1 − θ k

θm − 1
Pt+1.

Springer

J Comb Optim (2006) 12:363–386 369

This is proved using that by definition,

Mt+1
b ≥ β Pt+1

m
and Mt+1

b ≥ (β − mb)pt+1
max + bPt+1.

Let α = θm−θ k+1

(θm−1)(β−mb)
and note that 0 ≤ α ≤ 1. Multiplying the second inequality is by α

and the first by 1 − α and adding the two resulting inequalities, we arrive at

Mt+1
b ≥ θm − θ k+1

θm − 1
pt+1

max+
θm − θ k+1

(θm − 1)(β − mb)
bPt+1+

(
1 − θm − θ k+1

(θm − 1)(β − mb)

)
β Pt+1

m

= θm − θ k+1

θm − 1
pt+1

max + θm − θ k+1

(θm − 1)(β − mb)

(
b − β

m

)
Pt+1 + β Pt+1

m

= θm − θ k+1

θm − 1
pt+1

max − θm − θ k+1

(θm − 1)

Pt+1

m
+ β Pt+1

m

= θm − θ k+1

θm − 1
pt+1

max − θm − θ k+1 + β(θm − 1)

(θm − 1)

Pt+1

m

= θm − θ k+1

θm − 1
pt+1

max + θ k+1

(θm − 1)

Pt+1

m

Thus, we just need to prove that

θ k+1

(θm − 1)

Pt+1

m
≥ θ k+1 − θ k

θm − 1
Pt+1,

which is equivalent to

θ k+1

m
≥ θ k+1 − θ k .

Now,

θ k+1

m
≥ θ k+1 − θ k ⇔ 1

m

(
m

m − 1

)k+1

≥
(

m

m − 1

)k+1

−
(

m

m − 1

)k

⇔ 1 ≥ 1.

This completes the proof of the inequality

Mt+1
b ≥ θm − θ k+1

θm − 1
pt+1

max + θ k+1 − θ k

θm − 1
Pt+1,

concluding the case k ≥ z. �

We are now ready to prove Theorem 1.

Theorem 1. For every 0 ≤ b ≤ β−1

m−1
, APREb is well-defined and has competitive ratio β.

Proof: By Lemmas 2 and 3 and the discussion before Lemma 3, the algorithm is well-defined.

Springer

370 J Comb Optim (2006) 12:363–386

The competitive ratio is not better than β, since this is the optimal competitive ratio. For

the upper bound on the competitive ratio, consider any input sequence σ . If Mb(σ) = β P
m ,

then clearly the competitive ratio is at most β, since OPT = max{ P
m , pmax}. Otherwise, by

Lemma 1, P < m pmax and thus, Mb(σ) < βpmax. �

We can now find the relative worst order ratios of pairs of algorithms with optimal com-

petitive ratio. For this purpose, we prove the following lemma.

Lemma 4. Let σ be an input sequence with n jobs and let 0 ≤ b ≤ β−1

m−1
. A permutation, σw,

of σ where the jobs appear in order of non-increasing sizes is a worst order for APREb, and

APREb(σw) = min {P, Mb(σ)} .

Proof: Note that Lt+1
m = min{Lt

m + pt+1, Mt+1
b }. Since Lt

m + pt+1 as well as Mt+1
b are

maximized when Pt+1 is maximized, we can prove by induction that the largest makespan

after i jobs is achieved if the first i jobs are the largest ones. Therefore, no order can be worse

than a non-increasing order. Thus, it is enough to show that a non-increasing order gives

APREb(σ) = Ln
m = min{P, Mb(σ)}. Let P = p1, . . . , pn be the sorted list of job sizes.

We prove that if Lt
m = Mt

b then Lt+1
m = Mt+1

b . Assume that Lt
m = Mt

b. Then, the interval

reserved for job Jt+1 on the most loaded machine is Mt+1
b − Mt

b.

– If Mt+1
b = β Pt+1

m , then

Mt+1
b − Mt

b = β
Pt+1

m
− Mt

b ≤ β
Pt+1

m
− β

Pt

m
= β

m
pt+1 < pt+1, since

β

m
< 1.

Thus, the interval is filled completely, giving a makespan of Mt+1
b = β Pt+1

m .

– Otherwise, Mt+1
b = (β − mb) pt+1

max + bPt+1, and since pt
max = pt+1

max = p1,

Mt+1
b − Mt+1

b ≤ bPt+1 − bPt = bpt+1 < pt+1, since b < 1.

Thus again, the interval is filled completely, giving a makespan of Mt+1
b = (β −

mb) pt+1
max + bPt+1.

We are now ready to prove the lemma. As long as jobs are assigned so that the designated

interval on the most loaded machine is not filled, there are no jobs assigned to other machines,

and the makespan is Pt at time t . Once this interval is filled completely, we showed that it

will be filled in the next steps as well. This proves the claim. �

Lemma 5. For every pair of values 0 ≤ b1 < b2 ≤ β−1

m−1
, APREb1

and APREb2
are compara-

ble, and APREb2
is never worse than APREb1

.

Proof: Consider any input sequence σ . By Lemma 4, it is sufficient to prove that Mb2
(σ) ≤

Mb1
(σ), and by Lemma 1, it is sufficient to consider the case when P < mpmax. The claim then

immediately follows by the definition of Mb, since Mb2
(σ) − Mb1

(σ) = (P − mpmax)(b2 −
b1) < 0. �

Lemma 6. For any pair of values 0 ≤ b1 < b2 ≤ β−1

m−1
, WRAPREb1

,APREb2
≥

β − mb1

β(1 + b2 − b1) − mb2

.

Springer

J Comb Optim (2006) 12:363–386 371

Proof: By Lemma 5, it is sufficient to find an input sequence giving the stated ratio. Let

λ1 = 1 − b1, λ2 = β − 1 − b1(m − 1). Note that λ1 > λ2, since 2 − b1(2 − m) > β as β <

2. Moreover, since b1 <
β−1

m−1
, we have λ2 > 0.

Consider the input sequence σ = 〈λ1, λ2〉. By Lemma 4, it is sufficient to consider this

ordering of the two jobs. We have P = β − mb1, and pmax = λ1 = 1 − b1. Note that, for

any b, we get the same result with APREb, if the last job of size λ2 is split into smaller jobs

of total size λ2.

We have P
pmax

= β−mb1

1−b1
< m (since β < m), and thus P

m < pmax. Hence, by Lemma 1, we

must have Mbi (σ) = (β − mbi) pmax + bi P. Now, by Lemma 4, APREbi (σ) = Mbi (σ) if any

only if (β − mbi) pmax + bi P ≤ P . This is equivalent to P
pmax

≥ β−mbi

1−bi
, which holds for b1

with equality by the definitions of λ1 and λ2. Moreover,
β−mbi

1−bi
is a monotonically decreasing

function of bi , and hence
β−mb2

1−b2
≤ β−mb1

1−b1
.

Thus,

APREb1
(σ)

APREb2
(σ)

= (β − mb1)(λ1) + b1(λ1 + λ2)

(β − mb2)(λ1) + b2(λ1 + λ2)
= (β − mb1)(1 − b1) + b1(β − mb1)

(β − mb2)(1 − b1) + b2(β − mb1)

= β − mb1

β(1 − b1 + b2) − mb2

.
�

The following lemma gives a matching upper bound on the relative worst order ratio.

Lemma 7. For any pair of values 0 ≤ b1 < b2 ≤ β−1

m−1
, WRAPREb1

,APREb2
≤ β−mb1

β(1+b2−b1)−mb2
.

Proof: Consider any input sequence σ . By Lemma 4, there are three possible cases:

– If APREb2
(σ) = P , then APREb1

(σ) ≤ APREb2
(σ).

– If APREb2
(σ) = β

m P , then by Lemma 1, pmax ≤ P
m , and APREb1

(σ) = APREb2
(σ).

– Finally, if APREb2
(σ) = (β − mb2) pmax + b2 P , then by Lemma 1, pmax ≥ P

m .

By the same lemma we get Mt
b1

= (β − mb1) pmax + b1 P , and thus APREb1
(σ) =

min{P, (β − mb1) pmax + b1 P}. If APREb1
(σ) = P , we have P

pmax
≤ β−mb1

1−b1
. Consequently,

APREb1
(σ)

APREb2
(σ)

= P

(β − mb2) pmax + b2 P
≤ P

(β − mb2) P 1−b1

β−mb1
+ b2 P

= β − mb1

β(1 − b1 + b2) − mb2

.

Otherwise, P
pmax

≥ β−mb1

1−b1
and APREb1

(σ) = (β − mb1) pmax + b1 P . We have,

APREb1
(σ)

APREb2
(σ)

= (β − mb1) pmax + b1 P

(β − mb2) pmax + b2 P
=

(β − mb1) + b1
P

pmax

(β − mb2) + b2
P

pmax

.

This is a function which is monotonically decreasing in P
pmax

. Thus, we can substitute
P

pmax
= β−mb1

1−b1
to find its maximum, which is again

β−mb1

β(1−b1+b2)−mb2
. �

As the ratios proved in the two lemmas match, we arrive at the following theorem.

Springer

372 J Comb Optim (2006) 12:363–386

Theorem 2. For any pair of values 0 ≤ b1 < b2 ≤ β−1

m−1
,

WRAPREb1
,APREb2

= β − mb1

β(1 + b2 − b1) − mb2

> 1 ,

where β = θm

θm−1
and θ = m

m−1
.

Proof: The ratio follows directly from Lemmas 6 and 7. It is easily checked that the ratio is

greater than 1:

β − mb1

β(1 + b2 − b1) − mb2

> 1

⇔ β − mb1 > β(1 + b2 − b1) − mb2, since β(1 + b2 − b1) − mb2 > 0

⇔ m(b2 − b1) > β(b2 − b1)
�

Substituting b1 = 0 and b2 = β−1

m−1
in

β−mb1

β(1−b1+b2)−mb2
, we get the following corollary.

Corollary 1. WRPRE,MPRE = β m−1

m+β2−2β
, where β = θm

θm−1
and θ = m

m−1
.

For m = 2, 3, and 4, the ratio WRPRE,MPRE is 6
5

= 1.2, 171
131

≈ 1.365, and 11200
8203

≈ 1.466,

respectively. As m approaches infinity, the ratio approaches β, the competitive ratio of the

two algorithms. Note that for any other pair of algorithms considered in this section, the

relative worst order ratio is smaller.

2.2 Two related machines

We now turn to the case of two uniformly related machines, m1 of speed 1 and m2 of speed

s ≥ 1. As in the previous section, the goal is to minimize the makespan, and preemption is

allowed.

For any input sequence σ , a straightforward optimal offline algorithm was found by

Gonzalez and Sahni (1978). The makespan found by this algorithm is

OPT(σ) = max

{
P

s + 1
,

pmax

s

}
.

Two algorithms with optimal competitive ratio. Two slightly different deterministic online

algorithms found independently by Wen and Du (1998), and by Epstein et al. (2001) both

have an optimal competitive ratio of

CR = α = (s + 1)2

s2 + s + 1
= 1 + s

s2 + s + 1
.

This is 4
3

for s = 1, and decreases for increasing s. The ratio is optimal even if randomization

is allowed.

The algorithm of Wen and Du (1998) works similarly to the algorithm PRE (Chen et al.,

1995). For job Jt+1, it reserves the time interval [
Lt

2

s , α OPTt+1] on the fast machine, and the

Springer

J Comb Optim (2006) 12:363–386 373

interval [Lt
1,

Lt
2

s] on the slow machine. Each job is assigned first to the reserved interval on

the fast machine, and the remainder if any, to the other reserved interval.

The algorithm of Epstein et al. (2001) is different in the sense that on assignment of a job,

it always assigns to the slow machine as much as possible, but not more than Pt+1

s2+s+1
, and not

more than
Lt

2

s (to avoid overlap). The remainder of the job is assigned to the fast machine.

A class of algorithms with optimal competitive ratio. We define a class of algorithms called

TWO-PREEMPTIVEc (TPREc) which use a parameter c, such that 0 ≤ c ≤ cmax, cmax = s2

s2+s+1
.

Whenever a new job J t+1 arrives, schedule as large a fraction as possible on the fast machine

within the time interval [1
s Lt

2,
1
s Mt+1

c], where

Mt+1
c = max

{
α

s

s + 1
Pt+1, pt+1

max

(
1 + c

s

)
+ (

Pt+1 − pt+1
max

)
(cmax − c)

}
.

Schedule the remaining part of Jt+1 on the slow machine, within the time interval [Lt
1,

Lt
2

s].

In some cases, TPREc achieves a makespan which is better than that of the algorithm of

Wen and Du, (1998). Later, we also compare it to the algorithm of Epstein et al. (2001).

First, we prove that the algorithm is well-defined and has an optimal competitive ratio of α

(Theorem 3). For that we need the following lemma.

Lemma 8. After t jobs, TPREc has Mt
c = α s

s+1
Pt if and only if Pt ≥ s+1

s pt
max.

Proof: This follows from

s(s + 1)

s2 + s + 1
Pt ≥ pt

max

(
1 + c

s

)
+ (

Pt − pt
max

)(s2

s2 + s + 1
− c

)
⇔ s + c(s2 + s + 1)

s2 + s + 1
Pt ≥

(
s + 1

s2 + s + 1
+ c

s + 1

s

)
pt

max

⇔ (s + c(s2 + s + 1))Pt ≥ s + 1

s
(s + c(s2 + s + 1))pt

max

⇔ Pt ≥ s + 1

s
pt

max

�

Theorem 3. For any c, 0 ≤ c ≤ cmax, TPREc is well-defined and has competitive ratio α.

Proof: First, we prove that the algorithm is well-defined, i.e., the reserved time intervals are

always sufficiently long. To this end we show that the algorithm maintains the following two

invariants.

1. Lt
2 ≤ Mt

c

2. Lt
1 ≤ Pt

s2 + s + 1

We consider the jobs to be scheduled one at a time, and show that each job can be scheduled

observing the two invariants. For J1, the invariants clearly hold, since the job is completely

scheduled on the fast machine, and M1
c = p1(1 + c

s) ≥ p1.

Now consider Jt+1, t ≥ 1, and assume that the invariants hold just before Jt+1 is as-

signed. By the definition of the algorithm, the first invariant still holds after assigning

Springer

374 J Comb Optim (2006) 12:363–386

Jt+1. As for the second invariant, if Lt+1
1 = Lt

1 then it is clearly maintained. Otherwise

Lt+1
1 ≤ Pt+1 − Mt+1

c ≤ Pt+1 − α s Pt+1

s+1
= Pt+1

s2+s+1
. This is exactly the second invariant.

The amount of time available for the new job is(
Mt+1

c − Lt
2

) +
(

Lt
2

s
− Lt

1

)
= Mt+1

c + Lt
2

s
− Pt .

To complete the proof that the algorithm is well-defined, we just need to prove that this

amount is at least pt+1, or equivalently, that

Mt+1
c ≥ − Lt

2

s
+ Pt + pt+1 = Lt

1 − Pt

s
+ Pt + pt+1 = Lt

1

s
+ Pt+1 − Pt

s
.

We consider two cases depending on which of the two terms in the definition of Mt+1
c is

maximum.

– If Mt+1
c = α s Pt+1

s+1
then By Lemma 8, Pt+1 ≥ s+1

s pt+1
max. Thus,

Pt = Pt+1 − pt+1 ≥ Pt+1 − pt+1
max ≥ 1

s
pt+1

max ≥ 1

s
pt+1.

Further, by using the invariant Lt
1 ≤ Pt

s2+s+1
it suffices to prove

Mt+1
c = α

s Pt+1

s + 1
= s2 + s

s2 + s + 1
(Pt + pt+1) ≥ Pt

s(s2 + s + 1)
+ Pt+1 − Pt

s
.

By rearranging the terms and using Pt+1 = Pt + pt+1, we get

s

s2 + s + 1
Pt ≥ 1

s2 + s + 1
pt+1 ,

which follows directly from Pt ≥ 1
s pt+1.

– In the second case, by the definition of Mt+1
c we need to show

Mt+1
c = pt+1

max

(
1 + c

s

)
+ (

Pt+1 − pt+1
max

)(s2

s2 + s + 1
− c

)
≥ Lt

1

s
+ Pt+1 − Pt

s
.

Rearranging we get(
s + 1

s2 + s + 1
+ s + 1

s
c

)
pt+1

max ≥ Lt
1

s
+

(
s + 1

s2 + s + 1
+ c

)
Pt+1 − Pt

s
.

By Lemma 8, pt+1
max ≥ s

s+1
Pt+1. Substituting s

s+1
Pt+1 for pt+1

max on the left hand side, we

get Pt

s(s2+s+1)
≥ Lt

1

s , which is implied immediately by the second invariant.

Next, we show that TPREc(σ) ≤ α OPT(σ). This is clear in the first case. In the second

case, P ≤ s+1
s pmax, i.e., P − pmax ≤ pmax

s . Thus,

TPREc(σ) ≤ pmax

s

(
1 + c

s

)
+ pmax

s2

(
s2

s2 + s + 1
− c

)
= pmax

s

(
1 + c

s
+ s

s2 + s + 1
− c

s

)
= α

pmax

s
≤ α OPT(σ).

�

We first establish the relative worst order ratio between pairs of algorithms in the class

TPREc. Similarly to Lemma 4, we can show the following lemma in which we identify the

Springer

J Comb Optim (2006) 12:363–386 375

properties of the outputs of the algorithms defined above and find an order which is always

a worst ordering.

Lemma 9. For TPREc and for every c, and any input sequence σ , a non-increasing order is
always a worst order. The makespan for a worst permutation, σw, of σ is

TPREc(σw) = min

{
P

s
,

1

s
Mc(σ)

}
.

Proof: Note that no order can give a larger makespan, so it is enough to show that a non-

increasing order actually gives this makespan. Let σ be any input sequence, where the job

sizes are given in non-increasing order, i.e., p1 = pmax and pi−1 ≥ pi for i ≥ 2. Note that

pt
max = pmax = p1 for all t .

First, we prove the following claim. If the makespan of TPREc after job Jt is assigned is
1
s Mt

c , then the makespan after Jt+1 is assigned must be 1
s Mt+1

c . We have two cases:

– If Mt+1
c = α s Pt+1

s+1
, then using Mt

c ≥ α s Pt

s+1
, we get that the total load that can be scheduled

within the designated interval on the fast machine for Jt+1 is at most

Mt+1
c − Mt

c ≤ α
s Pt+1

s + 1
− α

s Pt

s + 1
= α

s

s + 1
pt+1 = s2 + s

s2 + s + 1
pt+1 < pt+1 ,

i.e., the interval is filled completely.

– If Mt+1
c = pt+1

max(1 + c
s) + (Pt+1 − pt+1

max)(cmax − c), then the total load that can be sched-

uled within the designated interval on the fast machine for Jt+1 is

Mt+1
c − Mt

c ≤ pt+1 (cmax − c) < pt+1 ,

i.e., the interval is again filled completely. The claim is thereby proved.

We are now ready to prove the lemma. As long as jobs are assigned so that the designated

interval on the fast machine is not filled, there are no jobs assigned to the slow machine, and

the makespan is Pt

s after job Jt . Once this interval is filled completely, we showed that it will

be filled in the next steps as well. This proves the lemma. �

Lemma 10. For every pair of values 0 ≤ c1 < c2 ≤ cmax, TPREc1
and TPREc2

are compara-
ble, and TPREc1

is never worse than TPREc2
.

Proof: Consider any input sequence σ . By Lemma 9, we only need to check the relation

between the makespans of the two algorithms for a non-increasing sorted order of jobs with

makespan as shown in the Lemma.

We claim that TPREc2
is never better than TPREc1

according to the relative worst order

ratio. By Lemma 9, there are three cases:

– If TPREc2
(σ) = P

s , then clearly TPREc1
(σ) ≤ TPREc2

(σ).

– If TPREc2
(σ) = α P

s+1
, then by Lemma 8, pmax ≤ s P

s+1
and thus, TPREc1

(σ) ≤ Mc(σ)

s =
α P

s+1
= TPREc2

(σ).

– If the makespan of TPREc2
is given by the second term in the maximum, then by Lemma 8,

pmax ≥ s P
s+1

. Therefore the makespan of TPREc1
can either be given by the second term in

the maximum, or it can be less (i.e., equal to P
s). The second term in the maximum is a

Springer

376 J Comb Optim (2006) 12:363–386

function which is monotonically non-decreasing as a function of c for the case pmax ≥ s P
s+1

,

therefore the makespan of TPREc1
is not larger than the one of TPREc2

. �

Lemma 11. For any pair of values 0 ≤ c1 < c2 ≤ cmax,

WRTPREc2
,TPREc1

≥ c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

Proof: Consider the input sequence σ = 〈
s2 + s + s(s2 + s + 1)c2, (s2 + s + 1)c2

〉
. By

Lemma 9, it is enough to consider this permutation of the sequence.

We have P = s2 + s + c2(s + 1)(s2 + s + 1), pmax = s2 + s + c2 · s(s2 + s + 1), and
s+1

s pmax = (s + 1)(s + 1 + c2(s2 + s + 1)) > P . Thus, by Lemma 8,

Mc2
= pmax

(
1 + c2

s

)
+ (P − pmax)

(
s2

s2 + s + 1
− c2

)
= s2 + s + c2 · s(s2 + s + 1) + c2(s + 1 + c2(s2 + s + 1)) + c2s2 − c2

2(s2 + s + 1)

= s2 + s + c2(s + 1)(s2 + s + 1) = P.

This function is monotonically increasing as a function of c2, hence Mc1
< Mc2

= P . Thus,

a lower bound on WRTPREc2
,TPREc1

is given by
Mc2

Mc1

. We have

Mc1
= pmax

(
1 + c1

s

)
+ (P − pmax)

(
s2

s2 + s + 1
− c1

)
= s2 + s + c2 · s(s2 + s + 1) + c1(s + 1 + c2(s2 + s + 1)) + c2s2 − c1c2(s2 + s + 1)

= s2 + s + c2s(s2 + 2s + 1) + c1(s + 1)

= (s + 1) (s + c2s(s + 1) + c1) .

This gives the stated lower bound. �

Lemma 12. For any pair of values 0 ≤ c1 < c2 ≤ cmax,

WRTPREc2
,TPREc1

≤ c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

Proof: Consider any input sequence σ . By Lemma 9, we only need to consider the sequence

in non-increasing size order. By Lemma 9, there are three possible cases:

– If TPREc1
(σ) = P

s , then TPREc2
(σ) ≤ TPREc1

(σ) (and thus, by Lemma 10, TPREc2
(σ) =

TPREc1
(σ)).

– If TPREc1
(σ) = α P

s+1
, then by Lemma 8, pmax ≤ s P

s+1
, and TPREc2

(σ) = TPREc1
(σ).

– Finally, if the makespan of TPREc1
is given by the second term in the maximum (with the

parameter c1), by Lemma 8, P ≤ s+1
s pmax, and thus by the same lemma, the makespan

of TPREc2
is either given by the second term in the maximum (with the parameter c2) or

equal to P
s .

Springer

J Comb Optim (2006) 12:363–386 377

– If TPREc2
(σ) = P

s , we get

WRTPREc2
,TPREc1

= P

pmax

(
1 + c1

s

) + (P − pmax)(cmax − c1)

=
P

pmax(
1 + c1

s

) + (
P

pmax
− 1

)
(cmax − c1)

.

This function is monotonically non-decreasing in the ratio P
pmax

, and thus we calculate the

maximum ratio. Since TPREc2
(σ) = P

s , P ≤ pmax(1 + c2

s) + (P − pmax)(s2

s2+s+1
− c2),

which is equivalent to

P

(
c2 + s + 1

s2 + s + 1

)
≤ pmax

(
c2

(
1 + 1

s

)
+ s + 1

s2 + s + 1

)
.

Thus,

P

pmax

≤ c2

(
1 + 1

s

) + s+1

s2+s+1

c2 + s+1

s2+s+1

= c2(s2 + s + 1) + s

c2(s2 + s + 1) s
s+1

+ s
= x + s

s
s+1

x + s
,

where x = c2(s2 + s + 1). Substituting this in the upper bound on WRTPREc2
,TPREc1

we

get

WRTPREc2
,TPREc1

≤
x+s

s
s+1

x+s(
1 + c1

s

) + (
x+s

s
s+1

x+s −
s

s+1
x+s

s
s+1

x+s

)
(cmax − c1)

= x + s(
1 + c1

s

)(
s

s+1
x + s

) + (
x − s

s+1
x
)
(cmax − c1)

= x + s

N (x)
,

where

N (x) = s

s + 1
x + s +

(
1

s + 1
x + 1 − x + s

s + 1
x

)
c1 +

(
x − s

s + 1
x

)
cmax

= s

s + 1
x + s + c1 + xcmax − s

s + 1
xcmax

= s

s + 1
x(1 − cmax) + s + c1 + xcmax

= s

s + 1
c2(s2 + s + 1)

(
1 − s2

s2 + s + 1

)
+ s + c1 + c2 (s2 + s + 1)

s2

s2 + s + 1

= c2s + s + c1 + c2s2

This gives the stated upper bound.

Springer

378 J Comb Optim (2006) 12:363–386

– If TPREc2
(σ) < P

s , we get

WRTPREc2
,TPREc1

= pmax

(
1 + c2

s

) + (P − pmax)(cmax − c2)

pmax

(
1 + c1

s

) + (P − pmax)(cmax − c1)

=
(
1 + c2

s

) + (
P

pmax
− 1

)
(cmax − c2)(

1 + c1

s

) + (
P

pmax
− 1

)
(cmax − c1)

.

This function is monotonically non-increasing as a function of the ratio P
pmax

, and thus we

calculate the maximum ratio. Since TPREc2
(σ) < P

s , we get P ≥ pmax(1 + c2

s) + (P −
pmax)(s2

s2+s+1
− c2). Thus, similarly to the previous case we get

P

pmax

≥ c2

(
s2 + s + 1

) + s

c2

(
s2 + s + 1

)
s

s+1
+ s

= 1 + 1

s

c2(s2 + s + 1)

c2(s2 + s + 1) + s + 1
,

Substituting this in the upper bound on WRTPREc2
,TPREc1

we get (using the definition of

cmax and simple algebra),

WRTPREc2
,TPREc1

≤ (s + c2)
(
c2(s2 + s + 1) + s + 1

) + c2(s2 + s + 1)(cmax − c2)

(s + c1)
(
c2(s2 + s + 1) + s + 1

) + c2(s2 + s + 1)(cmax − c1)

= s
(
c2(s2 + s + 1) + s + 1

) + c2(s + 1) + c2s2

s
(
c2(s2 + s + 1) + s + 1

) + c1(s + 1) + c2s2

= c2(s + 1)(s2 + s + 1) + s2 + s

c2(s3 + s2 + s) + c1(s + 1) + s2 + s

= c2(s2 + s + 1) + s

c2(s2 + s) + c1 + s
.

�

Theorem 4. For any pair of values 0 ≤ c1 < c2 ≤ cmax , WRTPREc2
,TPREc1

= c2(s2+s+1)+s
c2(s2+s)+c1+s .

By substituting c1 = 0 and c2 = cmax we get the following corollary.

Corollary 2. WRTPREcmax ,TPRE0
≥ 1 + s

s3+2s2+s+1
.

Next, we would like to compare the above class of algorithms to the algorithm of Epstein

et al. (2001) called BEST PREEMPTIVE (BPRE). We first show that the best algorithm in the

class, TPRE0, is worse than BPRE. Due to the transitivity of the relative worst order ratio, this

implies that BPRE is better than all algorithms TPREc for any c.

The algorithm BPRE is different from the above algorithms in the sense that it, except for

the first job which is scheduled completely on the fast machine, BPRE always schedules as

large a part on the slow machine as possible while maintaining the following two invariants:

Springer

J Comb Optim (2006) 12:363–386 379

1. Lt
1 ≤ Lt

2

s2+s .

2. If Lt
1 <

Lt
2

s2+s , then also Lt
2 ≤ α pt

max.

Note that the first invariant implies that Lt
1 ≤ Lt

2

s , i.e., the makespan of BPRE is always
Lt

2

s .

Also note that by the same invariant, Pt = Lt
1 + Lt

2 ≤ (1

s2+s + 1)Lt
2 = s2+s+1

s2+s Lt
2, i.e.,

s + 1

s2 + s + 1
Pt ≤ 1

s
Lt

2. (2.1)

We prove that TPRE0 can never have a smaller makespan than BPRE, on any sequence.

Note that BPRE does not necessarily have the worst makespan in the case that the sequence is

sorted by non-increasing job size. As an example, consider the case s = 2 and the jobs 2, 12.

In the order 12, 2, the job 12 is scheduled on the fast machine. The job 2 fits perfectly on

the slow machine, and the makespan is 12
2

= 6. However, if the job 2 is assigned first, then

the slow machine can receive at most size 1 in the next step, since otherwise the two parts

of the second job scheduled on the slow and the fast machine, respectively, will overlap in

time. Therefore, the makespan is 2+11
2

= 6 1
2
.

Lemma 13. For any input sequence σ , BPRE(σ) ≤ TPRE0(σ).

Note that the claim of the lemma is stated for any sequence without any reordering.

Proof: Given a sequence of jobs, σ , we show that the lemma holds at every step using

induction. Clearly, the lemma holds before any job is assigned.

Next, assume that the lemma holds for the previous part of the input sequence, and consider

the next job, Jt+1. We now have several cases:

– If the job is assigned such that Lt+1
2 of BPRE does not change, then the lemma holds by

induction.

– If TPRE0 assigns the job completely to the fast machine, then since BPRE may assign at

most that much to the fast machine, and has a makespan which is not larger than the one

of TPRE0 before the assignment, this situation remains after the assignment.

– Invariant 2 for TPRE0, Lt+1
1 ≤ 1

s2+s+1
Pt+1, can be rewritten to Lt+1

1 ≤ 1

s2+s Lt+1
2 . Hence,

if BPRE assigns the job such that Lt+1
1 = 1

s2+s Lt+1
2 , TPRE0 must have at least the same

value of Lt+1
2 as BPRE, i.e., the makespan of TPRE0 is at least the same as the makespan

of BPRE.

– Finally, the last case is when for BPRE Lt+1
1 < 1

s2+s Lt+1
2 and it was impossible for BPRE to

put everything on the slow machine, i.e., Lt+1
1 = 1

s Lt
2. Putting this together we obtain Lt

2 <
1

s+1
Lt+1

2 , and subsequently Pt+1 = Lt+1
2 + Lt+1

1 > (s + 1)Lt
2 + 1

s Lt
2 = s2+s+1

s Lt
2. Using

this we get that pt+1 = Pt+1 − Pt > s2+s+1
s Lt

2 − Pt ≥ (s + 1)Pt − Pt = s Pt , where the

second inequality holds by (2.1). We conclude that pt+1 = pt+1
max. By Lemmas 8 and 9 and

since we know that TPRE0 did not schedule job pt+1 on the fast machine only, the makespan

of TPRE0 must be Mt+1
0 (σ) = 1

s pt+1 + s
s2+s+1

Pt .

For BPRE by the Invariant 1, the makespan is at most

Lt+1
2

s
=

Pt + pt+1 − 1

s
Lt

2

s
≤

Pt + pt+1 − s + 1

s2 + s + 1
Pt

s
= pt+1

s
+ s Pt

s2 + s + 1
.

Springer

380 J Comb Optim (2006) 12:363–386

Therefore, the claim is proved. �

By Lemma 9 and since Mc(σ) is non-decreasing as a function of c, we immediately obtain

the following corollary.

Corollary 3. For every c and any input sequence σ , BPRE(σ) ≤ TPREc(σ).

Next, we establish the relative worst order ratio between BPRE and each algorithm TPREc.

We prove the following theorem.

Theorem 5. The relative worst order ratio between BPRE and TPREc is

WRTPREc,BPRE = max

{
c(s4 + 2s3 + 2s2 + s) + s3 + s2

c(s4 + 2s3 + s2 − 1) + s3 + s2
,

(s2 + s + 1)(s3 + s + c) + s4

s2(s2 + s + 1)(s + 1)

}
.

For s = 1 and c = cmax = s2

s2+s+1
= 1

3
, this value is α = 4

3
. For s > 1, this value is smaller

than α. For all values of s the relative worst order ratio is a strictly monotonically increasing
function of s.

Proof: To prove the lower bound, consider two input sequences.

– The first sequence consists of two jobs of sizes s and s2 + 1. Here P = s2 + s + 1 and

pmax = s2 + 1. Since Mc(σ) ≤ P , and since P ≤ s+1
s pmax, and using Lemma 8, the

makespan of TPREc is
Mc(σ)

s = (s2 + 1)(1
s + c

s2) + s2

s2+s+1
− c.

Next, we claim that the makespan of BPRE is s + 1 for both possible permutations of the

jobs in the sequence. Both cases result in the same makespan since in both cases we have

a similar situation as follows. The first job is assigned to the fast machine, and out of the

second job, a part of size 1 is assigned to the slow machine, to get a balance between the

loads of the two machines as the the definition of the algorithm states. In total, we get the

ratio

(s2 + s + 1)(s3 + s + c) + s4

s2(s2 + s + 1)(s + 1)
.

– The second sequence is defined for c > 0. It consists of the two jobs c(s2 + s + 1) and

sc(s2 + s + 1) + s2 + s. Here P = c(s + 1)(s2 + s + 1) + s2 + s and pmax = sc(s2 +
s + 1) + s2 + s. Since Mc(σ) ≤ P , using Lemma 8 we need to consider the second term

in the maximum to find Mc(σ). We have Mc(σ) = c(s3 + 2s2 + 2s + 1) + s2 + 1 = P .

Therefore, the makespan of TPREc is
Mc(σ)

s = P
s = c(s2 + 2s + 2 + 1

s) + s + 1.

For BPRE, if the smaller job is assigned first, then the part of the second job that

can be assigned on the slow machine is at most c(s + 1 + 1
s) which is consistent

with Invariant 1. If the larger job is assigned first, the part assigned to the slow

machine can only be larger. Thus we get that the makespan of BPRE is at most
L2

s = P
s − c(s2+s+1)

s2 = c(s2 + 2s + 1 − 1

s2) + s + 1. By dividing the two, we get the ratio

c(s4 + 2s3 + 2s2 + s) + s3 + s2

c(s4 + 2s3 + s2 − 1) + s3 + s2
.

Springer

J Comb Optim (2006) 12:363–386 381

To prove the upper bound, we start with giving lower bounds on the makespan of BPRE.

Given an input sequence σ let R = P − pmax, i.e., the sum of all jobs except the largest. By

Invariant 1, we have BPREW(σ) ≥ s+1

s2+s+1
(R + pmax).

Now consider an ordering of the jobs, such that pmax is last. Let μ be the makespan

before pmax is assigned. After pmax is assigned the makespan is at least μ plus the time to

run pmax minus the amount that can be scheduled on the slow machine, which is at most

μ − (R − sμ), i.e., the makespan is at least μ + pmax−μ+R−sμ
s = pmax−μ+R

s . Since μ ≤ R
s , we

get at least BPREW(σ) ≥ spmax+s R−R
s2 .

The makespan of TPREc (for any possible order) never exceeds

max

{
α

P

s + 1
, pmax

(
1

s
+ c

s2

)
+ R

(
s

s2 + s + 1
− c

s

)}
.

If the first option is the maximum then BPRE has at least the same makespan by (2.1). For

the second option, we consider several cases.

– If pmax ≤ R(s + 1
s), we use the first lower bound, and get a ratio between the two algorithms

of at most

pmax

(
1
s + c

s2

) + R
(

s
s2+s+1

− c
s

)
s+1

s2+s+1
(R + pmax)

.

Let ρ = pmax

R . If R = 0, we have P = pmax and thus there is only one job. In this case

all algorithms act in the same way, therefore we do not consider this option. Dividing the

numerator and the denominator by R and substituting we get the function
ρ(1

s + c
s2)+ s

s2+s+1
− c

s
s+1

s2+s+1
(1+ρ)

.

This function is monotonically non-decreasing as a function of ρ. Hence, we substitute

pmax = R(s + 1
s), since this corresponds to the maximum value of ρ. Thus, we find the

maximal value to be
(s2+s+1)(s3+s+c)+s4

s2(s2+s+1)(s+1)
.

– If pmax ≥ R(s + 1
s), we use the second lower bound and get a ratio between the two

algorithms of at most

pmax

(
1
s + c

s2

) + R
(

s
s2+s+1

− c
s

)
spmax+s R−R

s2

= pmax(s + c) + R
(

s3

s2+s+1
− cs

)
spmax + s R − R

.

Let ρ = pmax

R . We get the function
ρ(s+c)+ s3

s2+s+1
−cs

sρ+s−1
. We now have two cases depending on

the value of c:

– For c ≤ s
(s2+s+1)(s2+s−1)

, the function above is monotonically non-increasing (and oth-

erwise monotonically non-decreasing). Therefore in this case we can substitute pmax =
R(s + 1

s) or ρ = s + 1
s to find the maximum, which turns out to be

(s2+s+1)(s3+s+c)+s4

s2(s2+s+1)(s+1)
.

– For larger values of c, we consider first the case when ρ ≥ sc(s2+s+1)+s2+s
c(s2+s+1)

. Note that this

value is strictly larger than 1 + 1
s for any value of c > 0. The makespan of TPREc is also

at most
pmax+R

s , and the ratio can be bounded by
pmax+R

s
spmax+s R−R

s2

= spmax+s R
spmax+s R−R .

Springer

382 J Comb Optim (2006) 12:363–386

Using ρ = pmax

R we get the function
sρ+s

sρ+s−1
which is monotonically non-increasing as a

function of ρ. We substitute using ρ = sc(s2+s+1)+s2+s
c(s2+s+1)

to find the maximum which gives

the value
c(s4+2s3+2s2+s)+s3+s2

c(s4+2s3+s2−1)+s3+s2 .

Otherwise, if s + 1
s ≤ ρ ≤ sc(s2+s+1)+s2+s

c(s2+s+1)
, we substitute ρ = sc(s2+s+1)+s2+s

c(s2+s+1)
into

ρ(s+c)+ s3

s2+s+1
−cs

sρ+s−1
, which is monotonically non-decreasing for the current values of c, to

get the maximum. This again gives
c(s4+2s3+2s2+s)+s3+s2

c(s4+2s3+s2−1)+s3+s2 .
�

To find the relative worst order ratio between BPRE and TPREcmax
, which are the algorithms

of Epstein et al. (2001) and Wen and Du (1998), we substitute the value of c and get the

following corollary.

Corollary 4. WRTPREcmax ,BPRE = 1 + 1
s(s+2)

. This value is smaller than α for every s > 1.

3 Non-preemptive scheduling to minimize makespan

For completeness, we consider non-preemptive algorithms as well.

3.1 Identical machines

First, we consider the scheduling problem for m identical machines where preemption is

not allowed, i.e., a job cannot be interrupted and run on more than one machine. For this

problem, a classical result was presented by Graham (1966). Graham considers the natural

greedy algorithm LIST, which always schedules a job on the least loaded machine. By Graham

(1966), LIST is (2 − 1
m)-competitive. This is optimal when m ≤ 3 (Faigle et al., 1989).

For m ≥ 4, this result was later improved. First by Galambos and Woeginger (1993) with

an (2 − 1
m − εm)-competitive algorithm RLS. Unfortunately for m approaching infinity, εm

tends to 0, i.e., for general m, this result is not better. Later Bartal et al. (1995) gave an

algorithm which is 1.986-competitive, but only for at least 70 machines. Karger et al. (1996)

generalized this and gave a 1.945-competitive algorithm CHASMα . Albers (1999) improved

this even further, and gave a 1.923-competitive algorithm M2. The current best result is

by Fleischer and Wahl (2000). They present an algorithm MR with a competitive ratio of

1 + √
(1 + ln 2)/2 < 1.92009, but only for m ≥ 64.

The currently best lower bound for the problem was established by Gormley et al. (2000)

at 1.85358. This is a slight improvement of the previous lower bound by Albers (1999).

Whereas the first algorithm LIST keeps the load of all machines as close as possible to

the average load, essentially all the later algorithms always keep a certain fraction of the

machines sufficiently below the average load, such that they can accept a large job without

violating the competitive ratio.

In this section, we show that Graham’s algorithm, LIST, and the two most recent algorithms,

M2 and MR, are pairwise incomparable using the relative worst order ratio. This is done using

the following two input sequences: σ1 consists of m(m − 1) unit sized jobs, and σ2 consists

of the same jobs as σ1 with an additional large job of size m. Note that all the jobs of σ1 are

the same size, hence all permutations are equal. For σ2, we only need to consider the location

of the large job in the sequence.

Springer

J Comb Optim (2006) 12:363–386 383

The optimal algorithm distributes the jobs in σ1 evenly among the m processors and gets a

makespan of m − 1. For σ2, the large job is put on a machine by itself, and all the unit-sized

jobs are put on the remaining m − 1 machines, yielding a makespan of m.

LIST distributes the jobs in σ1 similar to OPT with a makespan of m − 1. For σ2, the large

job of size m is placed on one of the machines with a load of m − 1, i.e., a total makespan of

2m − 1. This is the worst possible permutation for LIST.

For the last two algorithms, we only give a sketch of the proof and we only consider

the case for m approaching infinity, since this simplifies the calculations. If necessary, the

calculations can be done for any specific m with the same conclusion as a result, namely that

the three algorithms are pairwise incomparable.

M2 and MR both divide the machines into two groups: the s least loaded (small) machines

(m1, m2, . . . , ms) and the remaining m − s (large) machines (ms+1, ms+2, . . . , mm). We have:

sM2 =
⌊m

2

⌋
≈ m

2
and sMR = m −

⌈
5c − 2c2 − 1

c
m

⌉
+ 1 ≈ 2c2 − 4c + 1

c
m + 1

where c = 1 +
√

1+ln 2
2

, the competitive ratio of MR.

Depending on different conditions the algorithms choose between putting a new job on

the least loaded small machine, m1, or the least loaded large machine, ms+1. When only

considering unit-sized jobs, it can be shown that at any time the difference in load for the

least and most loaded small machine is at most one. The same results hold for the large

machines. It can also be shown that for both algorithms a worst ordering of σ2 is when the

large job appears as the last job, and in this case this job is placed on the least loaded machine,

m1.

For M2 and σ1, the ratio between L1 and Lm approaches α for m approaching infinity,

where

α = 0.923sM2 − 0.145 m

0.923(m − sM2)
≈ 0.923m/2 − 0.145 m

0.923(m − m/2)
= 633

923
.

Next, for σ1, we get m(m − 1) ≈ sM2 Lσ1

1 + (m − sM2)Lσ1
m = m

2
(α + 1)Lσ1

m , and hence Lσ1
m ≈

2
α+1

(m − 1) ≈ 923
778

OPT(σ1) ≈ 1.18638 OPT(σ1).

For σ2, the load of Lm can be found as

Lσ2

m = Lσ1

1 + m ≈ αLσ1

m + m ≈ 2α

α + 1
(m − 1) + m ≈ 1411

778
m − 633

778

= 1411

778
OPT(σ2) − 633

778
.

For MR and σ1, the ratio between L1 and Lm approaches β for m approaching infinity,

where

β = 2c − 3

2(c − 1)
= 1 − 1

2c − 2
,

with c = 1 +
√

1+ln 2
2

, the competitive ratio of MR.

Springer

384 J Comb Optim (2006) 12:363–386

Now, for σ1, we have,

m(m − 1) ≈ sMR Lσ1

1 + (m − sMR)Lσ1

m

≈ (sMRβ + (m − sMR))Lσ1

m

= (m + sMR(β − 1)) Lσ1

m

≈
(

m −
(

2c2 − 4c + 1

c
m + 1

)(
1

2c − 2

))
Lσ1

m

=
(

(2c − 2)m − 2c2 − 4c + 1

c
m − 1

)
Lσ1

m

2c − 2

= ((2c − 1)m − c)
Lσ1

m

c(2c − 2)

Hence, Lσ1
m ≈ m(m−1)c(2c−2)

(2c−1)m−c ≈ 2c2−2c
2c−1

(m − 1) = 2c2−2c
2c−1

OPT(σ1) ≈ 1.24405 OPT(σ1).

For σ2, the load of Lm can be found as

Lσ2

m = Lσ1

1 + m

= βLσ1

m + m

≈ 2c − 3

2(c − 1)

2c2 − 2c

2c − 1
(m − 1) + m

= (2c − 3)c

2c − 1
(m − 1) + m

= 2c2 − c − 1

2c − 1
m − (2c − 3)c

2c − 1

= 2c2 − c − 1

2c − 1
OPT(σ2) − (2c − 3)c

2c − 1

≈ 1.56801 OPT(σ2) − 0.56801

The results for m approaching infinity are summarized in the following table. Recall that

ALGW(σ) denotes the makespan of ALG on the worst permutation of σ . Note that for any

pair of the three algorithms, the order of the two is different for σ1 when compared to σ2.

ALG
ALGW(σ1)

OPT(σ1)

ALGW(σ2)

OPT(σ2)
LIST 1 2

M2 1.18638 1.81362

MR 1.24405 1.56801

Theorem 6. LIST, M2, and MR are pairwise incomparable.

It is not surprising that LIST is incomparable to M2 and MR. The two latter algorithms

are designed to do slightly bad on some input sequences, like the sequence with unit sized

jobs, in order to avoid even worse performance on other input sequences.

Springer

J Comb Optim (2006) 12:363–386 385

3.2 Two related machines

Assume now that we have two machines available, and one machine is a factor of s times

faster than the other, s ≥ 1. Preemption is still not allowed.

Let POST-GREEDY be the algorithm that schedules each job on the machine where it will

finish first. By Cho and Sahni (1980), Epstein and Sgall (2000) and Epstein et al. (2001),

POST-GREEDY has an optimal competitive raito of 2s+1
s+1

, if s ≤ φ, and s+1
s , if s ≥ φ, where

φ ≈ 1.618 is the golden ratio. It is easy to see that the algorithm FAST that simply schedules

all jobs on the fastest machine is s+1
s -competitive (Epstein et al., 2001). Hence, for s ≥ φ,

both algorithms have the optimal competitive ratio. However, POST-GREEDY seems to be the

more reasonable algorithm: it never gives a larger makespan than FAST, and in many cases it

even has a much smaller makespan. This is reflected by the relative worst order ratio:

For any n ≥ 1, consider the input sequence consisting of n(s + 1)� jobs of unit size. On

this input sequence, FAST has a makespan of
⌊ n(s+1)

s

⌋
and POST-GREEDY has a makespan of

at most n. Since
⌊ n(s+1)

s

⌋
approaches s+1

s as n approaches infinity, WRFAST,POST-GREEDY ≥ s+1
s ,

and since this ratio cannot be larger than the competitive ratio of FAST, the result is tight.

Theorem 7. WRFAST,POST-GREEDY = s+1
s .

4 Conclusion

In this work we have applied the relative worst order ratio to a few online problems.

For most of the considered scheduling problems, competitive analysis does not distinguish

between different optimal algorithms, whereas using the relative worst order ratio we are able

to distinguish the algorithms, and in all cases the ratio prefers the intuitively better algorithm.

For non-preemptive scheduling on identical machines, the considered algorithms are in-

comparable using the relative worst order ratio, even when the algorithms have different

competitive ratios. The reason for this is that, except for the first algorithm LIST, the al-

gorithms have been specially tailored to get good competitive ratios, i.e., to work well on

worst-case sequences. This is done at the expense of getting a bad makespan for many nor-

mal input sequences, where the algorithms with a worse competitive ratio are better. The

competitive ratio measure in this case prefers certain non-preemptive algorithms whereas the

relative worst order ratio allows us to see that the algorithms are incomparable. The order of

their relative performance depends on the type of input sequence given, and it is impossible

to say that one algorithm is generally better than the other for all input sequences.

In general, our results show that, in many cases, the relative worst order ratio can motivate

searching for better algorithms, even when an algorithm with optimal competitive ratio has

been found. We saw that in many cases, a very small change in the algorithm, without

changing the competitive ratio, can be immediately seen in the resulting relative worst order

ratio.

References

Albers S (1999) Better bounds for online scheduling. SIAM J Comput 29(2):459–473

Bartal Y, Fiat A, Karloff H, Vohra R (1995) New algorithms for an ancient scheduling problem. J Comput

Syst Sci 51(3):359–366

Ben-David S, Borodin A (1994) A new measure for the study of on-line algorithms. Algorithmica 11(1):73–91

Springer

386 J Comb Optim (2006) 12:363–386

Boyar J, Favrholdt LM (2003) The relative worst order ratio for on-line algorithms. In Proc. 5th Italian conf.

on algorithms and complexity, vol. 2653 of Lect Notes Comp Sci Springer-Verlag, pp 58–69

Boyar J, Favrholdt LM, Larsen KS (2005) The relative worst order ratio applied to paging. In Proc. 16th Annu.

ACM-SIAM symp. discrete algorithms, pp 718–727

Boyar J, Medvedev P (2004) The relative worst order ratio applied to seat reservation. In Proc. of the 9th

scand. workshop on algorithm theory, vol. 3111 in Lect Notes Comp Sci pp 90–101

Chen B, van Vliet A, Woeginger GJ (1995) An optimal algorithm for preemptive on-line scheduling. Oper

Res Lett 18(3):127–131

Cho Y, Sahni S (1980) Bounds for list schedules on uniform processors. SIAM J Comput 9(1):91–103

Epstein L, Noga J, Seiden SS, Sgall J, Woeginger GJ (2001) Randomized online scheduling on two uniform

machines. J Sched 4(2):71–92

Epstein L, Sgall J (2000) A lower bound for on-line scheduling on uniformly related machines. Oper Res Lett

26(1):17–22

Faigle U, Kern W, Turán G (1989) On the performance of on-line algorithms for partition problems. Acta

Cybernet 9(2):107–119

Fleischer R, Wahl M (2000) On-line scheduling revisited. J Sched 3(6):343–353

Galambos G, Woeginger GJ (1993) An on-line scheduling heuristic with better worst case ratio than Graham’s

list scheduling. SIAM J Comput 22(2):349–355

Gonzalez T, Sahni S (1978) Preemptive scheduling of uniform processor systems. J ACM 25(1):92–101

Gormley T, Reingold N, Torng E, Westbrook J (2000) Generating adversaries for request-answer games. In

Proc. 11th annu. ACM-SIAM symp. on discrete algorithms, pp 564–565

Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Systems Techn J 45:1563–1581

Karger DR, Philips SJ, Torng E (1996) A better algorithm for an ancient scheduling problem. J Algorithms

20(2):400–430

Kenyon C (1996) Best-fit bin-packing with random order. In Proc. 7th annu. ACM-SIAM symp. on discrete

algorithms, pp 359–364

Kohrt JS (2004) Online algorithms under new assumptions, PhD thesis, Dept Math and Comp Sci, Univ South

Den, p. 78.

McNaughton R (1959) Scheduling with deadlines and loss functions. Manag Sci 6(1):1–12

Seiden SS (2001) Preemptive multiprocessor scheduling with rejection. Theoret Comp Sci 262(1–2):437–458

Wen J, Du D (1998) Preemptive on-line scheduling for two uniform processors. Oper Res Lett 23:113–116

Springer

