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Abstract This paper considers the Cardinality Constrained Quadratic Knapsack Problem

(QKP) and the Quadratic Selective Travelling Salesman Problem (QSTSP). The QKP is a

generalization of the Knapsack Problem and the QSTSP is a generalization of the Travelling

Salesman Problem. Thus, both problems are NP hard. The QSTSP and the QKP can be solved

using branch-and-cut methods. Good bounds can be obtained if strong constraints are used.

Hence it is important to identify strong or even facet-defining constraints. This paper studies

the polyhedral combinatorics of the QSTSP and the QKP, i.e. amongst others we identify

facet-defining constraints for the QSTSP and the QKP, and provide mathematical proofs that

they do indeed define facets.

Keywords Quadratic knapsack . Quadratic selective travelling salesman . Polyhedral

analysis . Facets

1. Introduction

A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-

collecting) TSP: In addition to the edge-costs, each node has an associated reward (referred

to as the node-reward) and instead of visiting all nodes, only profitable nodes are visited.

The Quadratic Selective TSP (QSTSP) has additional complications: (1) each pair of nodes
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have an associated reward (referred to as the edge-reward) which can be gained only if both

nodes are visited; and (2) a constraint on the number of nodes selected is imposed, which

we refer to as the cardinality constraint. The objective of an QSTSP is to maximize the total

node-rewards and edge-rewards gained minus the edge-costs incurred subject to the satisfac-

tion of the cardinality constraint.

Conceptually the QSTSP consists of two interacting problems, a cardinality-constrained

min-cost circuit problem with respect to the edge-costs and a cardinality-constrained max-

reward clique problem with respect to the edge-rewards.

The cardinality constrained circuit problem (CCCP) is considered in Bauer (1997) where

polyhedral results are presented and in Bauer et al. (2002) where a branch and cut algorithm is

discussed. The max-reward clique problem is a special case of the quadratic knapsack problem

where the knapsack constraints have unit coefficients. We denote this problem the cardinality

constrained quadratic knapsack problem (QKP). The quadratic knapsack problem (when

coefficients are not necessarily unit) is considered in e.g. Johnson et al. (1993), Billionnet

and Calmels (1996), and Caprara et al. (1999). For cases when edge-rewards are non-negative,

the cardinality constraint will be met with equality. The problem will then be similar to the

p-dispersion problem considered in Erkut (1990) wherein the objective is to maximize the

minimum edge-reward. The p-dispersion problem is considered in Pisinger (1999) with an

objective equivalent to the one considered here.

Various TSP-like problems are similar to QSTSP in the way that a subset of nodes has to be

selected. E.g. the Prize-collecting TSP (Balas, 1989, 1995), the Selective TSP (Gendreau et

al., 1998; Laporte and Martello, 1990), the Orienteering problem (Fischetti et al., 1998), and

the Generalized TSP (Fischetti et al., 1995, 1997). Problems that consider the combination of

a clique problem and a cycle problem has been studied in Gendreau et al. (1995) and Gouveia

and Manuel Pires (2001). Gendreau et al. (1995) study a problem where instead of imposing

the cardinality constraint, an upper bound on the sum of the edge-costs are imposed. Gouveia

and Manuel Pires (2001) study a QSTSP-like problem with the additional requirement that

some nodes must be in the cycle.

In this paper we study the polyhedral combinatorics of the QKP and the QSTSP. Our

interest in studying the QSTSP is due to the fact that this problem arose as a subproblem

from another combinatorial optimisation problem which deals with designing hierarchical

ring (cycle) networks (see Stidsen and Thomadsen, 2005). Naturally, the faster we can solve

the QSTSP, the better. The QKP, however, is an interesting problem in its own right, but we

study the QKP mostly for its relevance in understanding the QSTSP. Both problems are NP

hard, as QKP is a generalization of the Knapsack Problem and QSTSP is a generalization of

the Travelling Salesman Problem.

A promising approach in solving these combinatorial optimisation problems is the

branch-and-cut method. A significant factor in the success of the method is the use of strong

constraints that at least partially describe the convex hull of the incidence vectors of all

feasible solutions, in other words, the use of facet-defining cuts.

The contribution of this research is therefore the identification of some of the strong cuts,

the mathematical proofs that these cuts are indeed facet-defining, and the various mathemat-

ical techniques used in proving these results.

We begin with, in Section 2, giving an integer programming model for the QSTSP and

define the polyhedra of the QKP, CCCP, and the QSTSP. In Sections 3 and 4, we present our

polyhedral results on the QKP and the QSTSP polytopes. Finally, in Section 5, we conclude

our findings.
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2. Integer programming model and the polyhedra

In this research, we consider the QSTSP defined on the undirected graph G = (V, E) for G
complete. This is not restrictive in terms of implementation, as we can always introduce an

arbitrary high cost for edges that do not exist.

For convenience of notation, we use (U1, U2) to denote {(i, j) ∈ E | i ∈ U1, j ∈ U2}, for

any U1, U2 ⊆ V ; use δ(S) to denote {(i, j) ∈ E | i ∈ S, j ∈ V \S}; and use E(S) to denote

{(i, j) ∈ E |i, j ∈ S}.
We use ri to denote the reward for selecting node i , we the reward for using edge e, ce the

cost of using edge e, and b the maximum number of nodes allowed in the cycle. Let xe be the

decision variable with xe = 1 if e ∈ E is chosen in the cycle and 0 otherwise; yi be the decision

variable with yi = 1 if i ∈ V is on the cycle, 0 otherwise; and ze be the decision variable with

ze = 1, for (i, j) ∈ E if node i and j are both on the cycle, 0 otherwise. If e = (i, j) ∈ E ,

then zi j is sometimes used in place of ze. Given these, the QSTSP is formulated as follows.

max
∑
i∈V

ri · yi +
∑
e∈E

we · ze −
∑
e∈E

ce · xe (1)

s.t.
∑

e∈δ(i)

xe = 2yi , ∀i ∈ V (2)

ze ≤ yi , ∀i ∈ V, e ∈ δ(i) (3)

zi j ≥ yi + y j − 1, ∀(i, j) ∈ E, i < j (4)∑
e∈δ(S)

xe ≥ 2(yk + yl − 1), ∀∅ ⊂ S ⊂ V, k ∈ S, l �∈ S (5)

∑
i∈V

yi ≤ b, ∀i ∈ V (6)

xe ∈ {0, 1}, ∀e ∈ E (7)

yi ∈ {0, 1}, ∀i ∈ V (8)

ze ∈ {0, 1}, ∀e ∈ E . (9)

Constraints (2) ensure that a node is selected if and only if the degree of the node is two.

Constraints (3) and (4) establish the fact that zi j = 1 if and only if yi = y j = 1. Constraints

(5) and (6) are the subtour elimination constraints and the cardinality constraints respectively.

Let n = |V |. The Quadratic Selective Travelling Salesman(QSTS) polytope is defined to be

Pnb
QS = conv {(x, y, z) ∈ R2|E |+n|(x, y, z) satisfies (2)–(9)}. (10)

We identify two related polytopes. The cardinality constrained quadratic knapsack(QK) poly-

tope, given by

Pnb
QK = conv {(y, z) ∈ R|E |+n|(y, z) satisfies (3), (4), (6), (8) and (9)}; (11)

and the cardinality constrained circuit polytope, given by

Pnb
C = conv {(x, y) ∈ R|E |+n|(x, y) satisfies (2), (5)–(8)}. (12)
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Note that Pnb
QS is contained in the intersection of Pnb

QK and Pnb
C . Thus any valid inequality for

either Pnb
QK or Pnb

C is valid for Pnb
QS . Note also that for the CCCP and QSTSP we consider in

this paper, we assume that the empty cycle is considered as a feasible solution, whereas in

Bauer (1997), it is not considered as a feasible solution.

The contribution of this paper is the study of the QK polytope (Pnb
QK ), and the polytope of

an integer programming model of the QSTSP without the y variables denoted by P̃nb
QS . We

show that P̃nb
QS and Pnb

QS are in fact describing the same set of feasible solutions for the QSTSP,

and that any facet-defining inequality defined for P̃nb
QS is also facet-defining for Pnb

QS . Then,

we present our results on Pnb
QK and P̃nb

QS : we establish the dimensions of these polytopes, and

for each of them, we develop a number of classes of facet-defining constraints.

3. Polyhedral results for the QK polytope

In this section, we present our polyhedral results on the dimension of Pnb
QK and that four

classes of constraints are facet-defining for Pnb
QK : the non-negativity constraints on the

z-variables, the generalizations of Constraints (3) and (4), and a modification of Constraints

(6).

In what follows, we use incidence vectors (y, z) ∈ {0, 1}|V |+|E |, for y ∈ {0, 1}|V | and z ∈
{0, 1}|E | to represent our solutions. Each element in y corresponds to a node j ∈ V and each

element in z corresponds to an edge (i, j) ∈ E . We also use e j ∈ {0, 1}|V |+|E |, for j ∈ V ,

to represent a vector with the value of the element corresponding to node j equals 1 and

the values of all other elements of e j equal 0; and use ei j ∈ {0, 1}|V |+|E |, for (i, j) ∈ E , to

represent a vector with the value of the element corresponding to edge (i, j) equals 1 and the

values of all other elements of ei j equal 0.

Theorem 3.1. Given any G = (V, E), 2 ≤ b ≤ |V |, the dimension of the QK polytope, Pnb
QK ,

is |E | + |V |, i.e., it is full dimensional.

Proof: Consider the sequential insertion of the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = e j , for all j ∈ V ; and

3. (y, z)2 = ei + e j + ei j , for all (i, j) ∈ E .

Clearly, these give us |E | + |V | + 1 affinely independent feasible solutions, and therefore

the dimension of the QK polytope is |E | + |V |. �

Theorem 3.2. Given any G = (V, E), for 2 ≤ b ≤ |V |, the bound constraints given as

z f ≥ 0, ∀ f ∈ E, (13)

are facet-defining for Pnb
QK .

Proof: We need to show that the dimension of F = Pnb
QK ∩ {z f = 0} is |E | + |V | − 1. First

of all, F defines a proper face as there is at least one feasible solution that satisfies z f = 0

(consider any cycle that does not contain edge f ) and at least one feasible solution that

does not satisfy z f = 0 (consider any cycle that does contain edge f ). Therefore dim(F) ≤
|E | + |V | − 1. Now consider the following feasible solutions:
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1. (y, z)0 = 0;

2. (y, z)1 = e j , for all j ∈ V ; and

3. (y, z)2 = ei + e j + ei j , for all (i, j) ∈ E\{ f }.
Clearly, these give us |E | + |V | affinely independent feasible solutions, and therefore dim(F)

is |E | + |V | − 1. �

Proposition 3.1. Given any G = (V, E), for |V | ≥ 2, 1 ≤ b ≤ |V |, the constraints given
as: ∑

e∈(i,S)

ze ≤ yi +
∑

e∈E(S)

ze, ∀i ∈ V, S ⊆ V \{i}, |S| ≥ 1, (14)

are valid for Pnb
QK .

(Note that (3) is a special case of (14)).

Proof: Let S̃ ⊆ S be the nodes in S that are selected (i.e. that are in the cycle), we have that∑
e∈(i,S) ze = |S̃| and

∑
e∈E(S) ze = 1

2
|S̃|(|S̃| − 1), hence it is easy to verify that (14) is valid

for Pnb
QK . �

Theorem 3.3. Given any G = (V, E), for 3 ≤ b ≤ |V |, Constraints (14) are facet-defining
for Pnb

QK if |S| ≥ 2.

Proof: Let F = Pnb
QK ∩ {∑e∈(i,S) ze = yi + ∑

e∈E(S) ze}. F defines a proper face for Pnb
QK :

consider (y, z) = 0 which satisfy the constraint at equality and (y, z) = e j + ek , for j, k ∈ S
which does not. Thus, dim(F) ≤ dim(Pnb

QK ) − 1. Now, we show that dim(F) ≥ dim(Pnb
QK ) −

1 by finding exactly dim(Pnb
QK ) = |V | + |E | affinely independent feasible solutions that sat-

isfy the constraints at equality. We do so by sequentially introducing the following vectors,

each representing a feasible solution.

1. (y, z)1 = {0};
2. (y, z)2 = {(y, z)2

j | ∀ j ∈ V \{i}} where (y, z)2
j = e j , (we have |V | − 1 of these solutions);

3. (y, z)3 = {(y, z)3
i j | ∀ j ∈ S} where (y, z)3

i j = ei + e j + ei j , for all j ∈ S, (we have |S| of

these solutions);

4. (y, z)4 = {(y, z)4
jk | ∀ j ∈ S, k ∈ S̄ \ {i}} where (y, z)4

jk = e j + ek + e jk , (we have

|(S, S̄ \ {i})| of these solutions);

5. (y, z)5 = {(y, z)5
jk | ∀ j, k ∈ S̄ \ {i}, j < k} where (y, z)5

jk = e j + ek + e jk , (we have

|E(S̄ \ {i})| of these solutions);

6. (y, z)6 = {(y, z)6
jk | ∀ j, k ∈ S, j < k} where (y, z)6

jk = ei + e j + ek + ei j + eik + e jk ,

(we have |E(S, S)| of these solutions); and

7. (y, z)7 = {(y, z)7
jk | j ∈ S, ∀k ∈ S̄ \ i}, where (y, z)7

jk = ei + e j + ek + ei j + eik + e jk ,

(we have |S̄| − 1 of these solutions).

Case 1 is the 0-vector, and as each of Case 2 corresponds to a distinct node in V \{i}, we

have |V | affinely independent feasible solutions in total so far. Since each of Cases 3–7

corresponds to a distinct edge in E , (Cases 3 and 7 cover the edge set (i, V \{i}), Case 4

covers edge set (S, S̄\{i}), Case 5 covers edge set (S̄\{i}, S̄\{i}), and Case 6 covers edge set
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(S, S)), so the solutions are affinely independent to each other and to those in Cases 1 and 2.

Hence, we have |V | + |E | affinely independent feasible solutions in total. �

Proposition 3.2. Given any G = (V, E), for |V | ≥ 2, 1 ≤ b ≤ |V |, the constraints, given
by: ∑

e∈E(S)

ze + 1 ≥
∑
i∈S

yi , ∀S ⊆ V, |S| ≥ 2, (15)

are valid for the QK polytope.

Note that (4) is a special case of (15). The proof is similar to that of Proposition 3.1.

Theorem 3.4. Given any G = (V, E), 3 ≤ b ≤ |V |, Constraints (15), are facet-defining for
the QK polytope if |S| ≥ 2.

Proof: Let F = Pnb
QK ∩ {∑e∈E(S) ze + 1 = ∑

i∈S yi }. F defines a proper face for Pnb
QK : con-

sider (y, z) = 0 which does not satisfy the constraint at equality and (y, z) = ei which does.

Again, we find exactly dim(Pnb
QK ) = |V | + |E | affinely independent feasible solutions that

satisfy the constraints at equality. We do so by taking the following steps.

1. (y, z)1 = {(y, z)1
i | ∀i ∈ S}, where (y, z)1

i = ei (we have |S| of these solutions);

2. (y, z)2 = {(y, z)2
i j | ∀i ∈ S, j ∈ V }, where (y, z)2

i j = ei + e j + ei j , (we have |(S, S)| +
|(S, S̄)| of these solutions);

3. (y, z)3 = {(y, z)3
k | ∀k ∈ S̄}, where (y, z)3

k = ei + e j + ek + ei j + eik + e jk , for a fixed

i ∈ S, and a fixed j ∈ S \ {i}, (we have |S̄| of these solutions); and

4. (y, z)4 = {(y, z)4
jk | ∀ j, k ∈ S̄}, where (y, z)4

jk = ei + e j + ek + ei j + eik + e jk , for a

fixed i ∈ S, (there are |(S̄, S̄)| of these solutions).

It is obvious that the |S| + |(S, S)| + |(S, S̄)| feasible solutions introduced in Step 1 and

Step 2 are affinely independent as these edge sets are disjoint sets. We now show that the

solutions introduced in Step 3 are affinely independent to all the previously introduced

solutions. We do so by contradiction. We assume that, w.l.o.g., the first solution intro-

duced in Step 3 is (y, z)3
l , for any l ∈ S̄, and that (y, z)3

l = ∑
i λi (y, z)1

i + ∑
i j μi j (y, z)2

i j ,

for some λ ∈ R|S|, μ ∈ R|(S,S)|+|(S,S̄)|, (λ, μ) �= 0. Now, to obtain the elements in (y, z)3
l

corresponding to the z variables, we need to set μi j = μil = μ jl = 1, and μ f = 0 for all

f ∈ E \ {(i, j), (i, l), ( j, l)}. Observe further that in (y, z)1, as l ∈ S̄, the value of the element

corresponding to node l is always 0. So, the value of the element in (y, z)3 that corresponds

to node l should be 2 instead of 1. Hence there is a contradiction. Clearly as the nodes in S̄
are all distinct, we conclude that the incidence vectors in (y, z)3 are all affinely independent.

Last of all, the solutions introduced in Step 4, i.e. (y, z)4 are obviously affinely independent

to all the previously introduced solutions as the edge sets in Steps 2, 3, and 4 are disjoint

sets. Thus the theorem is proved. �

Definition 3.1. Given any G = (V, E), for |V | ≥ 2, 1 ≤ b ≤ |V |, the constraints, given as:∑
e∈δ(i)

ze ≤ (b − 1)yi , ∀i ∈ V, (16)

are valid for Pnb
QK .
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Multiplying (6) by yi , we get Constraints (16). (Note that yi yi = yi and yi y j = zi j ).

Theorem 3.5. Given any G = (V, E), 3 ≤ b ≤ |V | − 1, Constraints (16) are facet-defining
for Pnb

QK .

Proof: Let F = Pnb
QK ∩ {∑e∈δ(i) ze = (b − 1)yi }. F defines a proper face for Pnb

QK : consider

(y, z) = ei which does not satisfy the constraint at equality since b is at least 3, and (y, z) =
ei + ∑

j∈S e j , for any S ⊆ V \{i}, |S| = b − 1, which does satisfy the constraint at equality.

Now consider the following feasible solutions which do not select node i :

1. (y, z)0 = 0;

2. (y, z)1 = ek , for all k ∈ V \{i}, (we have |V | − 1 of these solutions); and

3. (y, z)2 = ek + el + ekl , for all {k, l} ⊆ V \{i}, (we have |E | − (|V | − 1) of these solu-

tions).

Clearly, these |E | + 1 points are affinely independent, and satisfy (16) at equality.

Now, we are left with finding the remaining |V | − 1 affinely independent feasible so-

lutions. We do so by inspecting the set of all feasible solutions that selects exactly b
nodes, including node i . We define such a set of solutions to be �V,b = {I1, . . . , Im | Il =
{i} ∪ Ul , |Il | = b, ∀l = 1, . . . , m}, where Ul ⊂ V \{i}. (Note that m is finite). We denote

each solution Il by {i, j l
1, . . . , j l

b−1} for l = 1, . . . , m.

Our inductive hypothesis is that there are precisely |V | − 1 affinely independent feasible

solutions among the m solutions in �V,b. Our proof takes the following steps: Step 1 concerns

the initial case for |V | = 4 and b = 3; Step 2 concerns induction on |V | while holding b
constant; and Step 3 concerns induction on both b and |V |.

Step 1. There are precisely 3 affinely independent feasible solutions for the case when |V | = 4

and b = 3. W.l.o.g., suppose the four node are indexed {1, 2, 3, 4} and that i = 3. We have

the following three basis solutions: (1) e1 + e2 + e3 + e12 + e13 + e23; (2) e1 + e3 + e4 +
e13 + e14 + e34; and (3) e2 + e3 + e4 + e23 + e34 + e24. (Note that the only remaining

feasible solution that selects three nodes does not include node 3.)

Step 2. We assume that our inductive hypothesis is true for |V | = 4, . . . , s and b = t , for t ≤
s − 1. We now show that it is true for |V | = s + 1 and b = t . Consider the QKP defined on

G̃ = (Ṽ , Ẽ), for Ṽ = V ∪ {q}, Ẽ = (q, V ) ∪ E(V ). We show that �Ṽ ,t contains exactly

s affinely independent feasible solutions. By our inductive hypothesis, there exists �V,t

that contains s − 1 affinely independent feasible solutions, and w.l.o.g., let these s − 1

solutions be I1, . . . , Is−1. As b was held constant at t , these s − 1 points are also feasible

for G̃ and satisfy (16) at equality. Now consider a new solution Is = {i, j1
1 , . . . , j1

t−2, q}.
Clearly, Is is affinely independent to any of the previously introduced solutions (wherein

q is never used), and it satisfy (16) at equality.

Step 3. We assume that our inductive hypothesis holds for |V | = 4, . . . , s, b = 3, . . . , t , for

t ≤ s − 1, and prove that it holds for |V | = s + 1 and b = t + 1. Recall I1, . . . , Is−1

defined in Step 2. First, consider the solution I ′
s = I1 ∪ {k}, for any k ∈ V \I1, (hence

|I ′
s | = t + 1, and is affinely independent to (y, z)0, (y, z)1 and (y, z)2, bear in mind that

node i is not selected in these three sets of solutions). Then, we define I ′
l = Il ∪ {q}, for

all l = 1, . . . , s − 1, and thus obtain s − 1 affinely independent feasible solutions each

selecting t + 1 nodes. These are affinely independent to (y, z)0, (y, z)1, (y, z)2, and I ′
s due

to the use of node q. Thus completes the proof.
�
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4. Polyhedral results for the QSTS polytope

In this section, we present our polyhedral results for the QSTS polytope, P̃nb
QS . (Recall that

this concerns the formulation without the y variables). We first present the dimension of P̃nb
QS

and establish the links between P̃nb
QS and Pnb

QS . We then prove that five classes of constraints

are facet-defining for P̃nb
QS . The first class of constraints concerns the relationship between xe

and ze; the second class of constraints is a lifted version of the subtour elimination constraints

(5); and the last three classes of constraints are facet-defining constraints for the QK polytope,

except that herein we use 1
2

∑
e∈δ(i) xe in place of yi .

In what follows, we use incidence vectors (x, z) ∈ {0, 1}2|E |, for x, z ∈ {0, 1}|E | to repre-

sent our solutions. We also define (λ, μ) ∈ R2|E |, for λ, μ ∈ R|E |, with each element in λ and

μ representing an edge e ∈ E . Furthermore, when we refer to p-cycles, we refer to cycles

in G that contain p nodes. In this section, we consider the 0-cycles as feasible solutions,

however the 1-cycles and the 2-cycles are not feasible solutions.We will use the following

result frequently.

Proposition 4.1. Given an undirected graph G = (V, E), |V | = 5, let M be the matrix
generated by incidence vectors of all 3- and 4-cycles in G (i.e. each row of M is a vector of
{0, 1}2|E | that represents a solution for the QSTSP). Under the assumption that G is complete,
if M(λ, μ)T = 0, then λe = μe = 0 for all e ∈ E.

Proof: It can be verified that M is of rank 2|E | = 20, hence the result follows immediately.

�

Theorem 4.1. Given any QSTSP defined on an undirected graph G = (V, E), with |V | ≥ 5

and 4 ≤ b ≤ |V |, under the assumption that G is complete, the dimension of the QSTS
polytope, P̃nb

QS, is 2|E |.

Proof: We show this by contradiction. We first assume that P̃nb
QS is not full-dimensional,

and hence there must be at least one equality constraint, λ · x + μ · z = λ0, satisfied by

all feasible solutions in the polytope. Then we establish that this is true only when λe =
μe = λ0 = 0, for all e ∈ E , thus implying that there is no equality constraint satisfied by all

feasible solutions in the polytope and hence the polytope is full dimensional.Consider the

0-cycle defined by (x, z) = 0. We have λ · 0 + μ · 0 = λ0. Hence we get λ0 = 0. To show that

λe = μe = λ0 = 0, for all e ∈ E , consider any arbitrary subgraph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V ,

|Ṽ | = 5, and Ẽ = E(Ṽ ). Under the assumption that G is complete, G̃ is also complete. Now,

consider a matrix M generated by the incidence vectors of all the 3-cycles and the 4-cycles

in G̃. Since λ0 = 0, by result of Proposition 4.1, we have λe = μe = 0 for all e ∈ Ẽ . (Note

that since we must use 4-cycles in here, b must be at least four). As G̃ is arbitrary in G, we

have that λe = μe = 0, for all e ∈ E . Hence the theorem is proved. �

Next, we discuss the relation between P̃nb
QS and Pnb

QS . Essentially, we show that the two

polytopes represent the same set of feasible solutions, and that facets found for one are facets

for the other (with slight modifications). Hence, all facets of P̃nb
QS we propose in this paper

are also facets for Pnb
QS . These results are echos of similar results of Bauer et al. (2002) for

the CCCP.
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Proposition 4.2. For any QSTSP defined on G = (V, E) where |V | ≥ 5, and 4 ≤ b ≤ |V |,
we have that dim(P̃nb

QS) = dim(Pnb
QS).

Proof: Each incidence vector (x, z) ∈2|E | ∩P̃nb
QS can be represented by an incidence vector

(x, y, z) ∈ R2|E |+|V | ∩ Pnb
QS simply by setting yi = 1

2

∑
e∈δ(i) xe for all i ∈ V . For any set of

2|E | + 1 affinely independent incidence vectors that spans P̃nb
QS , we can get 2|E | + 1 affinely

independent incidence vectors in Pnb
QS . Thus dim(Pnb

QS) ≥ 2|E |. As the rank of the degree

constraints, (2), is |V |, clearly dim(Pnb
QS) ≤ 2|E | + |V | − |V |, and thus dim(Pnb

QS) = 2|E |.
�

Remark 1. Since dim(P̃nb
QS) = dim(Pnb

QS), and each incidence vector (x, z) ∈ R2|E | ∩ P̃nb
QS

can be represented by an incidence vector (x, y, z) ∈ R2|E |+|V | ∩ Pnb
QS , the two polytopes

describe the same set of feasible solutions for the QSTSP.

Proposition 4.3. For any QSTSP defined on G = (V, E) where |V | ≥ 5, and 4 ≤ b ≤ |V |,
if ax + bz ≤ a0 defines a facet for P̃nb

QS, then it also defines a facet for Pnb
QS.

Proof: By result of Proposition 4.2 and the fact that the same 2|E | affinely independent

incidence vectors (x, z) ∈ R2|E | ∩ P̃nb
QS that satisfy ax + bz ≤ a0 at equality can be converted

to 2|E | affinely independent incidence vectors (x, y, z) ∈ R2|E |+|V | ∩ Pnb
QS , the proposition

is proved. �

Proposition 4.4. For any QSTSP defined on G = (V, E) where |V | ≥ 5, and 4 ≤ b ≤ |V |,
if αx + βy + γ z ≤ α0 defines a facet for Pnb

QS, then α̃x + γ z ≤ α0 also defines a facet for

P̃nb
QS, where α̃i j = αi j + 1

2
(βi + β j ).

Proof: Suppose � = {(x1, y1, z1), . . . , (x |E |, y|V |, z|E |)} defines 2|E | affinely inde-

pendent feasible solutions that satisfy αx + βy + γ z ≤ α0 at equality,then �̃ =
{(x̃1, 0, z1), . . . , (x̃ |E |, 0, z|E |)}, where x̃i j = xi j + 1

2
(yi + y j ) for all (i, j) ∈ E , (which is

obtained from � by simple linear row operations), are also affinely independent. Hence the

result. �

Proposition 4.5. Given any QSTSP defined on an undirected graph G = (V, E), with 3 ≤
b ≤ |V | ≤ 5, the constraints given below, are valid for the QSTS polytope, P̃nb

QS.

xe ≤ ze, ∀e ∈ E . (17)

This is obviously true by the definitions of the x- and z-variables.

Theorem 4.2. Given any QSTSP defined on an undirected graph G = (V, E), with |V | ≥ 5
and 4 ≤ b ≤ |V |, Constraints (17) are facet-defining for the QSTS polytope, P̃nb

QS.

Proof: We show that the result holds for |V | ≥ 6 and b ≥ 4. (For |V | = 5 and 5 ≥ b ≥ 4,

one can easily prove this by enumerating feasible points that satisfy (17) at equality and verify

that there are 2|E | affinely independent feasible points). First we show that P̃nb
QS ∩ {xe = ze}

defines a proper face. Let e = (i, j). Consider a 4-cycle given by (l, i, m, j), for l, m, i, j
distinct, clearly xe = 0 and ze = 1, hence the constraint is not satisfied at equality. Now
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consider a 3-cycle given by (l, i, j), for l, i, j distinct, clearly xe = ze = 1 and the constraint

is satisfied at equality.

Now, using Theorem 3.6 in Part I.4 of Nemhauser and Wolsey (1988), we need to show

that if λ · x + μ · z = λ0 for all x ∈ P̃nb
QS ∩ {xe = ze}, then

λ f =
{

α, if f = e,

0, otherwise;
λ0 = 0; and μ f =

{−α, if f = e,
0, otherwise;

for some α ∈ R.

By considering the 0-cycle, we obtain λ0 = 0. Let e = (i, j). Consider any arbitrary

subgraph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V \{i}, |Ṽ | = 5 and Ẽ = E(Ṽ ). As i /∈ Ṽ , e /∈ Ẽ , hence (17)

holds with equality for all cycles in G̃. By Proposition 4.1, we have λ f = μ f = 0, for all

f ∈ Ẽ . Now, consider any arbitrary distinct j, k, l ∈ V \{i}, and compare 3-cycles (i, j, k),

(i, k, l), and (i, j, l), we get λe + μe = 0. Let λe = α for some α ∈ R, we have μe = −α and

thus the theorem is proved. �

To eliminate subtours for the QSTSP, we propose a class of constraints lifted from (5),

given as: ∑
e∈δ(S)

xe ≥ 2zkl , ∀∅ ⊂ S ⊂ V, k ∈ S, l �∈ S. (18)

Proposition 4.6. Given any QSTSP defined on an undirected graph G = (V, E), with 3 ≤
b ≤ |V |, the constraints given by (18), are valid for P̃nb

QS.

This is just the classic subtour elimination constraint.

Theorem 4.3. Given any QSTSP defined on an undirected graph G = (V, E), with |V | ≥ 10,
|V | − 5 ≥ |S| ≥ 5 and 4 ≤ b ≤ |V |, the constraints given by (18), are facet-defining for the
QSTS polytope, P̃nb

QS.

Proof: P̃nb
QS ∩ {∑e∈(S,S̄) xe = 2zkl} defines a proper face, since (18) holds with equality for

the 0-cycle while it does not for the 3-cycle (k, p, q), for p, q ∈ S̄\{l}, p �= q (as zkl = 0 but∑
e∈δ(S) xe = 2).

Now, we are left to show that if λ · x + μ · z = λ0 for all x ∈ P̃nb
QS ∩ {∑e∈(S,S̄) xe = 2zkl},

then

λe =
{

α, if e ∈ (S, S̄),

0, otherwise;
λ0 = 0; and μe =

{−2α, if e = (k, l),
0, otherwise;

for some α ∈ R.

By considering the 0-cycle, we have λ0 = 0. Now, consider any arbitrary subgraph G̃ =
(S̃, Ẽ) for S̃ ⊆ S, |S̃| = 5, and Ẽ = E(S̃). It can be easily verified that Constraints (18) hold

with equality for all cycles in G̃. Thus, by Proposition 4.1, we have λ f = μ f = 0, for all

f ∈ Ẽ . As G̃ is arbitrary, we have λ f = μ f = 0, for all f ∈ E(S). Analogously it can be

obtained that λ f = μ f = 0, for all f ∈ E(S̄).
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Now we obtain values for all the remaining elements in (λ, μ), i.e., we find λe and μe for

all e ∈ (S, S̄), by comparing 3- or 4-cycles such that (18) holds with equality. Assume that

we have arbitrary distinct i, j, m, for i, j ∈ S\{k}, and m ∈ S̄\{l}. Let (x1, z1) and (x2, z2) be

the incidence vectors of the 4-cycle defined by (k, i, j, l) and the 3-cycle defined by (k, i, j)

respectively. We get:

λ · x1 + μ · z1 − (λ · x2 + μ · z2) = λ jl + λkl − λ jk + μkl + μil + μ jl = 0. (19)

Note that λ jk = 0 since k, j ∈ S. Analogously let (x3, z3) be the incidence vectors of the

4-cycle defined by (k, j, i, l). We get:

λ · x3 + μ · z3 − (λ · x2 + μ · z2) = λkl + λil − λik + μkl + μil + μ jl = 0. (20)

Note that λik = 0 since k, i ∈ S. By comparing (19) with (20), we get λil = λ jl . Let

λil = α, by symmetry, we get λil = α for all i ∈ S\{k}. Now by comparing the 3-cycle

(k, j, l) with (19) it follows that μil = 0 for all i ∈ S\{k}.
Comparing the 4-cycle (k, i, l, j) with the 3-cycle (k, i, j), we get μkl = −2α and by

comparing the 3-cycle (k, j, l) with the 4-cycle (k, j, l, i), we get λkl = α. Given this and by

symmetry, λkm = α and μkm = 0 for all m ∈ S̄\{l}.
By comparing the 3-cycle (i, l, k) and the 4-cycle (i, l, m, k), we get μim = 0 for all

i ∈ S\{k} and all m ∈ S̄\{l}. Last of all, by comparing the 3-cycle (k, i, l) and the 4-cycle

(k, i, m, l), we obtain λim = α, for all i ∈ S\{k}, m ∈ S̄ \ {l}. �

Theorem (4.3) does not hold for 7 ≤ |V | ≤ 9, but it actually holds for |V | = 6, |S| = 5

and 4 ≤ b ≤ |V | (and for |S| = 1 which is the symmetric case). This can be verified by

generating 2|E | affinely independent feasible points that satisfy (18) at equality.

Proposition 4.7. Given any G = (V, E), 3 ≤ b ≤ |V |, the constraints, given by:

∑
e∈(i,S)

ze ≤ 1

2

∑
e∈δ(i)

xe +
∑

e∈E(S)

ze, ∀i ∈ V, S ⊂ V \{i}, (21)

are valid for P̃nb
QS.

Constraint (21) is obtained by replacing yi by 1
2

∑
e∈δ(i) xe in (14) and is a generalization of

(3).

Theorem 4.4. Given any G = (V, E), |V | ≥ 6, b ≥ 4, Constraints (21) are facet-defining
for P̃nb

QS if 1 ≤ |S| ≤ |V | − 5.

Proof: P̃nb
QS ∩ {∑e∈(i,S) ze = 1

2

∑
e∈δ(i) xe + ∑

e∈E(S) ze} defines a proper face since the 0-

cycle satisfies the constraint at equality whereas the 3-cycle (i, p, q), for p, q ∈ S̄\{i}, p �= q,

does not. Now, we need to show that if λ · x + μ · z = λ0 for all x ∈ P̃nb
QS ∩ { 1

2

∑
e∈δ(i) xe +∑

e∈E(S) ze = ∑
e∈(i,S) ze}, then

λe =
{1

2
α, if e ∈ δ(i),

0, otherwise;
λ0 = 0; and μe =

⎧⎨⎩
α, if e ∈ E(S),

−α, if e ∈ (i, S),

0, otherwise;
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for some α ∈ R.

By considering the 0-cycle we get λ0 = 0. W.l.o.g. let R, k be arbitrary for R ⊆ S̄\{i},
|R| = 4 and k ∈ S. Consider the subgraph G̃ = (Ṽ , Ẽ), Ṽ ⊆ V , Ṽ = R ∪ {k} and Ẽ =
E(Ṽ ). Constraint (21) holds with equality for all cycles in G̃, hence by Proposition 4.1,

λe = μe = 0 for all e ∈ Ẽ . Since R and k are arbitrary, λe = μe = 0 for all e ∈ E(S̄\{i}) ∪
(S, S̄\{i}).

Let k ∈ S and p, q ∈ S̄\{i}, p �= q be arbitrary. By comparing the cycles (k, i, p, q)

and (k, i, p), we obtain λpq + λkq − λkp + μkq + μiq + μpq = 0. Since λpq = λkq = λkp =
μkq = μpq = 0, μiq = 0. Since k, p, and q are arbitrary, μi p = 0 for all p ∈ S̄\{i}. By

comparing the cycles (k, p, i, q) and (k, p, i), we obtain λkq + λiq − λki + μkq + μpq +
μiq = 0. Since λkq = μkq = μpq = μiq = 0, λiq = λki are constant and let the constant be
1
2
α. As k, p and q are arbitrary, λe = 1

2
α for all e ∈ δ(i). Consider the cycle (i, k, p) to

obtain μik = −α for all k ∈ S. For cases where |S| ≥ 2, let l be arbitrary in S, and l �= k.

By comparing the cycles (k, l, i, p) and (k, i, l, p), we obtain λkl + λi p = λki + λlp. Since

λlp = 0 and λi p = λki = 1
2
α, λkl = 0. As k, l, and p are arbitrary, λe = 0 for all e ∈ E(S).

Finally, consider the cycle (i, k, l) to obtain μkl = α. Since k and l are arbitrary, μe = α for

e ∈ E(S). �

Proposition 4.8. Given any G = (V, E), 3 ≤ b ≤ |V |, the constraints, given by:

∑
e∈E(S)

ze + 1 ≥
∑

e∈E(S)

xe + 1

2

∑
e∈δ(S)

xe, ∀S ⊂ V, 1 ≤ |S| ≤ |V |, (22)

are valid for P̃nb
QS.

Constraint (22) is obtained by replacing yi by 1
2

∑
e∈δ(i) xe in (15). Note that (4) is a special

case of (22).

Theorem 4.5. Given any G = (V, E), |V | ≥ 5, b ≥ 5, Constraints (22) are facet-defining
for P̃nb

QS if 2 ≤ |S| ≤ |V | − 3.

Proof: P̃nb
QS ∩ {∑e∈E(S) ze + 1 = ∑

e∈E(S) xe + 1
2

∑
e∈δ(S) xe} defines a proper face since the

3-cycle (i, j, k), i ∈ S, j, k ∈ S̄ satisfies the constraint at equality and the 0-cycle does not.

Now, we need to show that if λ · x + μ · z = λ0 for all x ∈ P̃nb
QS ∩ {∑e∈E(S) ze + 1 =∑

e∈E(S) xe + 1
2

∑
e∈δ(S) xe}, then

λe =
⎧⎨⎩

−α, if e ∈ E(S),

− 1
2
α, if e ∈ δ(S),

0, otherwise;

λ0 = α; and μe =
{
α, if e ∈ E(S),

0, otherwise;

for some α ∈ R.

W.l.o.g. let R ⊆ S, |R| = 2 and T ⊆ S̄, |T | = 3 be arbitrary. Consider the subgraph

G̃ = (Ṽ , Ẽ), Ṽ ⊆ V , Ṽ = R ∪ T , (so |Ṽ | = 5) and Ẽ = E(Ṽ ). Let λ0 = α. Let the matrix

M be generated by the incidence vectors of all the cycles in G̃ for which (22) holds with

equality. M is found to be of rank 2|Ẽ | = 20, thus M(λ, μ)T = α has an unique solution.

The solution is λe = −α for all e ∈ E(R), λe = − 1
2
α for all e ∈ δ(R), and λe = 0 for all

e ∈ E(T ); μe = α for all e ∈ E(R) and μe = 0 for all e ∈ δ(R) ∪ E(T ). Since R is arbitrary
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in S, T is arbitrary in S̄, we get λe = −α for all e ∈ E(S), λe = − 1
2
α for all e ∈ δ(S) and

λe = 0 for all e ∈ E(S̄), μe = α for all e ∈ E(S) and μe = 0 for all e ∈ δ(S) ∪ E(S̄). �

The following constraints are found to be very effective in practise when solving QSTSPs

using a branch-and-cut method (see Stidsen and Thomadsen, 2005):∑
e∈δ(i)

ze ≤ b − 1

2

∑
e∈δ(i)

xe, ∀i ∈ V . (23)

Proposition 4.9. Given any QSTSP defined on an undirected graph G = (V, E), with 3 ≤
b ≤ |V |, the constraints given by (23) are valid for the QSTS polytope, P̃nb

QS.

Constraint (23) is obtained from Constraint (16) by replacing yi with 1
2

∑
e∈δ(i) xe.

Theorem 4.6. Given any QSTSP defined on an undirected graph G = (V, E), with |V | ≥ 6
and 4 ≤ b ≤ |V | − 1, the constraints given by (23) are facet-defining for P̃nb

QS.

Proof: A 3-cycle (i, j, k), for distinct i, j, k ∈ V , does not satisfy the constraint at equality

(since b ≥ 4) whereas the 0-cycle does. Hence P̃nb
QS ∩ {∑e∈δ(i) ze = b−1

2

∑
e∈δ(i) xe} defines

a proper face.

Now, we are left to show that if λ · x + μ · z = λ0 for all x ∈ P̃nb
QS ∩ {∑e∈δ(i) ze =

b−1
2

∑
e∈δ(i) xe}, then

λe =
⎧⎨⎩

α(b − 1)

2
, if e ∈ δ(i),

0, otherwise;
λ0 = 0; and μe =

{
−α, if e ∈ δ(i),

0, otherwise;

for some α ∈ R.

By considering the 0-cycle, we get λ0 = 0. Now, consider any arbitrary subgraph G̃ =
(Ṽ , Ẽ) for Ṽ ⊆ V \{i}, |Ṽ | = 5, and Ẽ = E(Ṽ ). Since all cycles in G̃ satisfies Constraint

(23) at equality, it follows from Proposition 4.1 that λ f = μ f = 0, for all f ∈ Ẽ . As G̃ is

arbitrary, we have λ f = μ f = 0, for all f ∈ E(V \{i}).
Let { j1, . . . , jb−1} ⊆ V \{i} be arbitrary. Now compare the two b-cycles

(i, j1, j2, j3, . . . , jb−1) and (i, j2, j1, j3, . . . , jb−1). This gives λi j1 + λ j2 j3 = λi j2 + λ j1 j3 .

Since λ j2 j3 = λ j1 j3 = 0, λi ja is constant for a = 1, . . . , b − 1 and let the constant be α(b−1)
2

.

Since { j1, . . . , jb−1} ⊆ V \{i} is arbitrary, λi j = α(b−1)
2

for all j ∈ V \{i}. Finally compare

the b-cycle (i, j1, j2, j3, . . . , jb−1) with the (b − 1)-cycle ( j1, j2, j3, . . . , jb−1) to obtain

λi j1 + λi jb−1
− λ j1 jb−1

+ ∑b−1
k=1 μi jk = 0. Since λ j1 jb−1

= 0 λi j1 = λi jb−1
= α(b−1)

2
, and that

by symmetry μi j1 = μi jk for all k = 2, . . . , b − 1, μi ja = −α for all a = 1, . . . , b − 1.

As { j1, . . . , jb−1} ⊆ V \{i} is arbitrary, μi j = −α for all j ∈ V \{i} and the theorem is proved.

�

5. Conclusion

In this paper, we studied the polyhedra of the Quadratic Knapsack Problem and the Quadratic

Selective Travelling Salesman Problem. For each of these polytopes, we established its

dimension, identified a number of strong constraints, and proved that these constraints are
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indeed facet-defining cuts. Various mathematical techniques were used in proving these

results.

These results are of great significance in the implementation of a branch-and-cut method

for obtaining exact solutions. The benefit of using such facet-defining cuts is that it improves

the quality of the linear programming relaxation bounds.
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