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Abstract We study a novel “coverage by directional sensors” problem with tunable orienta-

tions on a set of discrete targets. We propose a Maximum Coverage with Minimum Sensors

(MCMS) problem in which coverage in terms of the number of targets to be covered is

maximized whereas the number of sensors to be activated is minimized. We present its exact

Integer Linear Programming (ILP) formulation and an approximate (but computationally ef-

ficient) centralized greedy algorithm (CGA) solution. These centralized solutions are used as

baselines for comparison. Then we provide a distributed greedy algorithm (DGA) solution.

By incorporating a measure of the sensors residual energy into DGA, we further develop

a Sensing Neighborhood Cooperative Sleeping (SNCS) protocol which performs adaptive

scheduling on a larger time scale. Finally, we evaluate the properties of the proposed solu-

tions and protocols in terms of providing coverage and maximizing network lifetime through

extensive simulations. Moreover, for the case of circular coverage, we compare against the

best known existing coverage algorithm.

Keywords Directional sensors . Mathematical programming/optimization . Distributed

algorithm . Scheduling . Network lifetime

1. Introduction

Sensing coverage is a fundamental problem in wireless sensor networks. It reflects how

well the environment is monitored, and serves as a basis for applications such as physical

phenomenon or target detection, classification and tracking. Due to the diversity of the

sensor network applications, the concept of sensing coverage is subject to a wide range

of interpretations. Nevertheless, only isotropic sensors have been studied in the literature.

For example, in the most studied area or point coverage problems (e.g., (Slijepcevic and

Potkonjak, 2001; Tian and Georganas, 2002; Wang et al., 2003; Zhang and Hou, 2005;
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Fig. 1 Two cases of four directional sensor nodes (black circles) deployed to cover six targets (red triangles)
in a sensor field. [left] Case I: All four nodes are active while two targets are not covered (i.e. “uncovered”).
[right] Case II: Three nodes are active with no targets uncovered; node 2 (white circle) is in sleep mode to
conserve energy

Cardei and Du, 2005)), the sensing ability of sensors is abstracted as a circular region (or

disk) and an event or target is detected in a binary sense depending on whether it is inside

such a sensing disk or not.

To the best of our knowledge, no research work on sensor networks coverage for directional

sensors has been done. Compared to isotropic sensors, directional sensors are obviously in that

the coverage region of a directional sensor is determined by both its location and orientation.
This can be best illustrated by the example shown in fig. 1.

In this paper, we study the problem of coverage by directional sensors with tunable

orientations under the random deployment strategy. We develop solutions that maximize the

number of targets to be covered while minimizing the number of sensors to be activated at

any instant. We also present solutions that include sleep scheduling for nodes. Compared to

deterministic deployment, random deployment is easy and less expensive for large wireless

sensor networks, and may be the only feasible option in remote or inhospitable environments.

Moreover, to compensate for the lack of exact positioning and improve the fault tolerance,

nodes are typically deployed in excess, and thus redundant sensors usually arise. Furthermore,

sensors are usually powered by batteries and it may not be possible to recharge or replace

the batteries after deployment. In addition, target locations may change even after initial

deployment, thus changing the optimal solution to the coverage problem.

The rest of the paper is organized as follows. In Section 2, we review related research.

In Section 3, we propose the Maximum Coverage with Minimum Sensors (MCMS) prob-

lem. Section 4 presents its centralized exact and approximate solutions; the Integer Linear

Programming (ILP) formulation and centralized greedy algorithm (CGA), respectively. Sec-

tion 5 presents the distributed greedy algorithm (DGA) solution. In Section 6, we develop the

Sensing Neighborhood Cooperative Sleeping (SNCS) protocol by incorporating the sensors’

residual energy into DGA to perform adaptive scheduling on a larger time scale. Detailed

results of performance evaluations are presented in Section 7. Finally, we conclude the paper

in Section 8.

2. Related work

There are two main threads of research, though dealing with the circular coverage by isotropic

sensors, related to our research.

The first thread has in common the idea of turning off the redundant nodes online according

to some off-duty eligibility rule derived based on geometric properties. Tian and Georganas

(2002) define an off-duty eligibility rule from a concept called “sponsored area” to guarantee
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the complete coverage. Wang et al. (2003) derived an off-duty eligibility rule based on the

analysis of intersection points by sensing disks. Zhang and Hou (2005) proposed the OGDC

algorithm where the off-duty eligibility rule for minimizing sensing overlap. Though the

above schemes can be naturally implemented in a distributed way, most of them (except

OGDC) did not present the optimal performance that can be achieved.

The second thread viewed the sensing coverage as a discrete problem in which nodes

were usually organized in a power-aware fashion offline. Megrian and Potkonjak (2003)

presented several ILP formulations and strategies to reduce the overall energy consumption

while maintaining guaranteed 0/1 coverage. Slijepcevic and Potkonjak (2001) proposed the

SET K -COVER problem to maximize the number K of disjoint set covers which can be

activated successively along time, where a set cover is defined as a set of nodes that can

completely cover the monitored area. Cardei and Du (2005) proposed the Maximum Disjoint

Set Cover problem which shared the same notion as Slijepcevic and Potkonjak (2001) but in a

different scenario where a set of targets with known locations need to be covered. By further

relaxing the constraints of disjoint set covers, i.e., that one node can be in multiple set covers,

Cardei et al. (2005) improved the network lifetime. Along a similar line, but with additional

bandwidth constraint, Cheng et al. (2005) formulated the Minimum Breach problem in which

the sizes of Set Covers are bounded. Compared with previous results without bandwidth

considerations, they revealed that network lifetime can be enhanced further at the cost of

coverage breach. Although it is valuable to derive the optimal scheduling by mathematical

programming techniques and related approximate or heuristic algorithms, the centralized

solutions are impractical to be realized in wireless sensor networks since they do not scale.

Our work differs from prior work in several ways. First, the desired configuration of

directional sensors and orientations at any instant is formulated as the MCMS problem, which

can be solved exactly by an ILP formulation in a small scale and approximately by CGA in a

large scale. Second, we also provide the distributed solution (DGA) for the MCMS problem;

moreover, the SNCS protocol can maintain sensing coverage and prolong the network lifetime

simultaneously even on a large time scale with varying network conditions. Finally, our

proposed framework to deal with coverage by directional sensors with tunable orientations

can treat the coverage by isotropic sensors as a special case (we show comparisons against

OGDC for this case in Section 7).

3. The MCMS problem statement

This section defined the sensing model of a directional sensor, formulates the MCMS problem

and characterizes its complexity.

3.1. The sensing model of a directional sensor

Unlike an isotropic sensor, a directional sensor has a finite angle of view and thus can not

sense the whole circular area. Hence, by a simple geometric abstraction, its sensing region

can be viewed as a sector in a two-dimensional plane as shown in fig. 2. Please note that,

throughout the rest of the paper, unless otherwise mentioned, “sensor” or “node” refers to a

directional sensor, as defined in the following section.

The following parameters completely characterize the sensing sector of a sensor node i
(please refer to fig. 2). (xi , yi ): the Cartesian coordinates that denote the location of the sensor

in a two-dimensional plane. θ : the field of view (FOV), describing the maximum angle of

sensing achieved by directional sensor. Rs : maximum sensing range of the sensor, beyond

which a target will not be detected in a binary detection sense. �di j : a unit vector which cuts
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Fig. 2 A finite set of orientations
for a directional sensor (black
ball) covering targets (red
triangles). The shadowed area is
the current sensing sector of the
directional sensor. A directional
sensor can only choose one active
sector at any time instant

the sensing sector into half. This parameter defines the orientation of the directional sensor

(i.e., the direction it is looking).

3.2. Target in sector (TIS) test

To make the problem tractable, we assume that a directional sensor can only take a finite

set of orientations. For instance, in the example shown in fig. 2, a directional sensor with
π
4

of FOV can pick eight orientations with mutually disjoint sensing sectors which can be

combined to generate the full circular view of an isotropic sensor.

With each choice of orientation, a certain subset of targets is covered by the directional

sensor. The relationship of a directional sensor, its orientation and a target can be determined

by a Target in Sector (TIS) test.

The TIS test can be described as follows. Consider a target k located at �tk and a directional

sensor i located at �li . In order to determine whether the target k can be sensed by the directional

sensor i with the j-th orientation, we follow the following steps:

1. calculate the distance vector �vik pointing from the directional sensor i to the target k

�vik = �tk − �li (1)

2. check whether the resulting distance vector is within the FOV of the directional sensor i
by performing the inner product operation

�dT
i j · �vik ≥‖ �vik ‖2 cos

(
θ

2

)
(2)

with equality when the target k is along the two edges of node i sensing sector.

3. verify whether target k is within the sensing range of the directional sensor i or not by

checking

‖ �vik ‖2≤ Rs (3)

with equality when the target k is on the arc of the sensing sector of the directional sensor

i .

4. If both (2) and (3) hold, the result of the TIS test is true (i.e., node i covers the target k if

it sets its orientation to j); otherwise, it is false.
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Let �i j denote the set of targets that are covered by sensor i when its orientation is j .

Then we can determine all the sets �i j∀i, j , by running the TIS test for every i, j .

3.3. Maximum coverage with minimum sensors (MCMS) problem

Under the random deployment strategy, not all targets are covered by the initial deployment.

Further, all sensors are active. Our goal is to change the initial orientations in order to cover

as many targets as possible while activating as few sensors as possible, at any time instant.

We call this the MCMS problem. The MCMS problem can be stated as follows:

Given: A set of targets S = {s1, s2, . . . , sm} to be covered; a set of n homogenous

directional sensors, each of which has p possible orientations, randomly deployed in a

two-dimensional plane. Hence, a collection of subsets F = {�i j , 1 ≤ i ≤ n, 1 ≤ j ≤ p}
can be generated based on the TIS test, where each element �i j is a subset of S.

Problem: Find a subcollection Z of F , with the constraint that at most one �i j can be

chosen for the same i , to maximize the cardinality of the union of chosen
⋃

(i, j) �i j (i.e., the

number of covered targets) while minimizing the cardinality of Z = {�i j , (i, j) is chosen}
(i.e., the number of activated directional sensors).

The following theorem shows the complexity of the MCMS problem.

Theorem 3.1. The MCMS problem is NP-complete.

We present two proofs for this theorem.

Proof 1: We prove theNP-completeness of the MCMS problem by showing its special case

where sensors are isotropic (i.e., p = 1) is equivalent to another well-known NP-complete

problem. For any given number as the upper bound for the number of sensors to be activated,

the problem of deriving the maximum number of targets to be covered can be treated as the

classic Maximum Coverage Problem Hochbaum (1997) which is known to beNP-complete.

Hence, the result follows. �

Proof 2: First, we show that MCMS ∈ NP . The decision version of the MCMS problem

can be stated as follows.

INSTANCE: Given S and F as shown above.

QUESTION: Is there a subcollection of F with u subsets covering at least v elements in

S?

It is easy to see that any guessed solution can be verified in a polynomial time.

Second, we show that the MCMS problem isNP-hard by proofing that MAX COVER≤p

MCMS, where MAX COVER Hochbaum (1997) is a classic NP-complete problem. The

decision version of the MAX COVER problem can be stated as follows.

INSTANCE: Given S and a collection G of subsets.

QUESTION: Is there a subcollection ofG with u subsets covering at least v elements inS?

For the MAX COVER problem, we first pick any u subsets, �1, �2, . . . , �u , from G.

Then, for each subset �i (1 ≤ i ≤ u), we construct p copies of itself and rewrite them as

�i1, �i2, . . . , �i p, similarly to that in the MCMS problem. Finally, we can use such an
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“expanded” subcollection as the input into the MCMS problem. Obviously, the above reduc-

tion procedure is in a polynomial time and these two problems will obtain the same binary

answers. This proves that the MCMS problem is NP-complete. �

4. Centralized solutions of the MCMS problem

In this section, we present an exact problem formulation of the MCMS problem as an Integer

Linear Program (ILP). We also present an approximate but computationally efficient greedy

solution of the problem.

4.1. ILP formulation

The parameters used for the formulation can be summarized as follows. n: the number of

directional sensors;m the number of targets, p the number of orientations available for each

directional sensor.

The variables in the ILP are as follows. ψk a binary variable that has value one if target

k is covered by any directional sensor, and zero otherwise; χi j a binary variable that has

value one if the directional sensor i uses the orientation j , and zero otherwise; ξk an integer

variable that counts the number of directional sensors covering target k.

Under the random deployment, for each directional sensor i , there is an incidence matrix

Ai
(m×p) where each of its elements ai

k j can be derived based on the TIS test:

ai
k j =

{
1 k ∈ �i j

0 otherwise
(4)

Therefore, ξk can be expressed as:

ξk =
n∑

i=1

p∑
j=1

ai
k jχi j (5)

Now the ILP for the MCMS problem can be stated as:

max
m∑

k=1

ψk − ρ

(
n∑

i=1

p∑
j=1

χi j

)
(6)

subject to:

ξk

n
≤ ψk ≤ ξk ∀k = 1 . . . m (7)

p∑
j=1

χi j ≤ 1 ∀i = 1 . . . n (8)

ψk = 0 or 1 ∀k = 1 . . . m (9)

χi j = 0 or 1 ∀i = 1 . . . n, ∀ j = 1 . . . p (10)

The objective function in (6) maximizes the number of targets to be covered and imposes a

penalty by multiplying the number of sensors to be activated by a positive penalty coefficient

ρ whose value must be small enough (ρ < 1) to guarantee uniqueness of the solution. There
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are (m + n · p) variables and (2m + n + n · p) constraints for the ILP. Eq. (7) represents a set of

inequalities to indicate that whether any target k is covered or not: if none of the directional

sensor covers target k, i.e., ξk = 0, then ψk = 0 to conform with the right inequality; if

target k is covered by any direction sensor, i.e., ξk > 0, since ξk is bounded by n, ξk

n is a real

number less than one, then ψk = 1 to conform with the left inequality. Eq. (9) guarantees that

one directional sensor has at most one orientation depending on whether it is activated or not.

4.2. Centralized greedy algorithm (CGA)

Though the solution of the ILP formulation provides the optimal solution for the MCMS

problem, it is not scalable for large problem instances. In this paper, rather than giving an

LP-relaxation algorithm to this problem (similar to the approach in Cardei et al. (2005); Cheng

et al. (2005)), we present here a greedy heuristic based polynomial-time algorithm for solving

the MCMS problem approximately. We believe this is more useful since an LP-relaxation

algorithm is not quite helpful for the design of a practical distributed algorithm.

The basic idea is based on the greedy principle and can be described as follows: we first

construct F , a collection of sets {�i j , 1 ≤ i ≤ n, 1 ≤ j ≤ p}, based on targets, directional

sensors and all their possible orientations by the TIS tests as an instance of the problem. CGA

runs in loops, where initially, all nodes are inactive (i.e., not selected). In each loop, for each

sensor i that has not yet been activated, the number of additional targets that would change

from uncovered to covered for each possible orientation is calculated. Then, the inactive

sensor and its orientation that maximizes the number of newly covered targets is activated.

Any ties are broken by selecting one of the choices at random. If there are no more targets to

be covered or no more unselected directional sensors remaining, the algorithm terminates;

otherwise, directional sensors are activated iteratively according to the above greedy rule.

The pseudo-code of CGA is shown in Algorithm 1.
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CGA, in the worst case, for each loop, to perform the TIS test for all nodes requires

mnp steps, and then to choose a desired (i, j), the running time is bounded by O(np).

Since there are at most n loops, the time complexity of CGA is O((m + 1)n2 p) in the worst

case.

5. Distributed solution for the MCMS problem

Without global information available in a centralized location, each directional sensor must

make its decision independently based only on local information gathered from the “neighbor-

ing” nodes, as defined by the wireless communication range. Though intuitively the solution

can not be expected to achieve as good a performance (in terms of coverage) as the central-

ized schemes, it is more computationally scalable and does not incur high communication

overhead as required by a centralized solution.

5.1. Assumptions and definitions

To ensure individual sensors obtain perfect local information for their decision making, we

make the following assumptions in our distributed scheme. Actually some of these assump-

tions can be relaxed, and we will discuss the extended results in Section 7.

A1 Directional sensors are homogeneous. Specifically, all sensors have the same omnidi-

rectional communication ranges Rc, shape of sensing sectors (i.e., θ and Rs)and the

available possible orientations are the same.

A2 Every directional sensor knows its exact location information (e.g., He et al. (2003)

provides a cost-effective localization service without equipping each sensor node with

a GPS device) and every directional sensor knows and controls its orientation �d .

A3 Every directional sensor is aware of the targets located within its sensing range Rs .

A4 The initial deployed network is connected.

A5 The sensors can not be located at the same coordinates in the two-dimensional plane.

A6 The sensors utilize an ideal MAC for scheduling (no collisions) and the communication

channel is error free.

We also give the following definitions:

Definition 5.1. The set of sensing neighbors of a directional sensor i , denoted byNi , contains

all the sensors for which any of their sensing sectors may intersect with node i’s sensing

sector. Notice that all sensors located within 2Rs distance of the sensor i are neighboring

sensors.

Definition 5.2. Given a wireless sensor network consisting of a set of sensors, the com-
munication graph for the sensor network is the undirected graph G with sensors as the

vertices and an edge between any two sensors if they are located within Rc distance of each

other.

Definition 5.3. The set of k-hop communication neighbors of a sensor i , denoted by Ck
i , is

all sensors within k hops of i in the communication graph G.
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Definition 5.4. The set of neighbor targets of a sensor i , denoted by Ti , contains all targets

that may be covered by any of node i’s possible orientations. Thus, all targets located within

Rs distance of i are neighbor targets.

It is worth noting that the above definitions are valid only when the assumption A1 holds.

5.2. Distributed greedy algorithm (DGA)

In order for a node to make a globally optimal decision about its state (active or inactive)

and its orientation, it needs to gather information about the current state and orientation of

possibly all other nodes in the network. However, for the purpose of designing a low overhead

distributed algorithm, each node should restrict the range of data gathering to a limited area

localized around its own position.

Observe that for any two sensors, it is possible for these sensors to cover the same targets

only if they are within a certain distance from each other, defined by the coverage range.

Decisions made by these sensors are highly dependent. Therefore, in our distributed algo-

rithm, under assumption A2, each sensor need to disseminate its information only within a

2Rs radius, via, for example, a geocasting service.

In the DGA algorithm, every directional sensor has a unique variable, which we call

“priority.” The priority needs to be unique only among its sensing neighbors. Each sensor is

in one of two states; active or inactive state.

To simplify the description of the algorithm, we say a neighbor target is “acquired” by a

sensor if the target was not covered by a higher priority neighboring sensor.

Initially, each directional sensor is in the active state, assigns itself a priority, and has

a random initial orientation. Each directional sensor starts to collect its sensing neighbors

information, i.e., priorities, locations and orientations of its sensing neighbors. Upon receiving

this information, each sensor makes its decision independently as follows. It calculates, for

each of its possible orientations, the number of acquired targets. There are two cases: (a)

If the maximum number of acquired targets is positive (i.e., not zero), it will choose the

orientation corresponding to the maximum number (random choice in case of a tie). If a

directional sensor i has to switch to a new orientation, it sends out a new message to inform

its sensing neighbors. (b) If the maximum number of acquired targets is zero, the sensor

activates a transition timer, with duration Tw. The timer is canceled if new information from the

sensing neighbors arrives and changes the maximum number of acquired targets to a non-zero

value.

Note that the purposes of setting the transition timer Tw are 1) to prevent a sensor finaliz-

ing its decision before its sensing neighbors with higher priorities and 2) to transfer its state

to inactive in time. As analyzed in Theorem 5.5, on the order of the time required to col-

lect a sensor’s sensing neighborhood information, at least one sensor finalizes its decision.

Therefore, conservatively, Tw can be set to be a constant equal to the maximum value of

that time. Currently, we estimate such a value by simulations and it is usually very small in

practice.

Since the DGA is guaranteed to terminate (as shown in Theorem 5.5), the final set of

sensors marked as active with their chosen orientations forms the solution of the MCMS

problem. The pseudo-code of DGA, which is executed by each sensor i , is shown in

Algorithm 2.
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5.3. Algorithm properties

In this section, we analyze DGA properties in terms of its correctness and message complexity.

In DGA, since sensors make their local decisions based on gathered sensing neighborhood

information, two concerns may arise: (a) whether the algorithm terminates within a finite
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time and (b) whether, when the algorithm terminates, there exists any target which is left

uncovered because of a “misunderstanding,” where one sensor assumes other sensor has

covered the target, while it actually has not. We call such a target a “hidden” target. Notice

that since sensors tend to choose their directions to maximize the number of targets to be

covered, it is possible that some targets may not be covered by any sensor. However, this

type of targets uncovered is different from the “hidden” targets defined here. The following

two theorems answer the above two questions.

Theorem 5.5. DGA terminates in finite time.

Proof: Let us first consider the node with highest priority and label it as node A. When A

makes a decision on its orientation and sends a message to sensing neighborhood to update

its status, we say that “A has reached a final decision.” Since A has the highest priority

among its sensing neighbors, the decisions of its sensing neighbors can not affect its decision

according to DGA. After node A reaching its final decision, the node with the second highest

priority, labeled as node B, becomes the highest priority node among those that have not

updated their decisions in the sensing neighborhood. Similarly, node B will also reach a final

decision at most after one exchange of message among its sensing neighbors. By induction,

the algorithm terminates in finite time.

Notice that the above convergence procedure also reveals the time complexity in the worst

case where sensors reach final decisions in the order of their priorities along the time. Since

notifying a decision of one node to its sensing neighbors takes at most O(n) time, the time

complexity for all n nodes reaching their final decisions is O(n2).

�

Theorem 5.6. DGA guarantees no “hidden” targets.

Proof: By gathering sensing neighborhood information, node iv builds up an ordered list of

three-tuple [node id, orientation, priority], e.g., [i1, ji1
, pi1

], [i2, ji2
, pi2

], . . ., [iu, jiu , piu ],

[iv, jiv , piv ], . . ., where pi1
> pi2

> · · · > piu > piv > . . .. Also the coverage sta-

tus of the node iv is stored as a three-tuple entry in the ordered list of its sensing

neighbors.

Take one of the sensing neighbors of node iv , say node is , as an example. According

to the description of DGA, node iv marks itself as inactive only if it observes the number

of acquired targets is zero and this situation lasts for duration Tw, which ensures that the

decisions of sensing neighbors with higher priorities are finalized and that it has received the

update messages from the higher priority neighbors. When node iv is eligible to mark itself

inactive, there could be only one of two cases:

Case I piv < pis : since node iv has lower priority than that of node is , node is does not

care about the decision of node iv when it calculates its own decision. Hence, node

iv’s decision to turn its state to inactive can not cause hidden targets.

Case II piv > pis : when node is calculates its local decision, it must consider the orien-

tation of node iv . If node iv marks itself inactive, this means that all its neighbor

targets are already covered by higher priority sensing neighbors. Hence, for node

is , it can still consider that these neighbor targets are covered with higher priority

neighbors, and it does not need to explicitly know which higher priority nodes are

covering these targets. Hence, there can be no confusion about making coverage

decisions.
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Extending the same analysis to all the neighbors of node iv , the result follows.

�

6. Sensing neighborhood cooperative sleeping protocol

Assuming static priorities of sensors, DGA runs once and terminates, providing a solution to

the MCMS problem. Since the objective of the MCMS problem is minimizing the number

of active sensors, DGA provides an energy-efficient configuration in the network. However,

without dynamic energy balancing consideration among sensors, those active sensors set by

DGA will ultimately deplete their batteries. Therefore, in this section, we will extend DGA

so as to perform dynamic scheduling among sensors depending on the amount of residual

energy. The new protocol is called the Sensing Neighborhood Cooperative Sleeping (SNCS)

protocol.

The SNCS protocol works as follows. Each node continuously alternates between two

phases; scheduling and sensing. In each scheduling phase, all sensors set their states to be

active at the beginning and then perform DGA described above. At the end of the scheduling

phase, as a result of running DGA, each sensor will be in one of two states; active or inactive.

The active sensors will continue to be active in the followed sensing phase with its sensing and

communication units turned on; whereas the inactive sensors will go to sleep immediately

with its sensing and communication units turned off. In addition, these inactive sensors will

reset themselves to be active state until the next scheduling phase.

In the scheduling phase of SNCS protocol, we assign the residual energy of a sensor as

its priority in the DGA. Notice that the residual energy of sensors depends on their behaviors

(i.e., transmit, receive, idle or sleep) and dynamically changes along the time, to maintain an

unchanged order of priorities among sensors during one-time DGA execution to guarantee its

termination, priorities are set to be the instantaneous value of residual energy of sensors only

once in every scheduling phase. Moreover, to satisfy the uniqueness property of priorities

in DGA, the residual energy of sensors is expected to be different. In case the equalities

appear, though rare, by assumption A5, we can further compare two geographic coordinates

of sensors accordingly until the tie is broken up.

Assigning the value of residual energy to the priority variables in DGA is essential for

the SNCS protocol to achieve a trade-off between coverage and network lifetime. In each

scheduling phase, residual energy of sensors acts as priorities in DGA to solve the MCMS

problem. The sensors which have higher priorities (i.e., residual energy) are more likely to

be selected to be active by the DGA to contribute to coverage, while the sensors with lower

residual energy are more likely to go to sleep so as to conserve their energy. Since active
sensors have larger energy dissipation rates than that of inactive sensors in the following

sensing phase(s), those active sensors will, after a certain time, have less residual energy

than that of inactive sensors. As a result, these inactive sensors may be turned to active by

DGA when the residual energy of the neighboring active sensors depletes to a level that

is lower than that of the inactive sensors. Thus, by using the residual energy of nodes as

the priorities in the SNCS protocol, the SNCS protocol dynamically changes sensor’s states

(between active and inactive) so as to achieve energy balancing across the network while

providing a solution to the MCMS problem.

The round duration R, as an important protocol parameter, needs to be addressed: it must

be chosen to be large enough compared to the time that DGA converges, so that the control

overhead does not overwhelm the energy consumption; also it must be chosen to be short
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enough compared to the average sensor lifetime such that a sensor can remain active for at

least the duration of a round time.

7. Performance evaluation

First, the solutions of the MCMS problem by ILP, CGA and DGA are evaluated. Second

we concentrate on the SNCS protocol, where we investigate the trade-off between coverage

and network lifetime. Third, we examine the robustness of the SNCS protocol in scenarios

that do not follow our simplified assumptions made in Section 5. Finally, we compare the

performance of DGA with OGDC for the special case of circular coverage.

7.1. Effect of the various parameters on the solutions of the MCMS problem

The solutions for the MCMS problem in terms of the number of targets to be covered and

the number of sensors to be activated are determined by (m, n, p, Rs). In these experiments,

we use m targets and n sensors uniformly distributed in a unit square area.

7.1.1. Effect of the size of sensing sector on the ILP solution

To identify the influence of the sensing sector of a sensor on the solutions of the MCMS

problem, we fix m and n and obtain the results from ILP1 solved by CPLEX 11 under

different p and Rs , shown in fig. 3. Notice that smaller Rs means smaller sensing range

and higher p means smaller angle of coverage. As expected, the coverage ratio (number of

covered targets divided by the total number of targets) increases with the decrease of p and

increases with the increase of Rs . Accordingly the number of sensors needed to solve the

MCMS, i.e., the sensors labeled as active in the ILP solution, decreases with the decrease

of p and/or the increase of Rs . Notice that this is true in most (but not all) cases, due to the

integer nature of the solution.

7.1.2. Effect of the number of sensors on ILP, CGA and DGA

Next, we fix p = 8 and Rs = 0.1 and compare solutions for the MCMS problem of ILP,

CGA and DGA by changing n. Figure 4 shows the scenario where m = 225 and n ranges

from 10 to 400. With the increase of sensors deployed, both the coverage ratio and active

nodes for all three schemes increase linearly until n approaches 150; upon passing such a

value, the number of active nodes increases slowly or even decreases whereas the coverage

ratios continuously increase and then become saturated when n is above 350 or so. To state

the differences: for the coverage ratio, ILP always behaves the best among the other two

schemes and DGA tracks closely with that of CGA with all n values; for the number of

sensors activated which is a bit complicated after n is more than 150, DGA activates the

largest number of sensors in most of cases; while the curves depicting the number of active

sensors by ILP and CGA may cross at some points but ILP stabilizes at a lower value than

that of CGA.

1 We set ρ = 0.001 in the (6).
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(b) The ratio of active sensors.

Fig. 3 225 targets and 100
sensors uniformly distributed in a
unit square area: p picks 1, 2, 4, 8
and Rs picks 0.05, 0.01, 0.15,
0.20, respectively

7.2. Performance of the SNCS protocol

In this experiment, we evaluate the performance of the SNCS protocol in terms of coverage

and network lifetime. In the simulations, time is discretized into slots, where each sensor can

transmit or receive a packet in a slot.

To characterize the network lifetime, we assume a simplified energy consumption model

per slot of a sensor: transmission, reception, idle and sleep during a time slot consume 0.025,

0.022, 0.021 and 0.0002 units of energy, respectively. These energy consumption values are

chosen to match the results in Feeney and Nilsson (2001), where they have noted that the

receive and idle modes may require as much energy as transmitting while the sleep mode

requires the least energy. Moreover, we assume that each sensor starts with equal initial

energy of 500 units.

Other parameters for this experiment are: n = 200, p = 8, Rs = 0.1, Rc = 0.2, R = 500

slots and m ranges from 100 to 400 with an increment of 100. We examine the network

lifetime, defined as the time until half of the sensors deplete their energy. We consider

different densities of targets. figure 6 shows all aspects of the performance of the SNCS

protocol.
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Fig. 4 Coverage performance
comparison of ILP, CGA and
DGA where p = 8, Rs = 0.10,
m = 225 and n ranges from 10 to
400

In fig. 5(a), for any m, initially the coverage ratio increases rapidly2 and stabilizes at

a higher level for a relative long period, then it drops sharply toward some lower level.

Moreover, with the increase of m, both network lifetime and coverage ratio decrease.

In fig. 5(b), for any m, a similar “cutoff” property can also be observed in the curve for

the active ratio of sensors. However, unlike the trend for the coverage ratio, the active ratio

of sensors increases with the increase of m.

Notice that when the density of targets is above some threshold (say roughly 300 in our

case), all aspects of performance of the SNCS protocol tend to be saturated due to the active

ratio of sensors approaching 100%.

7.3. Robustness of the SNCS protocol

In these experiments, we examine the performance of the SNCS protocol by relaxing some

of assumptions made before. Specifically, we introduce the following: (a) the sensors no

longer know their exact location information (b) orientation errors are also introduced and

(c) wireless communications may result in corrupted messages. To study the impacts of the

above three factors, we evaluate the performance of the SNCS protocol under each of them

independently and then compare the results with an ideal scenario (i.e., a scenario that follows

2 Since we start the SNCS protocol with equal initial energy of sensors, the geographic locations of sensors are
used to break up the tie in DGA initially. It also demonstrates that priorities are better to be random numbers
rather than some values relating to the deployment parameters.
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Fig. 5 Performance of the SNCS
protocol where n = 200, p = 8,
Rs = 0.1, Rc = 0.2, R = 500
slots and m ranges from 100 to
400 with an increment of 100

all the assumptions mentioned in Section 5). The parameters used for these experiments are

m = 225, n = 200, p = 8, Rs = 0.1, Rc = 0.2 and R = 1000 slots.

7.3.1. Effect of localization errors

We introduce location errors as follows. For each sensor, its actual location is randomly

selected within a circle with the error bound El as the radius centered around its perceived

location. We experiment with high values of El , even comparable to Rs .

Figure 6 shows the performance comparison of the SNCS protocol where the error bound

El is 10, 5 and 1% of Rs . The coverage ratios continuously decrease down to 12% whereas

the network lifetime remains the same when error bounds increase from 0.001 to 0.01. On

the other hand, the ratios of active sensors are insensitive to El (which is a good feature).

7.3.2. Effect of orientation errors

We introduce orientation errors as follows. For each sensor, we add a deviation to the orien-

tation. The deviation is randomly selected within the error bound Eo, which is comparable

to its field of view θ .

Figure 7 shows the performance comparison of the SNCS protocol with and without

orientation errors, where the error bound Eo is 20, 10 and 5% of θ . The coverage ratio only

slightly decreases, but still remains within 6% of the ideal case. The network lifetime remains
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(b) The ratio of active sensors.

Fig. 6 Performance comparison
of the SNCS protocol where
m = 225, n = 200, p = 8,
Rs = 0.10, Rc = 0.20,
R = 1000 slots with localization
errors

the same when orientation error bounds increase from 5 to 20%. The ratio of active sensors

is nearly unchanged under various Eo. These results illustrate the robustness of the SNCS

algorithm to orientation errors.

7.3.3. Effect of packet losses

To model communication errors, we assume that messages are corrupted, and hence lost, with

a probability Ec. Figure 8(a) shows the performance comparison of the SNCS protocol where

Ec is 10, 5 and 1%. We observe that the coverage ratios remain the same under different

Ec. Also, the lifetime is the same (around 31 rounds) for all the simulated values of Ec

except when Ec = 10% where the lifetime is approximately 28 rounds, since the algorithm

consumes more messages during the scheduling phases of the rounds—the reason is that

some of the packets are lost and hence it takes more time to ultimately converge on the

MCMS solution. Figure 8(b) shows that the ratio of active sensors increases proportionally

with the increase in Ec.

Notice that, comparing Ec = 10% with the ideal case, the increase in the average active

ratio is only about 10%, which indicates the robustness of the SNCS protocol to packet errors.
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Fig. 7 Performance comparison
of the SNCS protocol with and
without orientation errors.
m = 225, n = 200, p = 8,
Rs = 0.10, Rc = 0.20,
R = 1000 slots

7.4. Performance comparison of DGA and OGDC

By setting p = 1 in DGA, coverage by directional sensors degenerates to the circular

(isotropic) coverage, the most common case studied in the literature so far, which allows

us to compare the performance of our proposed scheme with previous ones. Therefore, in

this experiment, we focus on two distributed schemes, DGA and OGDC, which are regarded

as one-time deployment schemes in this context. The performance metrics of interests are

the ratio of coverage and the number of active sensors when finishing a configuration of the

randomly deployed network.

Although OGDC provides area coverage rather than target coverage, there are two rea-

sons for choosing OGDC for comparison. First, as mentioned in Yan et al. (2003), by

configuring the set of targets as a set of regular grid points with a certain density, target

coverage can be approximated as area coverage. Second, as stated in (Zhang and Hou,

2005), OGDC outperforms other existing distributed algorithms (Ye et al., 2003; Tian

and Georganas, 2002; Wang et al., 2003) in terms of the above interested performance

metrics.

In the simulations, to run DGA, we configure the set of targets as follows. We divide

the unit square area into l × l square grids and targets are at the centers of these grids.

To evaluate the effect of target density on the quality of deployment, we set l to 10, 15
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Fig. 8 Performance comparison
of the SNCS protocol where
m = 225, n = 200, p = 8,
Rs = 0.10, Rc = 0.20,
R = 1000 slots with
communication errors

and 20. The rest of the parameters for both DGA and OGDC 3 are: Rs = 0.1, Rc = 0.2

and n ranges from 75 to 400 with an increment of 25. As for the performance results,

the ratio of coverage is measured as follows. To compare DGA with OGDC, we need to

provide some estimate of area coverage from DGA, since DGA provides target coverage.

So, we configure a set of grid points by setting l = 100 and then define the ratio of cov-

erage as the ratio of the number of grid points that are covered by at least one sensor to

the total number of grid points. Figure 9 shows the performance comparison of DGA and

OGDC.

In fig. 9(a), the ratio of coverage by DGA increases with the increase of l for all n and

tends to be saturated when l ≥ 15. On the other hand, the ratio of coverage by OGDC is less

than the l = 10 case by DGA for most of n and gets close to it with the increase of n.

In fig. 9(b), the number of active sensors by DGA increases with the increase of l for all

n. On the other hand, the curve depicting the number of active sensors of OGDC crosses the

curve of the l = 10 case by DGA when n ≤ 175 and then exceeds it.

The above results show that, by appropriately configuring the density of targets as a set of

regular grid points (i.e., the l = 10 case by DGA where the interval of grid points is the same

as the sensing range Rs of sensors), the performance of DGA is comparable to that of OGDC.

The reason is that to maximize the number of acquired targets with a certain granularity in

DGA is in the same spirit of minimizing the overlaps among sensing disks in OGDC.

3 Other parameters specific to OGDC are chosen from Table I reported in Zhang and Hou (2005).
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Fig. 9 Performance comparison
of OGDC and DGA, where
p = 1, Rs = 0.1, Rc = 0.2 and n
ranges from 75 to 400

8. Conclusions

In this paper, we study the problem of coverage by directional sensors in randomly deployed

wireless sensor networks. To characterize the desired node and orientation configuration at

any instant, we first propose the MCMS problem which is proved to be NP-complete. Then

we present its exact solution by an ILP formulation and approximate solution by CGA in a

centralized fashion, respectively. Followed we provide the distributed solution of the MCMS

problem by DGA and show its properties. Furthermore, to maximize the network lifetime

in a larger time scale, we develop the SNCS protocol based on DGA with residual energy

consideration of sensors. Finally, we systematically evaluate the performance of proposed

solutions and protocol through extensive simulations.

To be noted, some components in our model may not be practical, such as the sensing region

of a directional sensor with a binary detection model. However, our proposed framework can

be easily generalized to accommodate other practical sensing and detection model of a sensor

as long as we can measure the coverage and establish the relationship between sensing regions

of sensors and the objects (e.g., target, region or volume) to be covered.
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