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Abstract. Given a bipartite graph with bipartition V and W , a cover is a subset C ⊆ V such that each node
of W is adjacent to at least one node in C . The set covering problem seeks a minimum cardinality cover. Set
covering has many practical applications. In the context of reserve selection for conservation of species, V is
a set of candidate sites from a reserve network, W is the set of species to be protected, and the edges describe
which species are represented in each site. Some covers however may assume spatial configurations which are
not adequate for conservational purposes. Indeed, for sustainability reasons the fragmentation of existing natural
habitats should be avoided, since this is recognized as being disruptive to the species adapted to the habitats. Thus,
connectivity appears to be an important issue for protection of biological diversity. We therefore consider along
with the bipartite graph, a graph G with node set V , describing the adjacencies of the elements of V , and we look
for those covers C ⊆ V for which the subgraph of G induced by C is connected. We call such covers connected
covers. In this paper we introduce and study some valid inequalities for the convex hull of the set of incidence
vectors of connected covers.
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1. Introduction

Given a bipartite graph with bipartition V and W , a cover is a subset C ⊆ V such that
each node of W is adjacent to at least one node in C . The set covering problem seeks a
minimum cardinality cover. The problem has been extensively studied, and several papers
have focused on the polyhedral structure of the convex hull of the set of incidence vectors of
covers. Balas and Ng (1989a, b) characterize facets with coefficients and right hand sides in
{0, 1, 2}. Sánchez-Garcı́a et al. (1998) extend this work to {0, 1, 2, 3}. Other classes of facets
are study in Cornuéjols and Sassano (1989), Nobili and Sassano (1989), and Sassano (1989).

Set covering has many practical applications (Vemuganti, 1998). It appears as a basic
model in reserve selection for conservation of species. In this context, V is a set of candidate
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sites from a reserve network, W is the set of species to be protected, and the edges of the
graph describe which species are represented in each site.

Some covers however may have spatial configurations which, for sustainability and man-
agement cost reasons, are not appropriate (Nalle et al., 2002). In particular, fragmentation
is considered an undesirable design attribute. Biologists defend that habitat fragmentation
may precipitate population decline and extinction by dividing an existing widespread pop-
ulation into subpopulations in a restricted area. These smaller populations are then more
vulnerable to inbreeding depression, genetic drift and other problems associated with small
population size (Primack, 2002). The establishment of wildlife corridors is used to coun-
teract fragmentation (Primack, 2002; Williams, 1998). In fact, according to the overview
experiments from Debinski and Holt (2000), the presence of corridors enhance movement
for at least some species and increase species richness in fragments.

Connectivity thus appears to be an important issue for protection of biological diversity,
and several methods have been recently proposed for reserve selection which incorporate
connectivity. These include iterative procedures in which a target parameter called connec-
tivity value is sequentially updated depending on which sites have been selected in the pre-
vious iterations (Siitonen et al., 2002, 2003), algorithms to minimize the distances between
pairs of sites to be included in a network (Nicholls and Margules, 1993; Briers, 2002; Önal
and Briers, 2002), the summed distance between all pairs of sites (Briers, 2002; Nalle et al.,
2002), the boundary length of a network (Önal and Briers, 2003), or a combination of
boundary length and total area (Possingham et al., 2000; McDonnell et al., 2002).

All of these approaches treat connectivity as a quantified target incorporated somehow
in the objective function. We develop an alternative approach in which connectivity is
explicitly addressed as part of the model constraints, so that only connected networks are
feasible solutions. We therefore consider the following extension of the set covering. Along
with the bipartite graph, we are given a graph G with node set V , describing the adjacencies
of the elements of V , and we look for those covers C ⊆ V for which the subgraph of G
induced by C is connected. We call such covers connected covers.

In this paper we identify some classes of facets for the connected cover polytope, i.e.,
the convex hull of the set of incidence vectors of connected covers. We start by giving
some notation in Section 2. In each of Sections 3, 4, 5, 6 we introduce a certain class of
inequalities, and give conditions for each inequality to be valid and to describe facets for
the connected cover polytope.

2. Notation

Consider a bipartite graph with bipartition V and W , and a connected graph G with vertex
set V . A cover is a subset C ⊆ V such that each node in W is adjacent to at least one node
of C . The cover polytope is the convex hull of the set of incidence vectors of covers. A
cover which induces a connected subgraph of G is called a connected cover. The connected
cover polytope, denoted by P , is the convex hull of the set of incidence vectors of connected
covers. Note that when G is complete every cover is a connected cover.

In what follows we will assume that, for every v ∈ V , V \{v} is a connected cover.
This is equivalent to assuming that the bipartite graph is such that each vertex of W is
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adjacent to more than one vertex in V , and that graph G is 2-connected. The assumption
of 2-connectedness will permit to simplify some statements and proofs, and without any
associated loss of generality. Indeed from a connected graph we can easily construct a
2-connected graph by duplicating each articulation vertex v, i.e., adding vertex v′ with the
same neighbours as v. Obviously, every minimal connected cover does not include both v

and v′. With these assumptions it results immediately that P is full dimensional, and that,
for every v ∈ V , xv ≤ 1 induces a facet of P .

Consider any subset S ⊆ V . Denote by C(S) the set of connected components of the
subgraph of G induced by V \S. If v ∈ V \S, let Cv denote the component of C(S) which
includes v, and Sv be the set of vertices of S which are adjacent to at least one vertex in Cv .
If s ∈ S, Cs denotes the set of vertices of the components of C(S) which include at least one
vertex adjacent to s. Finally, for x ∈ R

V we use x(S) for
∑

s∈S xs and assume x(∅) = 0.

3. Inequalities of type x(S) ≥ 1

For the cover polytope, Balas and Ng (1989a) identify among the valid inequalities of type

x(S) ≥ 1, S ⊆ V (1)

those that are facet defining.
The inequality (1) is valid for the cover polytope iff V \S is not a cover. This holds when,

in the bipartite graph, S contains the set of all vertices which are adjacent to some vertex
of W .

Balas and Ng (1989a) state the following.

Theorem 1 (Balas and Ng, 1989a). If the inequality (1) is valid for the cover polytope, it
induces a facet iff
(a) for every s ∈ S, V \S ∪ {s} is a cover, and
(b) for every v ∈ V \S there exists s ∈ S such that (V \S)\{v} ∪ {s} is a cover.

Note that if the set S of a valid inequality satisfies (a), S is a minimal set of all vertices
adjacent to some vertex of W . Hence, no more than |W | inequalities of type (1) define facets
of the cover polytope.

As Balas and Ng noticed, Theorem 1 follows directly from a result of Hammer et al.
(1975) and Wolsey (1975) on independence systems. We state this result for any collection
F of subsets of V with V ∈ F and satisfying B ∈ F , whenever A ∈ F and B ⊇ A. Clearly,
(1) being valid means now V \S 
∈ F .

Theorem 2 (Hammer et al., 1975; Wolsey, 1975). If (1) is valid for the convex hull of
the set of incidence vectors of members of F, it defines a facet of this polytope iff
(c) for every s ∈ S, V \S ∪ {s} ∈ F , and
(d) for every v ∈ V \S there exists s ∈ S such that (V \S)\{v} ∪ {s} ∈ F .
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If we identify the minimal elements of F with minimal connected covers, Theorem 2
characterizes the valid inequalities of type (1) which induce facets of the convex
hull Q ⊇ P of the set of incidence vectors of the subsets of V that include connected
covers.

Inequality (1) being valid for Q (and P) means that no component of C(S) is a cover. For
valid inequalities, condition (c) states in terms of Q that

(e) for every s ∈ S, the connected component Cs ∪ {s} is a cover.

This is obviously necessary for (1) to define a facet of Q and P , since if for vertex s ∈ S,
Cs ∪ {s} is not a cover, x(S\{s}) ≥ 1 would be valid for Q and P .

Condition (d) is not sufficient to construct a list of |V | linearly independent members of
P satisfying (1) with equality. Indeed, we will show that the following strongest condition
must hold.

(f) for every v ∈ V \S there exists s ∈ Sv such that Cs\{v}∪{s} includes a connected cover.

Conditions (d) and (f) differ as where to find s in S. Condition (f) is more restrictive,
requiring, for each v ∈ V \S, s to be adjacent to some vertex in Cv .

If, for v ∈ V \S, condition (d) holds while (f) fails (i.e., S 
= Sv and, for every s ∈ Sv , no
connected cover is included in Cs\{v} ∪ {s}), then the two inequalities

x(Sv) ≥ xv (2)

x(Sv) + 2x(S\Sv) + xv ≥ 2 (3)

would be valid for P . Since (1) is obtained halfing the sum of (2) and (3), this shows that
inequality (1) defines no facet of P .

Note that if S = Sv and condition (f) is not satisfied, then inequality x(S) + xv ≥ 2,
which implies (1), is valid for P (as well as for Q).

The arguments above allow to conclude the following.

Lemma 3. Conditions (e) and (f) are necessary for the inequality (1), if valid for P, to
be facet inducing.

We proceed proving sufficiency. We will do this exhibiting, for each S satisfying (e) and
(f), a linearly independent set of |V | incidence vectors of connected covers for which
(1) holds with equality. For this purpose we describe an algorithm to (totally) order the
vertices of each component of C(S), and to define, for v ∈ V \S, a connected cover Mv

contained in Cs\{v} ∪ {s}, with s ∈ Sv , that includes every vertex u ∈ Cv for which
u < v.

Let C be a component of C(S), T be any spanning tree of C , and denote by A(v) the
set of vertices of graph (C, T ) adjacent to v. The algorithm starts with all vertices of C
unmarked. In each step an unmarked vertex v is selected, its order position with respect to
every other vertex of C is defined, and vertex v is marked. This ordering is carried out in two
phases.
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Phase one

1. If every vertex is marked, the procedure finishes. Otherwise, select an unmarked vertex v

such that no more than one vertex in A(v) is unmarked. In consequence, all the unmarked
vertices different from v belong to a same component of T \{v}. The order position of v

will depend on vertex s ∈ Sv , for which Cs\{v} ∪ {s} includes a connected cover.
2. Let M be the maximal connected cover contained in Cs\{v} ∪ {s}. Note that since all

the unmarked vertices different from v belong to a same component of T \{v}, M either
contains all the unmarked vertices of C\{v}, or none of them.

3. If M contains all the unmarked vertices of C\{v}, let Mv := M ; define u < v, for every
unmarked vertex u and v < w, for every marked vertex w; consider v as marked and
proceed to 1.

4. If M does not include unmarked vertices, then vertex v is defined as the minimum
element of C and proceed to Phase two.

Phase two

1. Mark vertex v.
2. If every vertex is marked, the procedure finishes. Otherwise, select an unmarked vertex

v such that A(v) includes a vertex marked during Phase two.
3. Settles u < v for every u marked on Phase two, v < w, for every w 
= v unmarked or

marked on Phase one and mark v.
4. Let Mv := Mu ∪ {u}, where u is the vertex which was marked immediately before v,

and proceed to 2 (of Phase two).

If condition (f) holds, the algorithm defines, for each component C ∈ C(S) and for each
v ∈ C , a connected cover Mv , which is such that v 
∈ Mv and u ∈ Mv , for every u ∈ C ,
with u < v. If condition (e) holds, for every s ∈ S, Ms = Cs ∪ {s} is a connected cover.
Each of these covers includes exactly one vertex from S.

To show that the set of the incidence vectors of these connected covers is linearly inde-
pendent we construct a matrix M whose rows are the incidence vectors, and prove that M
is nonsingular.

The first |S| columns of M are indexed by S. The remaining |V | − |S| columns are par-
titioned in |C(S)| blocks of consecutive columns, each block corresponding to a connected
component of C(S). The columns of each block are arranged from left to right indexed by
increasing vertices of the corresponding component, with respect to the order established
by the above algorithm.

The first |S| rows of M consist of the incidence vectors of Ms , s ∈ S, arranged in such a
way that the left most |S|×|S| principal submatrix of M is the identity matrix. The remaining
|V | − |S| rows are partitioned in blocks in the same way that the corresponding columns
were partitioned. The rows in each block are filled from up to down with the incidence
vectors of Mv , by ascending order of the vertices v of the corresponding component.

We use matrix M to prove the following.

Lemma 4. If conditions (e) and (f) hold, there is a linearly independent set of |V | incidence
vectors of connected covers, each satisfying (1) with equality.
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Proof: It amounts to show that matrix M is nonsingular.
Consider any row i > |S| and let v ∈ V \S be the vertex corresponding to i . Row i is

therefore the incidence vector of the connected cover Mv ⊆ Cs\{v} ∪ {s}, with s ∈ Sv . Let
j ≤ |S| be the row of the incidence vector of Ms = Cs ∪ {s}. The vector which results
subtracting row j from row i has −1 as its first nonzero entry, and this occurs in the position
i . Hence, it is possible to perform elementary row operations on M to obtain an upper
triangular matrix with every entry of the main diagonal equal to either 1 (on the first |S|
entries) or −1 (on every other entry).

We can now state the result that generalizes Theorem 1 for the connected cover polytope.

Theorem 5. If inequality (1) is valid for P, it induces a facet iff conditions (e) and (f)
hold.

Proof: The result follows from Lemmas 3 and 4, and the assumption that dimP = |V |.

4. Inequalities of type x(S1) + 2x(S2) ≥ 2

Balas and Ng (1989a) also characterize the inequalities of type

x(S1) + 2x(S2) ≥ 2, S = S1 ∪ S2 ⊆ V, with S1 ∩ S2 = ∅ (4)

that induce facets of the cover polytope. Their result can be straightforwardly generalized for
the polytope associated with the collection F of subsets of V defined in Section 3. We state
the result forQ, the convex hull of the set of incidence vectors of subsets of V which include
connected covers. Inequality (4) is valid for Q and P iff, for every s ∈ S1, V \S ∪ {s} does
not contain a connected cover. Let us call 2-connected cover graph the graph G1 = (S1, E1),
having vertex set S1 and edge set E1 = {[s ′, s ′′] : Cs ′ ∪ Cs ′′ ∪ {s ′, s ′′} is a connected cover}.

Theorem 6 (Balas and Ng, 1989a). A valid inequality (4) defines a facet of Q iff

(g) for every s ∈ S2, Cs ∪ {s} is a connected cover,
(h) there is an odd cycle in every component of the 2-connected cover graph G1, and
(i) for every v ∈ V \S there exists either

(i1) s ∈ S2 such that (V \S)\{v} ∪ {s} includes a connected cover, or
(i2) s ′, s ′′ ∈ S1 such that (V \S)\{v} ∪ {s ′, s ′′} includes a connected cover.

It is easy to derive valid inequalities implying (4) whenever any of these conditions fails.

Lemma 7. Conditions (g), (h) and (i) are necessary for the valid inequality (4) to define
a facet of (Q and) P .
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Proof: If condition (g) does not hold, i.e., if for some s ∈ S2, Cs ∪ {s} is not a con-
nected cover, inequality x(S1 ∪ {s}) + 2x(S2\{s}) ≥ 2, which implies (4), would be
valid.

To see (h) is necessary, suppose some component of G1 is a bipartite graph with bipartition
A and B. Inequalities

1.5 x(S1\(A ∪ B)) + x(A) + 2x(B) + 3x(S2) ≥ 3 and

1.5 x(S1\(A ∪ B)) + 2x(A) + x(B) + 3x(S2) ≥ 3

would hold for Q and P , and their sum equals 3 times (4).
If, for v ∈ V \S, both (i1) and (i2) are not satisfied, inequality x(S1) + 2x(S2) + xv ≥ 3

is valid and implies (4).

We were not able to characterize when a valid inequality (4) induces a facet of P . Yet we
can prove the following results.

Lemma 8. If a valid inequality (4) satisfies (g), (h), and

(j) for every v ∈ V \S there exists either

(j1) s ∈ S2 ∩ Sv such that Cs\{v} ∪ {s} includes a connected cover, or
(j2) s ′ ∈ S1 ∩ Sv and s ′′ ∈ S1 such that Cs ′ ∪ Cs ′′ \{v} ∪ {s ′, s ′′} includes a connected

cover

it induces a facet for P .

Proof: As we did when proving Lemma 4, we define a matrix M whose rows are the
incidence vectors of connected covers satisfying (4) with equality, and prove that the rank
of M is |V |.

The first |S| columns of M are indexed by S1 and S2, in this order. The remaining |V |−|S|
columns are partitioned in |C(S)| blocks of consecutive columns, each block corresponding
to a connected component of C(S).

The first rows are the incidence vectors of M[s ′,s ′′] = Cs ′ ∪ Cs ′′ ∪ {s ′, s ′′}, for each edge
[s ′, s ′′] of the 2-connected cover graph G1, whose definition ensures to be connected covers.
Note that the submatrix consisting of these |E1| rows and of the columns indexed by S1

has rank |S1|, since it is the edge-node incidence matrix of a graph which according to
condition h) has no bipartite components. (The rank of the incidence matrix of a connected
graph with p vertices is equal to p − 1, if it is bipartite, and equal to p otherwise (Sachs,
1967; Van Nuffelen, 1973).)

The next |S2| rows consist of the incidence vectors of Ms = Cs ∪ {s}, s ∈ S2, arranged
in such a way that the |S2| × |S2| submatrix lying on these rows and on the columns
indexed by S2 is the identity matrix. Condition (g) ensures that each Ms is a connected
cover.

From the above construction it is clear that the set of the first |S| columns of M is linearly
independent.
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The remaining |V |−|S| rows are partitioned in |C(S)| blocks of consecutive rows, in such
a way that the rows of the i-th block refer to the same component of C(S) as the columns
of the i-th block.

To order the vertices of each component C of C(S), and to define, for each v ∈ C , a
connected cover Mv including either a single vertex of S2 or exactly two vertices of S1,
and no other vertex from S, the algorithm of Section 3 will be used. However, using the
algorithm requires some minor changes regarding the vertices of S1. Every edge [s ′, s ′′] of
G1 will be treated as a vertex s[s ′,s ′′], Cs[s′ ,s′′ ] being the set of vertices of the components of
C(S) which include at least one vertex adjacent to either s ′ or s ′′. If v ∈ V \S, s[s ′,s ′′] ∈ Sv iff
either s ′ or s ′′ is adjacent to one vertex in Cv . Thus, Sv := (S2 ∩ Sv) ∪{s[s ′,s ′′] : [s ′, s ′′] ∈ E1

with either s ′ or s ′′ adjacent to one vertex of Cv}. Condition (j) now reads: for every v ∈ V \S
there exists s ∈ Sv such that Cs\{v} ∪ {s} includes a connected cover. Observe that, when
s = s[s ′,s ′′], Cs\{v} ∪ {s} is equal to Cs ′ ∪ Cs ′′ \{v} ∪ {s ′, s ′′}.

The columns (rows) of M corresponding to each component C of C(S), are arranged
from left to right (up to down) indexed by increasing vertices of C , with respect to the
order established by the algorithm. For v ∈ V \S, the incidence vector of Mv is in the row
indexed by v. Recall that Mv is contained in either Ms = Cs\{v} ∪ {s}, for some s in S2,
or M[s ′,s ′′] = Cs ′ ∪ Cs ′′ \{v} ∪ {s ′, s ′′}, for some edge [s ′, s ′′] of G1, whose incidence vector
is one of the |E1| + |S2| first rows of M . It is now possible to perform elementary row
operations as in the proof of Lemma 4 to obtain an upper triangular submatrix with −1 in
all principal entries lying in the last |V | − |S| rows and columns. This allows to conclude
that M is a full column rank matrix.

Lemma 9. Suppose that condition (g) is verified, and each component of the 2-connected
cover graph G1 = (S1, E1) has a unique cycle which is odd. If (j) fails a valid inequality
(4) does not induce a facet of P .

Proof: We prove that every incidence vector of a connected cover that satisfies

x(S1) + 2x(S2) = 2 (5)

also satisfies a linear equation which is not a scalar multiple of (5).
Suppose G1 has only one component, and let [s ′, s ′′] be an edge of its unique cycle.
Every incidence vector of a connected cover that satisfies (5) and that does not use both

s ′ and s ′′ also satisfies

x(A) = x(B), (6)

for bipartition A and B of graph (S1, E1 \ [s ′, s ′′]).
Let v ∈ V \S be such that neither (j1) nor (j2) hold and suppose there is α = (αs), s ∈ S1,

such that for every edge [i, j] ∈ E1 \ [s ′, s ′′], αi + α j = 1 if either i or j are in S1 ∩ Sv ,
and αi + α j = 0, otherwise. Then

∑

s∈S1

αs xs + x(S2 ∩ Sv) = xv (7)
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is satisfied by every incidence vector of a connected cover verifying (5), and not including
both s ′ and s ′′. The following algorithm shows how to define α. Choose any vertex s ∈ S1

and let αs := 0. While there are vertices s ∈ S1 for which αs is not settled, take any edge
[i, j] of G1, with α j not yet settled and αi settled already and define α j := 1 − αi if either
i or j are in S1 ∩ Sv , and α j := −αi , otherwise.

Every incidence vector of a connected cover that satisfies (5) and that does not use both s ′

and s ′′, also verifies the Eqs. (6) and (7). These three equations are linearly independent, and
the coefficients associated to vertices not in S∪{v} are all equal to zero. The other connected
covers whose incidence vectors also satisfy (5), all use the same vertices of S ∪{v} (besides
s ′ and s ′′, either all include v, or none includes v). This allows to conclude the existence
of a linear equation (with the coefficients associated to vertices not in S ∪ {v} all equal to
zero), which is not a escalar multiple of (5), that is satisfied by all the incidence vectors of
connected covers that satisfy (5).

To extend the proof for the case where G1 has k > 1 components, consider an edge [s ′
i , s ′′

i ]
of the unique cycle of the connected component C1

i , and let Ai and Bi be the sets of the
bipartition resulting from deleting [s ′

i , s ′′
i ] from C1

i . Every incidence vector of a connected
cover that satisfies (5) and that does not use both s ′

i and s ′′
i in any Ci also satisfies

x(Ai ) = x(Bi ), i = 1, . . . , k. (8)

The algorithm above can be easily adapted to run for each connected component C1
i of G1

to derive values of α such that (7) is satisfied by the incidence vector of every the connected
cover that does not use any pair of vertices s ′

i , s ′′
i simultaneously. The k +2 Eqs. (5), (7) and

(8) are linearly independent, and the coefficients associated to vertices not in S ∪ {v} are
all equal to zero. Since the connected covers whose incidence vectors satisfy (5) and that
use both s ′

i , s ′′
i , all have the same vertices of S ∪ {v} (besides s ′

i and s ′′
i , either all include

v, or none includes v), there has to be a linear equation (with the coefficients associated
to vertices not in S ∪ {v} all equal to zero), which is not a escalar multiple of (5), that is
satisfied by all the incidence vectors of connected covers that satisfy (5).

Lemma 10. If each component of the 2-connected cover graph G1 = (S1, E1) has a
unique cycle, a valid inequality (4) defines a facet of P iff conditions (g), (h) and (j) hold.

Proof: The result follows directly from Lemmas 7, 8 and 9.

5. Inequalities of type x(S) ≥ xa

Here we consider inequalities of type

x(S) ≥ xa, S ⊂ V, and a ∈ V \S (9)

Unlike (1) and (4), inequalities of type (9) do not define facets of Q. Indeed, whenever (9)
is valid for Q (i.e., no component in C(S) is a cover), the stronger inequality x(S) ≥ 1 also
holds.
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For P , (9) is a valid inequality iff the component Ca is not a cover. We will show that the
conditions for a valid inequality (9) to define a facet of P are (e) and

(k) S = Sa ,
(l) for every v ∈ V \S, v 
= a, either

(l1) there exists s ∈ Sv such that Cs\{v} ∪ {s} includes a connected cover to which a
belongs, or

(l2) Cv is a cover and v is the unique vertex in Cv that does not satisfy (l1), and

(m) at least one component C ∈ C(S) is a cover and every vertex v ∈ C satisfies (l1).

Lemma 11. Conditions (e), (k), (l) and (m) are necessary for a valid inequality (9) to
induce a facet of P .

Proof: Conditions (e) and (k) must hold since if either there is s in S such that Cs ∪ {s}
is not a cover, or we can find s in S\Sa , then x(S\{s}) ≥ xa would be valid for P .

If v ∈ V \S, v 
= a, does not satisfy (l1), then x(Sv) + 2x(S\Sv) + xv ≥ 2xa is valid.
If Cv is not a cover, x(Sv) ≥ xv is also valid, and these two inequalities imply (9). If
Cv is a cover and for some vertex u ∈ Cv , u 
= v, there exists no s ∈ Sv such that
Cs\{u} ∪ {s} includes a connected cover, 2-connectedness of G insures that x(S) + xv ≥
xa + xu and x(S)+ xu ≥ xa + xv hold. The sum of the two inequalities is equal to two times
(9).

At least one component of C(S) must be a cover, otherwise every point of P would satisfy
x(S) ≥ 1 which implies (9). Let U be the set of vertices v ∈ V \S not satisfying (l1). Note
that if v 
= v′ ∈ U (which only occurs if v and v′ are in different components of C(S)),
then Sv ∩ Sv′ = ∅, since otherwise any s ∈ Sv ∩ Sv′ is such that Cs\{v} ∪ {s} includes the
connected cover Cv′ ∪ Ca ∪ {s}. Therefore, if SU is the set of vertices in S adjacent to at
least one component of C(S) that includes one vertex of U , then x(SU ) ≥ x(U ) + xa − 1
is valid for P . Indeed, every connected cover including k > 1 vertices of U , has to include
k vertices from SU , and every connected cover including a and a single vertex of U , has to
include one vertex from SU . If (m) fails, i.e., every component of C(S) which is a cover has
one vertex in U , then x(SU ) + 2x(S\SU ) + x(U ) ≥ xa + 1 would be valid for P . Halfing
the sum of the last two inequalities we get (9), showing that it would not define a facet
of P .

Lemma 12. Conditions (e), (k), (l) and (m) are sufficient for a valid inequality (9) to be
facet inducing for P .

Proof: We display an affinely independent set of |V | incidence vectors of connected
covers satisfying (9) with equality.

Conditions (e) and (k) ensure that, for each s ∈ S, Ms = Cs ∪ {s} is a connected cover
with a ∈ Ms .

The remaining |V |− |S| connected covers are obtained using the algorithm of Section 3.
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For each component C ∈ C(S), C 
= Ca , such that every vertex v ∈ C satisfies (l1),
let the algorithm order the vertices v of C and define Mv , the maximal connected cover
contained in Cs\{v} ∪ {s}, with s ∈ Sv , to which a belongs.

When using the algorithm for Ca , take in consideration that when selecting an unmarked
vertex in step 1 of Phase one, if there are two or more unmarked vertices, there is always more
than one candidate for selection. Select always a candidate u different from a. Condition (l1)
ensures that the connected cover Mu will include every unmarked vertex, and consequently
Phase one will continue until a is the only unmarked vertex in Ca . When this happens
define a < u, for every u ∈ Ca\{a} and let Ma = C , where C ∈ C(S) is any component to
which (m) refers. Note that for u ∈ Ca , u 
= a, Mu includes a and a single vertex from S,
and Ma includes neither a nor any vertex from S. Hence, the incidence vectors of all these
connected covers satisfy (9) with equality.

When using the algorithm for each component Cv , where v is the unique vertex in Cv

to which the condition (l2) refers, proceed as for Ca , always selecting an unmarked vertex
u 
= v. Condition (l1) ensures that the connected cover Mu includes every unmarked vertex,
and consequently Phase one will continue until v is the only unmarked vertex in Cv . When
this happens define v < u, for every u ∈ Cv\{v} and Mv = Cv . Note that for u ∈ Cv ,
u 
= v, Mu includes a and a single vertex from S, and Mv includes neither a nor any vertex
from S. Thus, the incidence vectors of these connected covers also satisfy (9) with equality.

The |V | incidence vectors of Ms , s ∈ S and Mv , v ∈ V \S are arranged in a matrix M ′,
exactly in the same way that was used in Section 3 to obtain the matrix M . In order to
show that the rows of M ′ are affinely independent, we now add to M ′ an extra column e
in position |V | + 1 with all elements equal to 1, and represent the augmented matrix by
[M ′ | e]. Matrices M and M ′ only differ in the row corresponding to vertex a and in the
rows corresponding to vertices v ∈ V \S for which (l2) holds. For every row i > |S| of M ′

different from these perform on [M ′ | e] the row operation described in the proof of Lemma
4, and let [M ′′ | e′] be the resulting matrix. The left most |S| × |S| principal submatrix
of M ′′ is the identity matrix. The submatrix of M ′′ with rows and columns indexed by the
vertices of (V \S)\{a} is a block diagonal matrix, where the blocks (corresponding to the
components of C(S)) are upper triangular matrices with diagonal entries equal to 1 on the
rows not used in the elementary operations and equal to −1 elsewhere. Note that every row
of [M ′′ | e′] whose first nonzero element is −1 has a zero entry in column e′. The rows
indexed by the vertices of Ma , which is a component mentioned in condition (m), have
leading elements equal to −1. The row corresponding to a (i.e., the incidence vector of Ma)
has all entries equal to zero, except on the columns indexed by the vertices of Ma and on
column e′, where they are equal to 1. Hence, we can use the rows indexed by Ma to perform
elementary operations to change the row indexed by a into a row with all elements equal to
zero except for the element of column e′ which remains equal to 1. This shows that [M ′ | e]
is a full row rank matrix.

Theorem 13. If inequality (9) is valid for P, it induces a facet iff conditions (e), (k), (l)
and (m) hold.

Proof: Follows from Lemmas 11 and 12.
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6. Inequalities of type x(S) ≥ xa + xb − 1

The inequalities of type

x(S) ≥ xa + xb − 1, S ⊂ V, and a, b ∈ V \S (10)

are valid for Q iff no component of C(S) is a cover. In such case x(S) ≥ 1 is also valid,
showing that (10) does not define facets of Q.

For P , inequality (10) is valid iff a and b are not both in a component of C(S) which is a
cover.

Theorem 14. If inequality (10) is valid for P, it induces a facet iff
(n) S = Sa = Sb, and
(o) Ca and Cb are both covers.

Proof: To conclude that (n) is necessary observe that if a vertex s could be found in S\Sa

or in S\Sb, then x(S\{s}) ≥ xa + xb − 1 would also be valid. To show that (o) is necessary,
note that if Ca or Cb is not a cover, then every point in P would satisfy x(S) ≥ xa or
x(S) ≥ xb respectively, and each of these inequalities implies (10).

To prove sufficiency we will exhibit a linearly independent set of |V | incidence vectors
of connected covers verifying (10) with equality.

The conditions (n) and (o) imply that for s ∈ S, Ms = Cs ∪ {s} is a connected cover
including both a and b.

Since G is 2-connected, (n) and (o) also imply that for v ∈ V \S, there exists s ∈ Sv such
that Cs\{v} ∪ {s} includes a connected cover. If v 
∈ Ca ∪ Cb, every maximal connected
cover contained in Cs\{v} ∪ {s} includes both a and b. We can therefore use the algorithm
of Section 3 to order the vertices of every component C 
= Ca, Cb and to define, for each
v ∈ C , the connected cover Mv which includes a, b and a unique s ∈ S.

For v ∈ Ca or v ∈ Cb, v 
= a, b, 2-connectedness ensures that s can be chosen so that the
maximal connected cover contained in Cs\{v} ∪ {s} also includes a and b. We can therefore
implement this choice when using the algorithm for Ca and Cb, as well as keeping a and b
unmarked during every step of phase one, as described in the proof of Lemma 12. In this
way, for v ∈ Ca ∪ Cb, v 
= a, b, the connected cover Mv defined by the algorithm includes
a, b and a unique s ∈ S. When a and b are the only unmarked vertices in their components,
define a < v for every v ∈ Ca\{a}, b < v for every v ∈ Cb\{b}, Ma = Ca and Mb = Cb.

It is straightforward, following the proof of Lemma 12, to see that the set of incidence
vectors of these |V | connected covers is linearly independent.
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H. Önal and R.A. Briers, “Incorporating spatial criteria in optimum reserve network selection,” in Proceedings of
the Royal Society, London B, 2002, vol. 269, pp. 2437–2441.
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