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Abstract. An aboundant literature on vehicle routing problems is available. However, most of the work deals
with static problems, where all data are known in advance, i.e. before the optimization has started.

The technological advances of the last few years give rise to a new class of problems, namely the dynamic
vehicle routing problems, where new orders are received as time progresses and must be dynamically incorporated
into an evolving schedule.

In this paper a dynamic vehicle routing problem is examined and a solving strategy, based on the Ant Colony
System paradigm, is proposed.

Some new public domain benchmark problems are defined, and the algorithm we propose is tested on them.
Finally, the method we present is applied to a realistic case study, set up in the city of Lugano (Switzerland).
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1. Introduction

In the Vehicle Routing Problem (VRP) a fleet of vehicles with limited capacity has to be
routed in order to visit a set of customers at a minimum cost (generally the total travel time).
In the static VRP all the orders are known a priori.

Dynamic Vehicle Routing Problems (DVRP), sometimes referred to as On-line Vehicle
Routing Problems, have recently arisen thanks to the advances in communication and in-
formation technologies that allow information to be obtained and processed in real time.
In this case, some of the orders are known in advance before the start of the working day,
but as the day progresses, new orders arrive and the system has to incorporate them into an
evolving schedule.

The existence of a communication system between the dispatcher (where the tours are
calculated, e.g. the headquarter of the company) and the drivers is assumed. The dispatcher
can periodically communicate to the drivers the new visits assigned to them. In this way,
during the day, each driver always has a knowledge about the next customers assigned to
her/him.
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In this paper we consider the case where vehicles do not have to go back to the depot
in order to treat new orders assigned to them when they have already left the headquarter.
In our model we also take into account capacity constraints for the vehicles. Mainly three
families of real problems presenting these characteristics can be identified:

• feeder systems. Local dial-a-ride systems typically aiming at feeding another, wider area,
transportation system at a particular transfer location (see, for example, Gendreau and
Potvin, 1998). Vehicles are empty when they leave the depot.

• courier service problems (e.g. Federal Express). Parcels are collected at customer loca-
tions and brought back to a central depot for further processing and shipping. Vehicles
are empty when they leave the depot.

• fungible items/consumable goods distribution (e.g. distribution of fuel for heating
plants). Vehicles are filled at the depot before leaving and unload goods at customer
locations.

We also assume that it is not possible to use statistical information to forecast future
orders. This assumption excludes the application of methods developed for the stochastic
vehicle routing problem (see, for example, Gendreau et al., 1996a,b).

It is interesting to observe that the approach we propose can easily handle dynamic travel
times update, based on real-time traffic information. Travel times are however keep constant
in all the experiments presented in this paper.

A problem similar to the one we consider in this paper has been studied in Gendreau et al.
(1999). The main difference between our model and that used in Gendreau et al. (1999)
is that we take into account vehicle capacities, that are not considered in Gendreau et al.
(1999), although apparently it would have not been difficult to incorporate them. In Ichoua
et al. (2000) the approach described in Gendreau et al. (1999) is integrated with a vehicle
diversion mechanism. In practice, it is possible to divert a vehicle away from its current
destination in response to a new customer request. We do not consider this option in our
algorithm.

Hvattum et al. (2004) presented an approach for problems where statistical information
about orders appearance is available.

Savelsbergh and Sol (1998) (see also Sol, 1994) presented a planning module designed
for a transportation company, which embeds a dynamic VRP module.

Kilby et al. (1998), which adopt the same model we use, presented a study on how
the modification of some parameters, concerning problem dynamism, impacts on the per-
formance of a simple heuristic algorithm they implemented (more details are available in
Section 4.1).

Guntsch and Middendorf (2002) (see also Guntsch and Middendorf, 2001) propose an
Ant heuristic algorithm for a Dynamic Traveling Salesman Problem (DTSP).

A survey on results achieved on the different types of DVRPs can be found in Gendreau
and Potvin (1998) (see also Psaraftis, 1988, 1995).

In this paper we propose a solving technique that exploits some characteristics of the
Ant Colony System optimization paradigm to smoothly save information about promising
solutions when the optimization problem evolves because of the arrival of new orders.
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In Section 2 a formal description of the problem is given. Section 3 is devoted to the
description of the approach we propose. In Section 4 a set of benchmarks is described and
computational results are presented. A study on a real-world DVRP problem, set up on the
road network of the city of Lugano, with customers data provided by a local fuel distribution
company, is proposed in Section 5. Conclusions are given in Section 6.

2. Problem description

The static vehicle routing problem can be described as follows: n customers must be served
from a (unique) depot. Each customer i asks for a quantity qi of goods. A fleet of v vehicles,
each vehicle a with a capacity1 Qa , is available to deliver goods. A service time si is
associated with each customer. It represents the time required to service him/her. Therefore,
a VRP solution is a collection of tours.

The VRP can be modelled in mathematical terms through a complete weighted digraph
G = (V, A), where V = {0, 1, . . . , n} is a set of nodes representing the depot (0) and the cus-
tomers (1, . . . , n), and A = {(i, j) | i, j ∈ V } is a set of arcs, each one with associated a min-
imum travel time t ti j . The quantity of goods qi requested by each customer i (i > 0) is asso-
ciated with the corresponding vertex. Labels Q1, . . . , Qv , corresponding to vehicles capaci-
ties, are finally associated with the starting locations of the vehicles, i.e. vertex 0 (the depot).

The goal is to find a feasible set of tours with the minimum total travel time. A set of
tours is feasible if each node is visited exactly once (i.e. it is included into exactly one tour),
each tour a starts and ends at the depot (vertex 0), and the sum of the quantities associated
with the vertices contained in it, never exceeds the corresponding vehicle capacity Qa .

The dynamic vehicle routing problem is strongly related to the static VRP. The main
difference is that new orders arrive when the working day has already started, dynami-
cally changing the optimization problem. The DV R P can be consequently modelled as
a sequence of static VRP-like instances (see Section 3). In particular each static VRP will
contain all the customers known at that time, but not yet served.

3. The ACS-DVRP algorithm

The algorithm we propose for the DVRP has been developed to run in a centralized fashion
by the people in charge of orders dispatching. We refer to the phase where an order is
communicated to a driver as commitment phase. In our strategy, the commitment cannot be
retracted, i.e. once an order is committed to a driver, this assignment cannot be changed.
It is important to observe that, on the other hand, our approach constantly provides a
solution covering all the known orders. Among these orders, the assignment of those not
yet committed, can be retracted.

Our approach is based on the idea of dividing the working day into nts time slices with
equal length T

nts
—where T is the lenght of the working day—and to postpone the processing

of each new order arrived during a time slice to the end of it. The idea has been proposed in
Kilby et al. (1998). During each time slice, a problem very similar to a static VRP, but with
vehicles with heterogeneous capacities and starting locations, is created, and optimization
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is carried out. In each of these problems, the aim is to minimize the total travel time while
serving all the known orders.

The concept of time slice has been introduced to bound the time dedicated to each static
problem. A different strategy may be to stop and restart the optimizer each time a new
event occurs (i.e. a new order arrives or a decision has to be committed to a vehicle, see
Gendreau et al., 1999). The drawback of such an approach is that the time dedicated to
each static problem would not be known in advance, and consequently optimization may
be interrupted before a good local minimum is reached, producing unsatisfactory results.
On the other hand, a strategy like the one adopted in Gendreau et al. (1999) is more suitable
for problems where urgent orders are likely to exist. This is not the case of the problems we
treat, where time windows on orders are not handled.

The concept of cut-off time is also considered in our approach. Orders received after time
Tco, which is a parameter defined by the user, are postponed to the following working day.
This practice is very common in real companies. It is also important to observe that, in the
model we present, all the received orders are accepted by the company. A mechanism to
filter orders (i.e. to reject some of them) could be inserted in our architecture, but it does
not exist in the current implementation.

An advanced commitment time Tac is also consider in our system. In practice, an order
has to be committed to a driver at least Tac seconds prior to the planned time of departure
from the last location visited before that of the order itself. This advanced commitment
time has been considered to give the drivers an appropriate reaction time after having been
committed new orders.

There are three main elements in our architecture. They are the following ones:

• events manager. It collects new orders and keeps trace of already served orders and of
the position of the vehicles. The event manager uses these information to construct a
sequence of static VRP-like instances. It is also in charge of the commitment of orders
to the drivers.

• ACS (Ant Colony System) algorithm. It is used to heuristically solve the static VRP-like
instances generated by the events manager.

• pheromone conservation procedure. It is a crucial element of the architecture we propose.
It is used to efficiently pass on information about properties of good solutions from a
time slice to the following one.

Figure 1 depicts the architecture we propose. The three main elements have a bold border,
and their interactions with the other components are drawn.

The following subsections are devoted to the detailed description of the three elements
listed above.

3.1. Events manager

The events manager is the interface between the architecture and the external world. New
orders from customers are handled by this module, and commitments of orders to drivers
are managed by it.
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Figure 1. Architecture of the ACS-DVRP algorithm.

Based on the division of the working day into time slices, and based on parameters Tco and
Tac, the events manager creates static problems and runs in sequence the pheromone conser-
vation procedure and the AC S algorithm on these static problems. Based on the solutions
provided by the ACS algorithm, the events manager finally decides about commitments.

The static problem considered during the first time slice (i.e. at the beginning of the
working day) only deals with orders known from the previous working day. The next static
problems will consider all the orders received by the system at the beginning of the time
slices, and which have not been committed to drivers yet (committed orders are part of the
past, but will be stored in the final solution). In these problems, each vehicle starts from the
location of the last customer committed to it, with a starting time corresponding to the end
of the servicing time for this customer, and with a capacity corresponding to the residual
capacity of the vehicle, after it has served all the customers previously committed to it.

At the end of each time slice, the best solution found for the corresponding static problem
is examined and orders with a processing time starting within the next T

nts
+ Tac seconds

are committed to the respective drivers. Note that the processing time of an order starts
when the vehicle to which it is assigned, has to leave from its previous customer. Note that
no order can be planned to start in the first Tac seconds of each time slot, since this would
violate the advanced commitment time constraint.

An exception to the commitment strategy described above is represented by return jour-
neys to the depot. A return journey is committed to a vehicle only in two circumstances:
the current time is greater than or equal to Tco and all the customers have been served, or
the vehicle has used all its capacity. In practice, a vehicle will wait at its last committed
customer in case its actual next destination is the depot and none of the two conditions de-
scribed above is satisfied. This is done because tours may be replanned (due to new orders)
and new customers might be committed to vehicles.
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Figure 2. Pseudo-code of the Events manager procedure.

A pseudo-code for the event manager module is presented in figure 2. The set PendOrds
initially contains the orders known from the previous day. The variable Time is initialized
to 0, while the location of all the vehicles is initially set at the depot. An iterative statement
is then entered. A static problem (StaticPro), containing orders in PendOrds and covering
the time window [Time + Tac; Time + Tac + T

nts
] ([Time; Time + Tac + T

nts
] in case Time= 0),

is created and solved (with the procedure that will be described in Section 3.2), and some
commitments (CommOrds) are done accordingly to the solution of StaticPro. PendOrds is
updated together with starting positions, capacities and travel times of the vehicles. The
pheromone matrix is finally updated, according to the Pheromone conservation strategy
that will be described in Section 3.3. These operations are repeated until PendOrds = ∅ and
Time > Tco. After the completion of the iterative statement, the depot is committed as last
destination to all the vehicles.

3.2. An ACS algorithm for VRP-like problems

The Ant Colony System (ACS) algorithm is an element of the Ant Colony Optimization (ACO)
family of algorithms (Dorigo et al., 1999; Bonabeau et al., 2000). The first ACO algorithm,
Ant System (AS), has been proposed by Colorni, Dorigo and Maniezzo (see Colorni et al.,
1991; Dorigo et al., 1996) and is based on a computational paradigm inspired by the way
real ant colonies function. The main underlying idea was to parallelize search over several
constructive computational threads. A dynamic memory structure, which incorporates infor-
mation on the effectiveness of previously obtained results, guides the construction process
of each thread. The behavior of each single agent is inspired by the behavior of real ants.
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The ACS algorithm has been originally proposed by Gambardella and Dorigo in Gam-
bardella and Dorigo (1996). We apply this paradigm to the static vehicle routing problems
faced within a DVRP. The method is similar to the MACS-VRPTW algorithm described
in Gambardella et al. (1999), which is one of the state-of-the-art algorithm for the vehicle
routing problem with time windows (V R PT W ) and was able to provide the best known
solutions for many benchmarks.2

In order to simplify the description of the algorithm, we will consider v dummy depots
(one for each vehicle of the fleet) and we will refer to them as d1, . . . , dv . Solutions retrieved
by ants will be represented as long, single tours. In this context, nodes contained within
two consecutive dummy depots da and db (with a, b ∈ {1, . . . , v}) form the (partial) tour
associated with vehicle a. The partial tour associated with vehicle b will start from the
dummy depot db, which corresponds to the location of the last customer committed to
vehicle b. The starting time from db corresponds to the end of the serving time for the last
customer committed to vehicle b, while the capacity of b will be equal to the residual capacity
of b, i.e. Qb minus the quantity ordered by customers already committed to vehicle b.

The main element of the algorithm are ants, simple computational agents that individually
and iteratively construct solutions for the problem. At each step, every ant k computes a set
of feasible expansions to its current partial solution and selects one of these probabilistically,
according to a probability distribution specified as follows. For ant k the probability pk

i j
of visiting customer j after customer i (i.e. the last visited customer) depends on the
combination of two values:

• the attractiveness ηi j of arc (i, j), as computed by some heuristic indicating the a priori
desirability of that move. In our case ηi j = 1

t ti j
, i.e. it depends on the travel time between

customer i and customer j ;
• the pheromone level τi j of arc (i, j), indicating how proficient it has been in the past

to visit j after i is a solution; it represents therefore an a posteriori indication of the
desirability of that move.

Pheromone trails are updated at each iteration. The level of those associated with arcs
contained in “good” solutions are increased. The specific formula for defining the probability
distribution makes use of a set F k

i which contains feasible customers to extend the current
partial solution of ant k.

The probability for ant k to append arc (i, j) to its partial solution is then given by:

pk
i j =






τi j (ηi j )β
∑

l∈F k
i
(τil(ηil)β)

if j ∈ F k
i

0 otherwise
(1)

where the sum is over all the feasible moves, β is a parameter controlling the relative
importance of the trail τi j of arc (i, j) versus the actual attractiveness ηi j of the same arc.
In this manner pk

i j is a trade-off between the apparent desirability and information from
the past. Ant k will select customer j := argmaxl∈F k

i
{pk

il} (exploitation) with probability q,
while with probability (1 − q) each move (i, j) is selected with a probability given by (1)
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(exploration). Parameter q (0 ≤ q ≤ 1) determines the relative importance of exploitation
versus exploration.

When ant k moves from i to j , a local updating is performed on the pheromone matrix,
according to the following rule:

τi j = (1 − ρ)τi j + ρτ0 (2)

where τ0 is the initial value of trails (defined by the user) used for the first static VRP and
for entries of the pheromone matrix involving new customers in the following problems
(see Section 3.3), and ρ (0 ≤ ρ ≤ 1) is a parameter regulating pheromone evaporation. It
mimics what happens in the case of real ants.

An interesting aspect of the local updating is that while edges are visited by ants, Eq.
(2) makes the trail intensity diminish, making them less and less attractive, and favoring
therefore the exploration of not yet visited edges and diversity in solution generation.

Once a complete solution is available, it is tentatively improved using a local search proce-
dure. We used a very simple greedy algorithm, which iteratively selects a customer and tries
to move it into another position within its tour or within another tour. A parameter regulating
the maximum computation time for this local search, tls, has be specified by the user.

Once the m ants of the colony have completed their computation, the best known solution
is used to globally modify the pheromone trail. In this way a “preferred route” is memorized
in the pheromone trail matrix and future ants will use this information to generate new
solutions in a neighborhood of this preferred route. The pheromone matrix is updated as
follows:

τi j = (1 − ρ)τi j + ρ

CostBest
∀(i, j) ∈ BestSol (3)

where CostBest is the total travel time of solution BestSol, the best tour generated by the
algorithm since the beginning of the computation.

The process is iterated by starting again m ants until a termination condition is met. In
our simulations the natural termination criterion is to set a maximum computation time of
T
nts

seconds, which is defined as the length of each time slice in our application, i.e. we use
all the available time.

Pseudo-code of the ACS procedure for the static problems faced in a DVRP, is presented
in figure 3.

3.3. Pheromone conservation procedure

The use of the AC S paradigm to solve the static problems produces a very important side-
effect, which is a key-element of our algorithm for the DVRP. Once a time slice is finished and
the respective static problem has been solved by the ACS algorithm, the pheromone matrix
contains encrypted information about characteristics of good solutions for this problems.
In particular, pairs of customers which are visited in sequence in good solutions, will have
high values in the corresponding entries of the pheromone matrix.



ANT COLONY SYSTEM FOR A DYNAMIC VEHICLE ROUTING PROBLEM 335

Figure 3. Pseudo-code of the ACS procedure.

This information can be passed on to the static problem corresponding to the next time
slice, since the two problems are potentially very similar. This operation prevents opti-
mization to restart each time from scratch and heavily contributes to the good performance
guaranteed by the approach we propose (see Section 4.2).

The strategy we follow to transfer information is inspired by Guntsch and Middendorf
(2001,2002). A new parameter γr is introduced to regulate pheromone conservation. For
each pair of customers which appear both in the old and in the new static problem, the
corresponding pheromone matrix entry is initialized to the following value:

τi j = (1 − γr )τ old
i j + γrτ0 (4)

where τ old
i j is the value of τi j in the old static problem. In fact, pheromone values are not

completely reinitialized, but a trace of old values remains.
Entries of the new pheromone matrix corresponding to pairs of customers involving new

customers are initialized to τ0.

4. Computational results

This section is devoted the the experimental evaluation of the ACS-DVRP algorithm on
some simulated scenarios.

The benchmarks adopted will be described in detail in Section 4.1; Section 4.2 will
document the parameter tuning phase for ACS-DVRP, while in Section 4.3 the results
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achieved by the algorithm will be presented together with those of a basic algorithm based
on the GRASP paradigm.

The algorithms have been coded in ANSI C, and all the tests have been carried out on a
1.5 GHz/256 MB Intel Pentium 4 machine.

4.1. Benchmarks description

The dynamic problems adopted in this paper have been originally proposed in Kilby et al.
(1998).3 They are derived from some very popular static VRP benchmark datasets, namely
12 problems are taken from Taillard (1994), 7 problems are from Christofides and Beasley
(1984) and 2 problems are from Fisher et al. (1981). These problems range from 50 to 199
customers. The number of customers can be inferred from the name of each instance. In
order to obtain dynamic problems, Kilby et al. added to these problem the following features:

• length of the working day. We will refer to this parameter as T , like anticipated in Section
3.

• appearance time of each order. It contains, for each order, the moment of the working
day, when the order becomes known to the dispatcher.

• duration of each order. It represent, for each order, the time required to serve the corre-
sponding customer.

• number of vehicles. It contains the dimension, in number of trucks, of the fleet available
for serving the customers. The number of vehicles is set to 50 for each problem. This
setting guarantees that it is possible to serve all the orders for the problems considered.

More details about the dynamic problems can be found in Kilby et al. (1998).
Kilby et al. (1998) presented a study on how changes in parameters Tco (i.e. the cut-off

time, after which orders are postponed to the following day) and Tac (i.e. the advanced
commitment time, modelling how much in advance orders have to be committed to drivers)
affect the performance of dynamic algorithms in general. Since our target is to univocally
define a set of benchmarks on which dynamic algorithms can be compared (such a set of
problems is not available in the literature), we fixed the value of these two parameters.
We adopted the following values, which have been chosen according to the suggestions
provided in Kilby et al. (1998): Tco = 0.5 · T and Tac = 0.

In the application of the methodology we propose to a real problem, ACS-DVRP is suppose
to run for the whole working day. Since in this section our aim is to run simulations, and
it would be very time consuming to carry out only a single run of the algorithm per day,
we chose to map each working day into 1500 seconds of CPU time (i.e. T = 1500 seconds
and customer appearance and serving times are changed proportionally).

4.2. Parameter setting for the ACS-DVRP algorithm

Some parameters have to be tuned in the ACS-DVRP framework. Most of them are those
of the AC S algorithm used to tackle the static VRP-like problems generated by the events
manager.
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From a previous study presented in Gambardella et al. (1999) for the MACS-VRPTW
algorithm, it is known that a good parameter setting for ACS algorithms applied to classic
vehicle routing problems is the following one: qo = 0.9, β = 1, ρ = 0.1, a small value for
m (number of ants), e.g. m = 3, and τ0 = 1

n×Cost(PI) , where Cost(PI) is the cost of a solution
retrieved by a greedy heuristic algorithm. Since each one of our static problems is (almost)
a classic VRP, we use these settings and in particular we initially solve each static problem
with a greedy post-insertion algorithm (like the one described in Gambardella et al. (1999))
in order to obtain Cost(PI), and consequently τ0.

Parameters tls, which model the time dedicated to local search during each iteration of
the AC S algorithm, has also to be set. We decided to set tls = T

6·nts
, and to consequently

tune parameter nts. This last parameter is crucial for algorithm ACS-DVRP, since too large
values would imply that the optimization is restarted too often, without local minima can
be reached. On the other hand, too small values would force the method to carry out long
optimizations on problems which are not up to date, because the most recent information
would be ignored. In this case very good local minima might be reached for the problems
investigated, but these problems do not contain updated information, and consequently the
optimization effort is somehow vanished. For this reason, a careful tuning for parameter nts

is required. We carried out some tests, that are summarized in Table 1. For these experiments
we set γr = 0.3 (this value was suggested by some preliminary tests).

Three values for nts (i.e. 10, 25 and 50) and three problems are considered in Table 1.
For each combination (problem, value of nts) five runs of algorithm ACS-DVRP have been
carried out and three values are reported in the corresponding entry of the table: Min, Max
and Avg, that respectively represent the best, the worst and the average total travel times
found over the five runs.

Table 1 suggests that a good tradeoff between reactivity to dynamic events and accu-
rate optimization of the static VRP-like problems, is reached with nts = 25. This setting
guarantees the best performance of algorithm ACS-DVRP for the benchmarks considered.
Consequently we will adopt this setting in the remainder of this section.

The last parameter which requires to be tuned is γr , the parameter used by the pheromone
conservation procedure (see Section 3.3). Some tests have been carried out for experimentally
finding good values for the parameter. They are summarized in Table 2, where the results

Table 1. Calibration of parameter nts (number of time slices).

nts
T

nts
tls c100 f71 tai75a

10 150 25 Min 1004.58 311.95 1880.11

Max 1145.20 399.26 2105.14

Avg 1083.64 362.93 1963.19

25 60 10 Min 973.26 311.18 1843.08

Max 1100.61 420.14 2043.82

Avg 1066.16 348.69 1945.20

50 30 5 Min 1131.95 333.25 1966.92

Max 1228.97 452.73 2133.87

Avg 1185.25 417.74 2019.82
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Table 2. Tuning of γr (parameter for pheromone con-
servation).

γr c100 f71 tai75a

0.1 Min 1072.44 352.77 1928.18

Max 1157.43 419.21 2220.75

Avg 1116.13 383.27 2016.78

0.3 Min 973.26 311.18 1843.08

Max 1100.61 420.14 2043.82

Avg 1066.16 348.69 1945.20

0.5 Min 1039.36 360.20 1847.41

Max 1135.26 443.16 2054.91

Avg 1087.90 389.00 1962.66

1.0 Min 1079.12 367.32 1873.69

Max 1133.15 431.53 2102.58

Avg 1098.99 399.18 1971.91

obtained on three benchmarks with four different values of γr are presented. In particular
the values 0.1, 0.3, 0.5 and 1.0 are considered. For each of these values, five runs have been
carried out on each problem and for each pair (problem, value of γr ) three quantities are
reported: Min, Max and Avg. They are respectively the best, the worst and the average total
travel times found over the five runs.

From Table 2 the setting γr = 0.3 clearly appears to be the most promising. In the
remaining tests γr will consequently be set to 0.3.

It is also interesting to compare the results obtained with γr = 0.3 and γr = 1.0 (i.e. no
pheromone conservation). When γr = 0.3 is used, the results are always considerably better
and this highlights the important role played by pheromone conservation in our algorithm.

4.3. Comparison with other algorithms

In this section we aim to evaluate the computational results of the ACS-DVRP algorithm.
For comparison reasons we implemented a basic GRASP algorithm (we will refer to it as
GRASP − DVRP). The algorithm GRASP-DVRP will be described in detail in Section 4.3.1,
while the computational results of the two algorithms will be presented in in Section 4.3.2.

4.3.1. Algorithm GRASP-DVRP. The approach is based on an architecture similar to that
described in Section 3.2 for the ACS-DVRP algorithm. The main differences are that here a
GRASP (Greedy Randomized Adaptive Search Procedure, see Resende and Ribeiro, 2003)
module is used instead of the ACS algorithm to tackle the static VRP-like problems, and that,
consequently, no pheromone conservation strategy exists. In particular, the GRASP proce-
dure works by repeatedly carrying out the following operations for the time corresponding
to a time slice:

• initial tours are generated by iteratively selecting the next customers to visit at ran-
dom among those that have a travel time from the last selected location in the interval
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[t tmin, t tmin + δG(t tmax − t tmin)], where δG is a parameter and t tmin and t tmax are the min-
imum and maximum feasible (in terms of vehicle capacity) travel times out of the last
selected location. The procedure is repeated until a complete solution is build. Notice
that when δG = 0 the construction strategy is completely greedy, while δG = 1 means
that the next customer is selected completely at random among the feasible ones. For
the experiments reported in Section 4.3.2, we will set δG = 0.75, according to some
preliminary tests that indicated this setting as the most promising one.

• the same local search procedure described in Section 3.2 for the AC S algorithm is run
for tls on the solution so obtained, in order to improve it.

• if the solution so obtained is the best retrieved so far, it becomes the new best solution.

It is important to observe that a better designed, and perhaps more sophisticated imple-
mentation of the GRASP algorithm (see, for example, Kontoravdis and Brand, 1995) for
the construction phase, would probably bring to better results.

4.3.2. Results. In Table 3 the results obtained by the algorithms described in Sections 3.2
and 4.3.1 are compared. For each problem, five runs of each algorithm have been considered.

Table 3. Computational results.

GRASP-DVRP ACS-DVRP

Problem Min Max Avg Min Max Avg

c100 1080.33 1169.67 1119.06 973.26 1100.61 1066.16

c100b 978.39 1173.01 1022.12 944.23 1123.52 1023.60

c120 1546.50 1754.00 1643.15 1416.45 1622.12 1525.15

c150 1468.36 1541.54 1501.35 1345.73 1522.45 1455.50

c199 1774.33 1956.76 1898.20 1771.04 1998.87 1844.82

c50 696.92 757.97 719.56 631.30 756.17 681.86

c75 1066.59 1142.32 1079.16 1009.38 1086.65 1042.39

f134 15433.84 17325.73 16458.47 15135.51 17305.69 16083.56

f71 359.16 429.64 376.66 311.18 420.14 348.69

tai100a 2427.07 2583.02 2510.29 2375.92 2575.70 2428.38

tai100b 2302.95 2636.05 2512.27 2283.97 2455.55 2347.90

tai100c 1599.19 1800.85 1704.40 1562.30 1804.20 1655.91

tai100d 1973.03 2165.39 2087.55 2008.13 2141.67 2060.72

tai150a 3787.53 4165.42 3899.16 3644.78 4214.00 3840.18

tai150b 3313.03 3655.63 3485.79 3166.88 3451.69 3327.47

tai150c 3110.10 3635.17 3219.27 2811.48 3226.73 3016.14

tai150d 3159.21 3541.27 3298.76 3058.87 3382.73 3203.75

tai75a 1911.48 2116.95 2005.44 1843.08 2043.82 1945.20

tai75b 1582.24 1934.35 1758.88 1535.43 1923.64 1704.06

tai75c 1596.17 1859.71 1674.37 1574.98 1842.42 1653.58

tai75d 1545.21 1641.91 1588.73 1472.35 1647.15 1529.00

Total 52731.63 58986.36 55562.64 50855.94 57645.52 53784.02
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In Table 3 the best (Min), the worst (Max) and the average (Avg) travel time retrieved over
the five runs are reported.

Table 3 shows that the ACS-DVRP algorithm is able to provide higher quality solutions
than GRASP-DVRP. They are, on average, 3.56% better in terms of best results, 2.27%
better in terms of worst results, and 3.20% better in terms of average results.

It is also interesting to observe that, for all the problems considered, the best solution
found by the ACS-DVRP algorithm over five runs, is always better of the best one retrieved
by the GRASP-DVRP algorithm.

5. A case study

In this section we summarize the results obtained by the ACS-DVRP algorithm on a realistic
case study, set up in the city of Lugano, Canton Ticino, Switzerland. The aim of the study is
twofold: first we want to show that the approach we propose is suitable to be applied to real
world problems. Second we want to empirically show that parameter nts—that regulates
the number of time slices—has to be tuned also in case of real world problems, in order to
obtain the best possible results.

In figure 4 the road network of Lugano is depicted. The locations of a depot (white
square) and of 50 customers (black circles) have been provided by a local fuel distribution

Figure 4. Case study in the city of Lugano.
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Table 4. Experimental results on the case study of Lugano.

nts 200 100 50 25 10 5
T

nts
144 288 576 1152 2880 5760

tls 15 30 60 120 240 480

Travel time 12702 12422 10399 9744 10733 11201

company. Travel times among them have been calculated as classic shortest paths over the
road network. A working day of 8 hours (28800 seconds) is considered, while a service
time of 10 minutes (600 seconds) is set up for each customer. Customers appear during
the working day with orders ranging in [1, 31]. A fleet of 10 vehicles with capacity 160 is
finally considered. The dimension of the fleet is calibrated on the orders expected by the
fuel distribution company, and it results to be well dimensioned for the case study presented
here. Cut-off time Tco has been set to 14400 seconds, while the advanced commitment time
Tac has been set to 288 seconds. Parameter nts will be varied, being the argument of the
study we propose.

Parameters q0, β, ρ and γr and m are set up as described in Section 4.2. In Table 4
we presents the results obtained by the ACS-DVRP algorithm in different experiments,
where the number of time slices (namely parameter nts) is varied. Parameter tls is adjusted
according to the values of nts in such a way that tls ≈ T

10·nts
.

In Table 4 the first three rows define the settings of the experiments, i.e. the values of
parameters nts, T

nts
and tls. The forth row shows the total travel time of the solutions found

by the ACS-DVRP algorithm.
Table 4 confirms, first of all, that the approach we propose in this paper is suitable to be

applied to real world problems. Table 4 also suggests that a careful tuning of parameter nts

can lead to better results. In particular, it is shown that, for the case study analyzed, good
values for nts are in the range [10, 50]. The setting nts = 25 seems to be the best choice. It
is finally interesting to observe that the setting nts = 25 was the most promising also for the
problems studied is Section 4. As explained in Section 4.2, too large values for nts do not
lead to satisfactory results because optimization is restarted too often, without good local
minima can be reached. On the other hand, when nts is too small the system is not able to
take advantage of new information.

6. Conclusion

A dynamic vehicle routing problem has been studied in this paper. A solving strategy for this
problem has been described. It is based on the partition of the working day into time slices.
A sequence of static vehicle routing problems is then generated. An Ant Colony System
algorithm has been used to solve these problems. The properties of AC S have been also
exploited to transfer information about good solutions from a time slice to the following one.

A computational study on a newly defined set of benchmarks, finally shows that the
method we propose is able to achieve good results both on artificial and real problems.
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Notes

1. In the classic VRP the capacity would be the same for all the vehicles.
2. Up to date results are available at: http://www.sintef.no/static/am/opti/projects/top/vrp/benchmarks.html.
3. The problems are available at http://www.dcs.st-and.ac.uk/˜apes/apedata.html.
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