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Abstract. Hybridization techniques are very effective for the solution of combinatorial optimization prob-
lems. This paper presents a genetic algorithm based on Expanding Neighborhood Search technique (Marinakis,
Migdalas, and Pardalos, Computational Optimization and Applications, 2004) for the solution of the traveling
salesman problem: The initial population of the algorithm is created not entirely at random but rather using
a modified version of the Greedy Randomized Adaptive Search Procedure. Farther more a stopping criterion
based on Lagrangean Relaxation is proposed. The combination of these different techniques produces high
quality solutions. The proposed algorithm was tested on numerous benchmark problems from TSPLIB with
very satisfactory results. Comparisons with the algorithms of the DIMACS Implementation Challenge are also
presented.
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1. Introduction

The Traveling Salesman Problem (TSP) is the problem of finding the shortest tour through
all the cities that a salesman has to visit. The TSP is probably the most famous and ex-
tensively studied problem in the field of Combinatorial Optimization. Heuristic attempts
to solve the Traveling Salesman Problem are focused on tour construction methods and
tour improvements methods. Tour construction methods build up a solution step by step,
while tour improvement methods start with an initial tour and, then, try to transform it
into a shortest tour. The problem with construction heuristics is that, although, they are
often fast, they do not usually produce a very good solution. The most known of the tour
improvement algorithms is the 2-opt heuristic, in which two edges are deleted and the
open ends are connected in a different way in order to obtain another tour. In the general
case, r edges in a feasible tour are exchanged for r edges not in that solution as long as
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the result remains a tour and the length of that tour is less than the length of the previ-
ous tour. The most powerful, and for many years the algorithm which produced the best
results among all heuristics, is the Lin–Kernigham heuristic (Lin and Kernigham, 1973).
Lin and Kernigham’s algorithm decides dynamically at each iteration what the value of r
(the number of edges to exchange) should be (Helsgaum, 2000). In the last fifteen years,
a breakthrough was obtained with the introduction of metaheuristics, such as simulated
annealing, tabu search, genetic algorithms and neural networks. These algorithms have the
possibility to find their way out of local optima. In simulated annealing, this is achieved
by allowing the length of the tour even to increase with a certain probability, while in
tabu search a list of forbidden transformations is kept and so it may be necessary to use
a transformation that deteriorates the objective function value in the next step. Genetic
algorithms mimic the evolution process in nature. Their basic operation is the mating of
two tours in order to form a new tour. In this paper a combination of genetic algorithms,
GRASP and the Lagrangean Relaxation is used for the solution of the traveling salesman
problem.

Genetic algorithms are randomized search techniques that simulate some of the processes
observed in natural evolution (Potvin, 1996; Reeves, 1995, 2003). GRASP is an iterative
two phase search which has gained considerable popularity in combinatorial optimization
(Resende and Ribeiro, 2003). Each iteration consists of two phases, a construction phase
and a local search procedure. Lagrangean Relaxation is a technique that produces lower
and upper bounds for the solution of the problem. This lower bound is based on the con-
struction of a minimum cost 1-tree, that is, a spanning tree with two edges incident to a
node.

The proposed algorithm has a number of innovative features which will be presented
in the following. The most significant of these features is that the produced lower bound
is used in a stopping criterion for the genetic algorithm. This termination criterion results
in a less time consuming algorithm as time is not spent in iterations with minor, if any,
improvements to the solution, otherwise required in order to achieve genetic convergence.

Another innovative feature is that the initial population is produced by a Greedy Ran-
domized Adaptive Search Procedure (GRASP) containing thus individuals of good quality.

A third feature concerns the crossover process. Although, the most popular crossover
operators are the 1-point crossover, the cycle crossover and the order-based crossover, the
proposed algorithm uses a new crossover operator which finds the common characteristics
of the parents and inherits them to their offspring. Then a nearest neighborhood procedure
is applied to each offspring in order to complete of the tour.

A fourth feature is the use of two mutation operators, that is, an attempt is made to expand
the neighborhood in which the local search will be applied (Marinakis et al., 2004).

A fifth feature is that only the most promising individuals survive in the next generation,
that is, an upper bound is produced by the Lagrangean Relaxation, and all the individuals
whose fitness is worse than this upper bound are discarded.

The structure of the paper is as follows. In Section 2, an analytical description of the
proposed hybrid genetic algorithm with Lagrangean Relaxation is presented. In Section 3,
the computational results are presented and, finally, the concluding remarks are given in the
last section.
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2. Combined Lagrangean Relaxation and genetic algorithms for the TSP

2.1. General description of hybrid genetic algorithm

In the following, the outline of the proposed algorithm is presented.
Initialization

1. Initial computation of lower bound, upper bound and of the parameter
e = upper bound−lower bound

upper bound 100%.
2. Create the initial population of N individuals.
3. Evaluate the fitness of each individual.
4. Improve the fitness of each individual via a local search strategy.

Main Algorithm

1. Set the number of generations equal to zero.
2. Do while stopping criteria not satisfied (that is, e is less than threshold number or the

maximum number of generations has been reached or genetic convergence has occured):

2.1 Select the parents from the current population and choose via roulette wheel selection
the pairs for mating.

2.2 Apply the crossover operator between the two parents, first cloning the common
features of the two parents to the offspring and then completing the offspring using
a modified nearest neighborhood procedure.

2.3 Improve each offspring by the two different mutation operators and insert the result-
ing offspring to the new population.

2.4 Repeat the previous three steps until all parents are selected and mated.
2.5 Rank the offsprings and the parents via their fitness function and select for the new

population a number of individuals equal to the initial population.
2.6 Discard from the current population the individuals that their fitness is higher than

the upper bound.
2.7 Calculate e. If the parameter e is less than a prespecified threshold or if the maximum

number of iterations is reached or if genetic convergence has occurred, then the
best individual is the final result, else update the bounds and proceed to the next
generation.

3. Enddo
4. Return the best individual.

2.2. Lagrangean Relaxation for TSP

For a given set of nodes a 1-tree (Held and Karp, 1970) is a tree connecting the node set
{2, 3, . . . , n}, and having in addition two distinct arcs connecting to node 1. Therefore, a
1-tree is a graph with one cycle. The weight of the 1-tree is the sum of the cost of all its
arcs. In the minimum weight 1-tree problem the objective is to find a 1-tree with minimum
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weight. Such a tree can be constructed by finding a minimum spanning tree for the node
set {2, 3, . . . , n}, and by adding to it the two arcs of minimum cost incident to node 1. Any
traveling salesman problem can be described as 1-tree tour in which each node has a degree
2. Thus, the minimum weight 1-tree is a lower bound (LBD) on the length of the optimal
traveling salesman tour.

The traveling salesman problem is formulated as follows:

(TSP) min cost(T)

where {
T is a 1-tree with root node 1

degree(v) = 2 ∀ node v except the root
(1)

The Lagrangean Relaxation subproblem (SUB) is the following:

SUB(λv) = min cost(T) −
∑

v∈N−{1}
(degree(v) − 2)λv, (2)

where the λs for all nodes are calculated in each iteration as follows:

λ(k+1)
v = λ(k)

v + α(k) UBD(k) − LBD(k)

||degree(v) − 2||2 (3)

where k is the iteration counter, UBD and LBD are the upper and lower bounds and α is a
parameter in (0,2) The pseudocode which accomplishes all these calculations is given next:

Calculation of Lower Bounds
Initially values for λv = 0
k = 0
do while (Maximum number of iterations reached

or e < threshold value )
Solve SUB(λk

v)
The cost of the SUB is a new lower bound for the TSP (NLBD)
if (degree(v) = 2)∀node then

The cost of the SUB is an upper bound
The algorithm stops with the optimal solution to the dual
problem

else
Adjust the solution with Christofides algorithm
The cost of the Christofides is a new upper bound (NUBD)
Improve NUBD using 2-opt

endif
if NUBD < UBD then
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UBD = NUBD
endif
if NLBD > LBD then

LBD = NLBD
endif
k = k + 1
λ(k+1)

v = λ(k)
v + α(k) UBD(k)−LBD(k)

||degree(v)−2||2
e = UBD−LBD

UBD 100%
enddo

In each iteration of the algorithm a minimum weight 1-tree is calculated and if the solution
is feasible, i.e. the degree of all nodes, including the root node, is equal to 2, the algorithm
stops. If a minimum weight 1-tree is a tour, w.r.t. non modified costs (i.e. λv = 0), then it
is an optimal traveling salesman tour. When the solution is not feasible, an effort is made
to convert it into a feasible one with the use of the Christofides heuristic (Lawer et al.,
1985), while the cost of the 1-tree is a lower bound. In the resulting tour, a 2-opt heuristic
is applied for the improvement of the solution. The cost of this tour is an upper bound. As
it is desirable the lower and the upper bounds to be as good as possible, the subroutine of
the main phase of the genetic is called every ten iterations. At the end of each iteration the
new cost of the 1-tree is compared with the current lower bound and if the cost is higher,
then the lower bound is updated. Similarly, the upper bound is updated only if the value of
the cost of the current iteration is lower than the current upper bound.

2.3. Path representation

The first step in designing a genetic algorithm for a particular problem is to devise a suitable
representation. Each individual is recorded based on the path representation of a tour (the
sequence of the nodes). With this representation there are 2N , where N is the number of
nodes, ways to represent the same tour depending on which node is placed in position 1.
In the proposed algorithm the node with number 1 is fixed to be always in the position 1 in
the representation of every individual.

2.4. Initial population

Usually in a genetic algorithm there is a randomly generated initial population which may
or may not necessarily contain good candidate solutions. To avoid the latter case, a modified
version of the well known Greedy Randomized Adaptive Search Algorithm (GRASP) is
used to initialize the population.

GRASP (Marinakis et al., 2004; Resende and Ribeiro, 2003) is an iterative two phase
search which has gained considerable popularity in combinatorial optimization. Each it-
eration consists of two phases, a construction phase and a local search procedure. In the
construction phase, a randomized greedy function is used to build up an initial solution. This
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randomized technique provides a feasible solution within each iteration. This solution is
then exposed for improvement attempts in the local search phase. The final result is simply
the best solution found over all iterations.

That is, in the first phase, a randomized greedy technique provides feasible solutions
incorporating both greedy and random characteristics. This phase can be described as a
process which stepwise adds one element at a time to a partial (incomplete) solution. The
choice of the next element to be added is determined by ordering all elements in a candidate
list with respect to a greedy function. The heuristic is adaptive because the benefits associated
with every element are updated during each iteration of the construction phase to reflect the
changes brought on by the selection of the previous element. The probabilistic component
of a GRASP is characterized by randomly choosing one of the best candidates in the list but
not necessary the top candidate. The greedy algorithm is a simple, one pass, procedure for
solving the traveling salesman problem. In the second phase, a local search is initialized
from these points, and the final result is simply the best solution found over all searches
(c.f. multi-start local search). The pseudocode of the algorithm is presented next:

algorithm GRASP
do while stopping criteria not satisfied

call GREEDY RANDOM SOLUTION(Solution)
call LOCAL SEARCH(Solution)
if Solution is better than Best Solution Found then

Best Solution Found ←− Solution
endif

enddo
return Best Solution Found

2.5. Calculation of fitness value

The fitness of each individual is related to the route length of each cycle. Since the TSP is
a minimization problem, if a tour has a high value in the cost function then it is not a good
solution for the Traveling Salesman Problem and its fitness value must be small. So a high
fitness value must correspond to a tour with a small cost function. A way to accomplish this
is to find initially the tour in the population with the maximum cost (length) and to subtract
from this value the cost of each of the other tours. Now, the higher fitness value corresponds
to the tour with the shorter length. Since the probability of selecting an individual for mating
is related to its fitness, and since the individual with the worst tour has fitness equal to zero,
it will never be selected for mating. To avoid this possibility the fitness of all individuals is
incremented by one.

2.6. Selection probability

The parents are selected for mating via proportional selection, also known as roullete wheel
selection. It is defined as follows:
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1. The sum of the fitness values of all individuals is calculated.
2. A random number between zero and the sum of the fitness values is generated.
3. The intervals which will be used for the selection of the parents are determined. The first

interval has a lower value equal to zero and an upper value equal to the fitness of the first
individual, for the second interval the lower value is the fitness of the first individual and
the upper value is the fitness of the first individual plus the fitness of the second, and so on.

4. A parent is selected based on the interval to which the random number generated in step
2 belongs.

5. To avoid the existence of a super individual (meaning an individual with a very high
fitness value) which will dominate the population by its repeated selection, we impose
an upper value on the times an individual can be selected.

2.7. Crossover

We propose a complex crossover operator, which initially identifies the common charac-
teristics of the parent individuals and then inherits them to the offsprings. Subsequently, a
nearest neighborhood procedure is applied to each offspring in order to complete the tour.

The common characteristics are used in the offsprings because if two or more solutions
of a combinatorial problem have common characteristics there is a high probability that
these also belong to the optimal solution of the problem. Also, the inheritance of good
characteristics from highly adapted parents may produce even fitter offspring. For example
as shown in figure 1,applying the crossover operator, the offspring has inherited the common
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Figure 1. Example of crossover process.
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characteristics of the parents (namely, the sequence of nodes 5678):

parent 1: 12567834910

parent 2: 11042356789

offspring: 12345678910

2.8. Mutation

Mutation operators for the TSP are synonymous to local edge exchange heuristics. The most
known of these heuristics are the 2-opt and 3-opt. Usually, only one of these heuristics is used
for the mutation phase of the algorithm. In the proposed algorithm a combined neighborhood
search is used. The idea of using a larger neighborhood to escape from a local minimum
has been proposed initially by Garfinkel and Nemhauser (1972). First, the neighborhood
function is defined as exchanging two edges of the current solution with two other edges
not in the solution. This procedure is known as 2-opt procedure and was introduced by Lin
(1965) for the TSP (Lin, 1965). Subsequently, the algorithm tries to improve the solution by
expanding the neighborhood using a restricted 3-opt procedure. The way in which 2-opt and
3-opt are used and interchanged is called Expanding Neighborhood Search by Marinakis
et al. (2004). For example, in figure 2, the 2-opt mutation operator is applied to the individual
1 resulting in individual 2, while individual 3 is the result of a restricted 3-opt procedure.
More precisely, in the case of 2-opt, the arcs (3, 4) and (8, 9) were replaced by the arcs
(3, 8) and (4, 9). On the other hand, in the case of 3-opt, the arcs (3, 4), (6, 7) and (8, 9)

1

2

3

10

1

2

3

10

1

2

3

10 9

6

6 5

4

8

7

9

7

8

4

5 6

5

4

8

7

9

INDIVIDUAL 1 INDIVIDUAL 2

INDIVIDUAL 3

Figure 2. Example of mutation process.



GENETIC—GRASP FOR THE TSP 319

were replaced by the arcs (3, 6), (4, 8) and (7, 9):

individual 1 12345678910

individual 2 12387654910

individual 3 12365487910

where the bold numbers indicate the differences in the sequence of nodes between individual
1 and individuals 2 and 3.

2.9. Population replacement

During the course of evolution, natural populations evolve according to the principles of
natural selection and survival of the fittest. Individuals who are more succesfull in adapting to
their environment will have a better chance of surviving and reproducing, while individuals
which are less fit are eliminated. Initially, all the individuals of the population are sorted w.r.t.
their fitness values. Subsequently, if their fitness is better than the Langrangean upper bound
the 100 individuals with the best fitness values will replace the old population. According
to the definitions given previously, upper bounds and fitness values are not comparable.
Thus, a new quantity corresponding to the fitness value of the Langrangean upper bound
is calculated using the procedure in Section 2.5. If the number of individuals with fitness
better than the current upper bound is less than 100 then only these individuals constitute the
individuals of the next generation, that is we accept a reduction in the number of individuals
which constitute a population. If no individual has fitness better than the upper bound then the
algorithm stops and the solution is provided by the tour implied by the current upper bound.

2.10. Termination process

In the proposed algorithm, in addition to the maximum number of generations and the
genetic convergence, four different termination criteria are used. The reason for the use of
the additional criteria is that the algorithm turns more efficient and less time consuming, as
it is not spending time in iterations which give minor, if any, improvements to the current
solution while attempting to reach pure genetic convergence. The following termination
criteria are used:

a. If the upper and lower bounds from the Lagrangean Relaxation are equal, then the
solution is the optimal one.

b. If the quantity e = UBD−LBD
UBD 100% becomes less than a threshold value, then the solution

with the best fitness among all individuals is selected as a solution to the problem and
the algorithm terminates. The threshold value used in the algorithm is 3%.

c. If the upper and lower bounds, the number and the fitness of the individuals remain
invariable for a number of generations, the algorithm stops with the best solution found.

d. If the upper bound is better than the best fitness in the population, then the algorithm
stops with a solution corresponding to the tour which provides the upper bound. If the
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algorithm did not stop in such a case, then the next generation would consist of only one
individual, the one implied by the upper bound.

3. Computational results

The algorithm was implemented in Fortran 90 and was compiled using the Linux VAST/ f90
compiler (f902f77 translator) on a Pentium III at 667, MHz, running Suse Linux 6.3. The test
instances were taken from the TSPLIB (http://www.iwr.uni-heidelberg.de/groups/compt/
software/TSPLIB95). The algorithm was tested on a set of 40 Euclidean sample problems
with sizes ranging from 51 to 2392 nodes. Each instance is described by its TSPLIB name
and size, e.g. in Table 1 the instance named Pr76 has size equal to 76 nodes. In all tables,
the first column shows the name of the instance.

In Table 1, the second and the third columns show the best lower and upper bounds
produced by Lagrangean Relaxation, while the fourth column shows the parameter e. The
fifth column shows the number of generations for which the algorithm runs until one of
the four stopping criteria is activated. The sixth column shows the best solution found by
the genetic algorithm (BSoG), the seventh column shows the best solution taken from the
TSPLIB (Best Known Solution–BKS), and the last column shows the quality of the solution
produced by the genetic algorithm. The quality of the produced solutions is given in terms
of the relative deviation from the best known solution, that is p = 100(cgen−copt)

copt
, where cgen

denotes the cost of the best solution found by the genetic algorithm, and copt is the cost of
the best known solution.

It can be seen from Table 1 that the algorithm, in most instances with the number of
nodes up to 264, has reached the best known solution. For the instances with the number
of nodes between 280 and 2392 the quality of the solution is between 0.09 and 1.62%.
For the 40 instances for which the algorithm was tested, the best solution was found for
twenty three of them, i.e. in 57.5% of all cases, for eleven of them a solution was found
with quality between 0.04 and 0.97%, i.e. 27.5%, for six of them a solution was found with
quality between 1.06 and 1.62%, i.e. 15%.

In Table 2, for four chosen instances the improvements on lower and upper bounds and
best fitness value (bfv) for seven consequetive generations are presented. These instances
have different features with respect to their solutions. In the first instance, namely Berlin52,
after the first two generations the lower and upper bounds have the same value and, so,
the optimum solution is found and the algorithm terminates. In the second and the third
instances, namely Rat99 and Pr226, it is observed that the values of the lower and the upper
bounds remain unchanged during a number of generations, and so, the individuals which
are still active in the population do not have the possibility to improve their fitness values
because the population does not accept individuals with fitness greater than the Langrangean
upper bound. In the fourth instance, namely rat783, the fitness value of the best individual is
equal to the Langrangean upper bound during a number of consequetive iterations, and since
all the individuals with fitness greater than this upper bound are deactivated for the next
generations, then, either all the active individuals have the same fitness values or there is
only one individual remaining in the population. Therefore the algorithm terminates. Figure
3 depicts graphically the details in the progress of the algorithm for the examples of Table 2.
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Table 1. Comparison between the solution of genetic algorithm and the best known solution.

No. of Quality
Instance LBD UBD e (%) g. − sc. BSoG BKS (%)

Eil51 396 432 8.33 4 − c 426 426 0

Berlin52 7542 7542 0 2 − a 7542 7542 0

Eil76 494 538 8.17 5 − d 538 538 0

Pr76 105090 109043 3.62 8 − c 108159 108159 0

Rat99 1157 1212 4.53 10 − c 1211 1211 0

KroA100 20901 21305 1.89 5 − b 21282 21282 0

KroB100 21729 22193 2.09 6 − b 22141 22141 0

KroC100 20432 20749 1.52 4 − b 20749 20749 0

KroD100 21026 21294 0.92 5 − b 21294 21294 0

KroE100 21740 22068 1.48 4 − b 22068 22068 0

Rd100 7844 7958 1.43 10 − b 7910 7910 0

Eil101 568 629 9.69 5 − d 629 629 0

Lin105 14282 14379 0.67 2 − b 14379 14379 0

Pr107 38930 44303 1.21 3 − b 44303 44303 0

Pr124 56985 59181 3.71 6 − c 59030 59030 0

Pr136 94578 97306 2.80 6 − b 96772 96772 0

Pr144 56134 58537 4.1 3 − d 58537 58537 0

Ch150 6404 6571 2.54 3 − b 6528 6528 0

KroA150 26152 26681 1.98 5 − b 26524 26524 0

Pr152 65244 73682 11.45 1 − d 73682 73682 0

D198 14038 15798 11.14 7 − c 15787 15780 0.04

KroA200 28956 29448 1.67 4 − b 29382 29368 0.04

Ts225 115504 126962 9.01 8 − e 126643 126643 0

Pr226 77271 80795 4.36 7 − c 80369 80369 0

Pr264 45324 49581 8.58 8 − c 49135 49135 0

Pr299 47060 48630 3.22 7 − c 48235 48191 0.09

Fl417 10758 11923 9.77 7 − c 11890 11861 0.24

Pr439 103196 107401 3.91 6 − c 107401 107217 0.17

Pcb442 50247 50946 1.37 7 − b 50946 50778 0.32

P654 31780 35132 9.54 10 − c 34679 34643 0.10

Pr1002 256001 262060 2.31 8 − b 262060 259045 1.16

Pcb1173 55793 57788 3.45 8 − d 57788 56892 1.57

D1291 49238 51616 4.60 9 − d 51616 50801 1.60

Rl1304 247273 255185 3.10 5 − d 255185 252948 0.88

Rl1323 263978 273115 3.34 9 − d 273115 270199 1.06

Fl1400 17577 20310 13.45 10 − d 20310 20127 0.90

Fl1577 19874 22467 11.54 8 − d 22467 22249 0.97

Rl1889 308286 319250 3.43 10 − d 319250 316536 0.85

D2103 78000 81312 4.07 7 − d 813112 80450 1.07

Pr2392 358092 393323 8.95 7 − d 384182 378032 1.62
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Table 2. Improving of the upper, lower bounds and the fitness of the best individual for ten generations.

gen.

Instance 1st 2nd 3rd 4th 5th 6th 7th

Berlin52 LBD 7224 7542 7542 7542 7542 7542 7542

bfv 7542 7542 7542 7542 7542 7542 7542

UBD 7895 7542 7542 7542 7542 7542 7542

Rat99 LBD 1126 1153 1156 1156 1156 1156 1157

bfv 1212 1212 1212 1212 1212 1211 1211

UBD 1220 1220 1217 1217 1217 1217 1217

Pr226 LBD 74107 76716 77151 77244 77263 77267 77267

bfv 80518 80414 80414 80369 80369 80369 80369

UBD 81065 80942 80942 80795 80795 80795 80795

Rat783 LBD 8138 8335 8361 8361 8361 8361 8361

bfv 8941 8928 8928 8928 8928 8928 8928

UBD 9102 8960 8960 8960 8934 8930 8930
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Figure 3. Improvement of the upper and lower bounds and of the fitness value of the best individual for ten
generations.
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Table 3. Ranking of the algorithms based on the average quality.

Rank Method Average

1 Tour Merging (Applegate et al., to appear) 0.004

2 ILK-NYYY (Johnson and McGeoch, 2002) 0.009

3 Iterated Lin–Kernighan by Johnson (Johnson and McGeoch, 1997) 0.041

4 Keld Helsgaun’s Multi-Trial Variant on Lin–Kernighan (Helsgaum, 2000) 0.064

5 Iterated-3-Opt by Johnson (Johnson and McGeoch, 1997) 0.413

6 Augmented-LK (Johnson and McGeoch, 2002) 0.42

7 Applegate-Cook-Rohe Chained Lin–Kernighan (Applegate et al., to appear) 0.567

8 Iterated Lin–Kernighan by Neto (Neto, 1999) 0.642

9 Concorde Chain Lin–Kernighan (Applegate et al., to appear) 0.88

10 Helsgaun Lin–Kernighan (Helsgaum, 2000) 0.969

11 Tabu-search-SC-DB (Zachariasen and Dam, 1996) 1.034

12 Hybrid genetic 1.153

13 Expanding Neighborhood Search GRASP (Marinakis et al., 2004) 1.181

14 Lin–Kernighan-with-HK-Christo-starts (Johnson and McGeoch, 2002) 1.202

15 Tabu-search-LK-DB (Zachariasen and Dam, 1996) 1.241

16 Variable-Neighborhood-Search-Using-3-Hyperopt (Johnson and McGeoch, 2002) 1.292

17 Balas-Simonetti-Dynamic-Programming-Heuristic (Johnson and McGeoch, 2002) 1.308

18 Johnson Lin–Kernighan (Johnson and McGeoch, 1997) 1.41

19 Stem–Cycle Ejection Chain (Johnson and McGeoch, 2002) 1.702

20 LK-NYYY (Johnson and McGeoch, 2002) 1.706

21 Neto Lin–Kernighan (Neto, 1999) 1.804

22 Variable-Neighborhood-Search-Using-2-Hyperopt (Johnson and McGeoch, 2002) 1.993

23 Tabu-search-Stem - Cycle -SC (Zachariasen and Dam, 1996) 2.034

24 Tabu-search-LK-LK (Zachariasen and Dam, 1996) 2.2

25 Tabu-search-2opt-Double Bridge (Zachariasen and Dam, 1996) 3.11

26 3opt-J (Johnson and McGeoch, 1997) 3.5

27 3opt-B (Bentley, 1992) 3.635

28 Concorde-Lin–Kernighan (Applegate et al., to appear) 3.916

29 4-Hyperopt (Johnson and McGeoch, 1997) 4.062

30 Applegate Lin–Kernighan (Applegate et al., to appear) 4.308
31 3-Hyperopt (Johnson and McGeoch, 1997) 4.559

32 GENIUS (Gendreau et al., 1992) 4.685

33 Tabu-search-2opt-2opt (Zachariasen and Dam, 1996) 4.83

34 2.5opt-B (Bentley, 1992) 5.93

35 2opt-J (Johnson and McGeoch, 1997) 6.113

36 2-Hyperopt (Johnson and McGeoch, 1997) 6.218

(continued on next page.)
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Table 3. (continued.)

Rank Method Average

37 Held Karp Christofides (Johnson and McGeoch, 2002) 6.496

38 2opt-B (Bentley, 1992) 6.83

39 GENI (Gendreau et al., 1992) 8.05

40 CCA (Johnson and McGeoch, 2002) 10.43

41 Clarke–Wright (Clarke and Wright, 1964) 11.26

42 2opt-C (Applegate et al., to appear) 14.56

43 FI (Bentley, 1992) 16.64

44 RI (Bentley, 1992) 17.47

45 Boruvka (Applegate et al., to appear) 17.76

46 CHCI (Bentley, 1992) 17.96

47 C-Greedy (Applegate et al., to appear) 18.23

48 B-Greedy (Johnson and McGeoch, 2002) 18.708

49 Q-Boruvka (Applegate et al., to appear) 19.6

50 NN (Applegate et al., to appear) 24.85

51 Spacefilling (Johnson and McGeoch, 2002) 47.545

52 Best - Way Strip (Johnson and McGeoch, 2002) 49.405

53 FRP (Bentley, 1992) 74.36

54 Strip (Johnson and McGeoch, 2002) 75.565

The results of the proposed hybrid genetic algorithm are also compared with those
presented in the DIMACS Implementation Challenge (http://www.research.att.com/˜dsj/
chtsp/). This challenge is probably the most extensive examination to date of heuristic algo-
rithms in the field of TSP and presents computational results for approximately 40 tour con-
struction heuristics and for approximately 80 tour improvement heuristics. In Table 3, com-
putational comparisons of the proposed genetic algorithm with the methods of the DIMACS
Implementation Challenge are performed and the algorithms are ranked on the basis of the
average quality of the solutions produced for ten instances with number of nodes between
1002 and 2392. The proposed genetic algorithm is ranked in the twelfth place among 54 al-
gorithms. For details see (Marinakis et al., 2004) and (http://www.parallopt.tuc.gr/˜yamar/,
).

The proposed genetic algorithm is ranked better than all tour construction heuristics. It
is also, ranked better than all simple local search algorithms with exception of two Lin–
Kernighan Implementations. It is ranked better than all Variable Neighborhood Search
implementations and it is also ranked better than all metaheuristics but one Tabu imple-
mentation. The proposed genetic algorithm gives slightly inferior results when compared
to algorithms based on Iterated or Chained Lin-Kernighan.
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4. Conclusion

The main contribution of this paper is to show that Lagrangean Relaxation can be used in
hybrid synthesis with a genetic algorithm providing for the latter a qualifable termination
criterion so that premature termination can be imposed on the latter in order to avoid es-
sentially unnecessary genetic iterations which are spending computation time for minor,
if any, improvements trying to achieve genetic convergence. A second contribution is the
utilization of the GRASP procedure for the generation of the initial population. The tech-
nique of Expanding Neighborhood Search in the mutation phase gave very good results with
respect to the quality of the solutions, resulting in a high ranking of the approach among
the algorithms of the DIMACS Implementation Challenge.
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