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Abstract. We consider the design of approximation algorithms for a number of maximum graph partitioning
problems, among others MAX-k-CUT, MAX-k-DENSE-SUBGRAPH, and MAX-k-DIRECTED-UNCUT. We
present a new version of the semidefnite relaxation scheme along with a better analysis, extending work of
Halperin and Zwick (2002). This leads to an improvement over known approximation factors for such problems.
The key to the improvement is the following new technique: It was already observed by Han et al. (2002) that
a parameter-driven choice of the random hyperplane can lead to better approximation factors than obtained by
Goemans and Williamson (1995). But it remained difficult to find a “good” set of parameters. In this paper, we
analyze random hyperplanes depending on several new parameters. We prove that a sub-optimal choice of these
parameters can be obtained by the solution of a linear program which leads to the desired improvement of the
approximation factors. In this fashion a more systematic analysis of the semidefinite relaxation scheme is obtained.
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1. Introduction

For a directed graph G = (V, E) with |V | = n and a non-negative weight ωi, j on each edge
(i, j) ∈ E , such that ωi, j is not identically zero on all edges, and for 0 < σ := k

n < 1 we
consider the following problems:

• MAX-k-CUT: determine a subset S ⊆ V of k vertices such that the total weight ω∗ of
the edges connecting S and V \S or connecting V \S and S is maximized.1

• MAX-k-UNCUT: determine a subset S ⊆ V of k vertices such that the total weight ω∗

of the edges of the subgraphs induced by S and induced by V \S is maximized.
• MAX-k-DIRECTED-CUT: determine a subset S ⊆ V of k vertices such that the total

weight ω∗ of the edges connecting S and V \S is maximized.
• MAX-k-DIRECTED-UNCUT: determine a subset S ⊆ V of k vertices such that the total

weight ω∗ of the edges of the subgraphs induced by S and induced by V \S plus the edge
weights connecting V \S and S is maximized.

• MAX-k-DENSE-SUBGRAPH: determine a subset S ⊆ V of k vertices such that the
total weight ω∗ of the edges of the subgraph induced by S is maximized.

• MAX-k-VERTEX-COVER: determine a subset S ⊆ V of k vertices such that the total
weight ω∗ of the edges touching S is maximized.
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Table 1. Examples for the improved approximation factors.

Problem σ Prev. Our method

MAX-k-CUT 0.3 0.527 0.567

MAX-k-UNCUT 0.4 0.5258 0.5973

MAX-k-DIRECTED-CUT 0.5 0.644 0.6507

MAX-k-DIRECTED-UNCUT 0.5 0.811 0.8164

MAX-k-DENSE-SUBGRAPH 0.2 0.2008 0.2664

MAX-k-VERTEX-COVER 0.6 0.8453 0.8784

As all these problems are NP-hard, we are interested in approximating the optimal so-
lution to these problems within a factor of 0 ≤ � ≤ 1. Goemans and Williamson (1995)
showed in their pioneer paper that via the semidefinite programming (SDP) relaxation an
approximation factor of 0.878 can be proved for the MAX-CUT problem. Stimulated by
their work, many authors have considered only one or two of the six above problems (see
Ageev and Sviridenko (1999) for MAX-k-CUT, Frieze and Jerrum (1997) and Ye (2001) for
MAX- n

2 -CUT, Ageev et al. (2001) for MAX-k-DIRECTED-CUT, Ye and Zhang (1999) for
MAX- n

2 -UNCUT and MAX- n
2 -DENSE-SUBGRAPH, Asahiro et al. (2000), Feige et al.

(2001), Feige and Seltser (1997), Goemans and Williamson (1995), and Srivastav and
Wolf (1998, 1999) for MAX-k-DENSE-SUBGRAPH and Ageev and Sviridenko (1999)
for MAX-k-VERTEX-COVER). Feige and Langberg (2001) improved on known special
and global approximation factors for the four undirected problems with some new tech-
niques based on semidefinite programming. Their paper contains also a nice summary of
known results. Han et al. (2002) also applied semidefinite programming to these four prob-
lems and in most cases they managed to obtain better approximation factors than previously
known. Halperin and Zwick (2002) used more general methods for the balanced version
(σ = 1

2 ) and in this case achieved substantially improved approximation factors for all six
problems above.

In this paper we give an algorithm for the six problems, generalizing the approach of
Halperin and Zwick, resp. of Han et al. (2002) by introducing new parameters which enlarge
the region of the semidefinite-programming relaxation. This gives a new version of the
semidefinite relaxation scheme (Algorithm Graph Partitioning, Section 2). We show that
the expectation of the approximation factors depend on a set of parameters, which are used
in the algorithm, in a non-linear way (Lemma 2). The key observation is that a sub-optimal
choice of these parameters can be determined by a finite linear program (Section 5.1). By
discretizing the other parameters, we finally obtain a choice leading to improvements over
known approximation guarantees. Here are some examples for which the improvement is
significant (Table 1) (comprehensive tables can be found in Section 6).

In summary, we see that our technique of combining the analysis of the random hy-
perplane with mathematical programming leads to improvements over many previously
known approximation factors for the maximization problems considered in this paper. This
shows that a more systematic analysis of the semidefinite relaxation scheme gives better
approximation guarantees and opens room for further improvements, if better methods for
choosing an optimal parameter set can be designed.
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Table 2. Parameters for the maximum graph partitioning problems.

Problem a1 a2 a3 a4

MAX-k-CUT 0 1 1 0

MAX-k-UNCUT 1 0 0 1

MAX-k-DIRECTED-CUT 0 1 0 0

MAX-k-DIRECTED-UNCUT 1 0 1 1

MAX-k-DENSE-SUBGRAPH 1 0 0 0

MAX-k-VERTEX-COVER 1 1 1 0

2. The algorithm

For S ⊆ V the set of edges E can be divided in the following way:

E = S1 ∪̇ S2 ∪̇ S3 ∪̇ S4,

S1 = {(i, j) | i, j ∈ S},
S2 = {(i, j) | i ∈ S, j ∈ V \S},
S3 = {(i, j) | i ∈ V \S, j ∈ S},
S4 = {(i, j) | i, j ∈ V \S},

As we will see, we distinguish the six problems MAX-k-CUT, MAX-k-
UNCUT, MAX-k-DIRECTED-CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-
SUBGRAPH, MAX-k-VERTEX-COVER by four {0, 1} parameters a1, a2, a3, a4. All these
problems maximize the sum of a subset of the four edge classes S1, S2, S3, S4.

For i = 1, 2, 3, 4 we define ai as 1, if the problem maximizes the edge weights of Si , and
0 otherwise. The following values a1, a2, a3, a4 lead to the specific problems (see Table 2).

For F ⊆ E we define ω(F) = ∑
(i, j)∈F ωi j and for S ⊆ V :

ωa1,a2,a3,a4 (S) := a1ω(S1) + a2ω(S2) + a3ω(S3) + a4ω(S4).

The optimization problem considered in this paper is the following.

General Maximization Problem:

max
s⊆V,|S|=k

ωa1,a2,a3,a4 (S) (1)

Let OPT (a1, a2, a3, a4) be the value of an optimal solution of (1). Our aim is to design a
randomized polynomial-time algorithm which returns a solution of value at least � · OPT
(a1, a2, a3, a4, σ ), where � = �(a1, a2, a3, a4, σ ) is the so-called approximation factor
0 ≤ � ≤ 1. In fact, we will show that the expected value of � is large.

In the algorithm we give a formulation of the general maximization problem (1) as a
semidefinite program, generalizing Halperin and Zwick (2002).
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Algorithm Graph Partitioning

Input: A weighted directed graph G = (V, E) with |V | = n, 0 < σ < 1, a maximum graph
partitioning problem with parameters a1, a2, a3, a4.

Output: A set S of k vertices with large ωa1,a2,a3,a4 (S).

1. Relaxation
We solve the following semidefinite program:
Maximize

∑
1≤i �= j≤n

1
4ωi j [(a1 +a2 +a3 +a4)+ (a1 +a2 −a3 −a4)Xi0 + (a1 −a2 +a3 −

a4)X j0 + (a1 − a2 − a3 + a4)Xi j ] with the optimal value ω∗ subject to the constraints

(a)
∑n

i=1 Xi0 = 2k − n
(b)

∑
1≤i, j≤n Xi j = (2k − n)2

(c) Xii = 1 for i = 0, 1, . . . , n
(d) X ∈ R

n+1,n+1 is positive semidefinite and symmetric
(e) Xi j + Xil + X jl ≥ −1 for 0 ≤ i, j, l ≤ n
(f) Xi j − Xil − X jl ≥ −1 for 0 ≤ i, j, l ≤ n

From b), c) and d) it follows:
(g)

∑
1≤i< j≤n Xi j = 1

2 ((2k − n)2 − n)

We repeat the following four steps polynomially often and output the best subset.
2. Randomized rounding

• Choose parameters 0 ≤ θ, ϑ ≤ 1 and −1 ≤ κ ≤ 1 (note that for every problem and
for each σ we choose different parameters).

• Choose a positive semidefinite symmetric matrix Y = Z T Z ∈ R
n+1,n+1, depending

on θ, ϑ, κ as follows:
Put Y := θ L + (1 − θ )P , where we define L = (li j )0≤i, j≤n and P = (Pi j )0≤i, j≤n by

(li j )0≤i, j≤n =






1 for i = j

ϑ X0i for i �= 0, j = 0

ϑ X0 j for i = 0, j �= 0

ϑ Xi j or Xi j or ϑ2 Xi j for 1 ≤ i �= j ≤ n

(pi j )0≤i, j≤n =






1 for i = j

κ for i = 0, j �= 0 ∨ i �= 0, j = 0

κ, if κ ≥ 0 or 1 or κ2 for 1 ≤ i �= j ≤ n

We can write the non diagonal elements of Y for 0 ≤ i �= j ≤ n as

Yi j =
{

d1 Xi j + e1, if i = 0 ∨ j = 0

d2 Xi j + e2, otherwise
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with

d1 = θϑ ; (2)

e1 = (1 − θ )κ; (3)

d2 = θϑ, θ, θϑ2; (4)

e2 = (1 − θ )κ (if κ ≥ 0), 1 − θ, (1 − θ )κ2 (5)

Hence: −1 ≤ e1 ≤ 1; 0 ≤ d1, d2, e2 ≤ 1.
(It is easy to show that Y is a positive semidefinite symmetric matrix.)

• We choose ū with ūi ∈ N (0, 1) for i = 0, 1, . . . , n and let u = Zū.
• For i = 1, . . . , n let x̂i = 1, if ui ≥ 0 and −1 otherwise and let S = {i ≥ 1 | x̂i = 1}

(see Bertsimas and Ye, 1998).

3. Linear randomized rounding

• Choose a parameter 0 ≤ ν ≤ 1 (again for every problem and for each σ we choose a
different parameter).

• With probability ν we overrule the choice of S made above, and for each i ∈ V , put
i into S, independently, with probability (1 + Xi0)/2 and into V \S otherwise.

4. Size adjusting

(a) If the problem is symmetric (MAX-k-CUT or MAX-k-UNCUT):
• If k ≤ |S| < n

2 , we remove uniformly at random |S| − k vertices from S.
• If |S| < k, we add uniformly at random k − |S| vertices to S.
• If n

2 ≤ |S| < n − k, we add uniformly at random n − k − |S| vertices to S.
• If |S| ≥ n − k, we remove uniformly at random |S| − n + k vertices from S.

(b) If the problem is not symmetric:

• If |S| ≥ k, we remove uniformly at random |S| − k vertices from S.
• If |S| < k, we add uniformly at random k − |S| vertices to S.

5. Flipping (only for MAX- n
2 -DIRECTED-CUT, MAX- n

2 -DIRECTED-UNCUT,
MAX- n

2 -DENSE-SUBGRAPH and MAX- n
2 -VERTEX-COVER).

If ωa1,a2,a3,a4 (V \S) > ωa1,a2,a3,a4 (S), we output V \S, otherwise S.

3. Computation of the approximation factors

3.1. Main result

The main results are shown in the tables containing the approximation factors for the
different problems. Nevertheless, let us state them also in a formal way:

Theorem 1 (Main Theorem). The expected ratio ωa1,a2,a3,a4 (S)/OPT of the approxima-
tion factors for the problems MAX-k-CUT, MAX-k-UNCUT, MAX-k-DIRECTED-CUT,
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MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-SUBGRAPH and MAX-k-VERTEX-COVER
is bounded from below by the minimum of the solutions of the linear programs in (13). Solv-
ing these linear programs lead to the approximation factors shown in the Tables 6 to 13,

Section 6.

We denote the sets S after the steps 2, 3, 4, 5 of the algorithm by S′, S′′, S′′′, S′′′′ (= S)
and define δ := |S′′|

n . We want to compute � := ωa1 ,a2 ,a3 ,a4 (S)
ω∗ . For x1 ∈ R, x2 ∈ R

+
0 we

consider the function:

y(x1, x2) = ωa1,a2,a3,a4 (S′′)
ω∗ + x1

|S′′|
n

+ x2
|S′′|(n − |S′′|)

n2
.

(The case x2 < 0 could also be considered, but as it does not lead to any progress, we omit
it.) We estimate the expected values of the three terms. This is done in the following main
lemma (proved in Section 4).

Lemma 2 (Main Lemma). For n → ∞ there are constants α, β+, β−, γ with:

(a) E[
ωa1 ,a2 ,a3 ,a4 (S′′)

ω∗ ] ≥ α(θ, ϑ, κ, ν)

(b) E[ |S′′|
n ] ≥ β+(σ, θ, ϑ, κ, ν)

(c) E[ |S′′|
n ] ≤ β−(σ, θ, ϑ, κ, ν)

(d) E[ |S′′|(n−|S′′|)
n2 ] ≥ γ (σ, θ, ϑ, κ, ν)

Remark 3. The variables α, β+, β−, γ implicitly also depend on the parameters d1, e1, d2,
e2 and so on the positive semidefinite symmetric matrix Y , as d1, e1, d2, e2 are functions of
the parameters θ, ϑ, κ (see (2)–(5)).

3.2. Analyzing the function y(x1, x2)

For x1 ≥ 0 define β(σ, θ, ϑ, κ, ν) as β+(σ, θ, ϑ, κ, ν) and otherwise as β−(σ, θ, ϑ, κ, ν).
As we repeat the steps 2 and 3 of the algorithm polynomially often, the function y(x1, x2)
is its expected value, up to a factor of 1 − ε which can be neglected. By Lemma 2 we get:

ωa1,a2,a3,a4 (S′′)
ω∗ + x1

|S′′|
n

+ x2
|S′′|(n − |S′′|)

n2

≥ E

[
ωa1,a2,a3,a4 (S′′)

ω∗

]

+ E

[

x1
|S′′|

n

]

+ E

[

x2
|S′′|(n − |S′′|)

n2

]

≥ α(θ, ϑ, κ, ν) + x1β(σ, θ, ϑ, κ, ν) + x2γ (σ, θ, ϑ, κ, ν)

and so

ωa1,a2,a3,a4 (S′′)
ω∗

≥ α(θ, ϑ, κ, ν) + x1(β(σ, θ, ϑ, κ, ν) − δ) + x2(γ (σ, θ, ϑ, κ, ν) − δ(1 − δ))

=: h(δ, σ, θ, ϑ, κ, ν, x1, x2) (6)
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With λi := ω(S′′
i )

ω∗ for i = 1, 2, 3, 4 we obtain:

a1λ1 + a2λ2 + a3λ3 + a4λ4 = a1ω(S′′
1 ) + a2ω(S′′

2 ) + a3ω(S′′
3 ) + a4ω(S′′

4 )

ω∗

= ωa1,a2,a3,a4 (S′′)
ω∗ ≥ h(δ, σ, θ, ϑ, κ, ν, x1, x2) (7)

So we have by the conditions (e) and (f) of step 1 of the algorithm,

ω(S′′
1 ) + ω(S′′

2 ) + ω(S′′
3 ) + ω(S′′

4 ) = ω(E) =
∑

1≤i �= j≤n

ωi j

≥
∑

1≤i �= j≤n

1

4
ωi j [(a1 + a2 + a3 + a4) + (a1 + a2 − a3 − a4)Xi0

+ (a1 − a2 + a3 − a4)X j0 + (a1 − a2 − a3 + a4)Xi j ] = ω∗

So we have: λ1 + λ2 + λ3 + λ4 ≥ 1 (8)

(a) If the problem is symmetric, we can assume σ ≤ 1
2 w.l.o.g.

Case 1: σ ≤ δ < 1
2 and k ≤ |S′′| ≤ n

2 , respectively.

Each element from S′′ is added to S′′′ with probability p := σ
δ

. Then:









E[ω(S′′′
1 )]

E[ω(S′′′
2 )]

E[ω(S′′′
3 )]

E[ω(S′′′
4 )]









=









p2 0 0 0

p(1 − p) p 0 0

p(1 − p) 0 p 0

(1 − p)2 1 − p 1 − p 1









︸ ︷︷ ︸
M1(p)









ω(S′′
1 )

ω(S′′
2 )

ω(S′′
3 )

ω(S′′
4 )









(9)

Case 2: 0 ≤ δ < σ and 0 ≤ |S′′| < k, respectively.

Similarly to case 1 each element from V \S′′ is added to V \S′′′ with probability q :=
1−σ
1−δ

. Consequently:









E[ω(S′′′
1 )]

E[ω(S′′′
2 )]

E[ω(S′′′
3 )]

E[ω(S′′′
4 )]









=









1 1 − q 1 − q (1 − q)2

0 q 0 q(1 − q)

0 0 q q(1 − q)

0 0 0 q2









︸ ︷︷ ︸
M2(q)









ω(S′′
1 )

ω(S′′
2 )

ω(S′′
3 )

ω(S′′
4 )









(10)

Case 3: 1
2 ≤ δ < 1 − σ and n

2 ≤ |S′′| < n − k, respectively.

Each element from V \S′′ is added to V \S′′′ with probability r := σ
1−δ

. We get the same
condition as in case 2 with r instead of q.
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Case 4: 1 − σ ≤ δ ≤ 1 and n − k ≤ |S′′| ≤ n, respectively.

Each element from S′′ is added to S′′′ with probability s := 1−σ
δ

. We get the same
condition as in case 1 with s instead of p.

(b) If the problem is not symmetric, the cases 3 and 4 are omitted, and the condition of
case 1 is replaced by σ ≤ δ ≤ 1 and k ≤ |S′′| ≤ n, respectively.

With M(δ, σ ) :=






M1

(
σ

δ

)

, if σ ≤ δ <
1

2

M2

(
1 − σ

1 − δ

)

, if 0 ≤ δ < σ in the symmetric case

M2

(
σ

1 − δ

)

, if
1

2
≤ δ < 1 − σ

M1

(
1 − σ

δ

)

, if 1 − σ ≤ δ ≤ 1

and

M(δ, σ ) :=






M1

(σ

δ

)
, if σ ≤ δ ≤ 1

M2

(
1 − σ

1 − δ

)

, if 0 ≤ δ < σ

in the asymmetric case we obtain:

E
[ωa1,a2,a3,a4(S′′′)

ω∗
]

= a1 E[ω(S′′′
1 )] + a2 E[ω(S′′′

2 )] + a3 E[ω(S′′′
3 )] + a4 E[ω(S′′′

4 )]

ω∗

= (a1 a2 a3 a4) · M(δ, σ ) · (λ1 λ2 λ3 λ4)T (11)

=: fa1,a2,a3,a4 (δ, σ, λ1, λ2, λ3, λ4) (12)

As λi ≥ 0 holds for i = 1, 2, 3, 4, we get with (7) and (8):
The expected approximation factor of Algorithm Graph Partitioning is:

min
0≤δ≤1



















min z
s.t.

a1λ1 + a2λ2 + a3λ3 + a4λ4 ≥ h(δ, σ, θ, ϑ, κ, ν, x1, x2)

λ1 + λ2 + λ3 + λ4 ≥ 1

0 ≤ λ1, λ2, λ3, λ4

z ≥ fa1,a2,a3,a4 (δ, σ, λ1, λ2, λ3, λ4)

[for MAX- n
2 -DC, MAX- n

2 -DU, MAX- n
2 -DS, MAX- n

2 -VC:

z ≥ fa4,a3,a2,a1 (δ, σ, λ1, λ2, λ3, λ4)]



















(13)
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Note that for fixed δ, σ and constants θ, ϑ, κ, ν, x1, x2 the last inner minimization problem
is a linear program in the variables z, λ1, λ2, λ3, λ4.

4. Proof of main Lemma 2

4.1. Lemma 2, Part (a)

Define

ca1,a2,a3,a4 (θ, ϑ, κ, ν, x, y, z)

:= (a1 + a2 + a3 + a4) + (a1 + a2 − a3 − a4)

(

νx + (1 − ν)
2

π
arcsin(d1x + e1)

)

+ (a1 − a2 + a3 − a4)

(

νy + (1 − ν)
2

π
arcsin(d1 y + e1)

)

+ (a1 − a2 − a3 + a4)

(

νxy + (1 − ν)
2

π
arcsin(d2z + e2)

)

da1,a2,a3,a4 (x, y, z) := (a1 + a2 + a3 + a4) + (a1 + a2 − a3 − a4)x

+ (a1 − a2 + a3 − a4)y + (a1 − a2 − a3 + a4)z

with (x, y, z) = (Xi0, X j0, Xi j ) for 1 ≤ i �= j ≤ n.
Further we define:

α(θ, ϑ, κ, ν) := min
x,y,z;d>0

ca1,a2,a3,a4 (θ, ϑ, κ, ν, x, y, z)

da1,a2,a3,a4 (x, y, z)
∈ R

+
0

subject to the constraints (x, y, z) = (Xi0, X j0, Xi j for 1 ≤ i �= j ≤ n.
The proof of (a) is the same as in Halperin and Zwick (2002), using a slightly different

notation and the more general class of positive semidefinite matrices.

4.2. Two auxiliary lemmas

The following lemma, which is also used in Halperin and Zwick (2002), follows straight-
forward from the definitions of concave and convex.

Lemma 4. Let f : [a, b] → R be convex and concave, respectively. It holds for x ≤ x ′ ≤
y′ ≤ y and x, y ∈ [a, b] with x + y = x ′ + y′:

f (x ′) + f (y′) ≤ f (x) + f (y) and f (x) + f (y) ≤ f (x ′) + f (y′), respectively.

Lemma 5. Let (d, e) = (d1, e1) or (d, e) = (d2, e2). It holds for g1(x) := arcsin(dx + e)
and g2(x) := arccos(dx + e):

(a) g1(x) and g2(x) are defined in [−1, 1].
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(b) If − e
d ≤ −1, g1(x) is convex in [−1, 1].

If −1 < − e
d < 1, g1(x) is concave in [−1, − e

d ] and convex in [− e
d , 1].

If − e
d ≥ 1, g1(x) is concave in [−1, 1].

(c) If − e
d ≤ −1, g2(x) is concave in [−1, 1].

If −1 < − e
d < 1, g2(x) is convex in [−1, − e

d ] and concave in [− e
d , 1].

If − e
d ≥ 1, g2(x) is convex in [−1, 1].

Proof:

(a) From the definition of d1, e1, d2, e2 it follows for x ∈ [−1, 1] : −1 ≤ dx + e ≤ 1.
(b) We have:

g′
1(x) = d

√
1 − (dx + e)2

= d · (1 − (dx + e)2)−
1
2

g′′
1 (x) = 1

2
d · (2d2x + 2de) · (1 − (dx + e)2)−

3
2

= d2 · (dx + e) · (1 − (dx + e)2)−
3
2 = d2 · (dx + e)

√
1 − (dx + e)2

3

The assertion follows, as g1 is convex in x , if and only if g′′
1 (x) ≥ 0 and is concave in

x , if and only if g′′
1 (x) ≤ 0.

(c) Follows from b) with g′
2(x) = −g′

1(x).

4.3. Lemma 2, Parts (b) and (c)

Lemma 6. For n → ∞ it holds:

(a)

E

[ |S′′|
n

]

= (1 − ν)E

[ |S′|
n

]

+ νσ

(b) If d1 = 0, we have: E[ |S′|
n ] = 1

2 + 1
π

arcsin(e1).

Let d1 > 0. It holds for g1(x) := arcsin(d1x + e1):

(c)

E

[ |S′|
n

]

≥ 1

2
+ 1

π
min

q ′∈[− e1
d1

,1]

((

− 2σ

q ′ + 1
+ 1

)

· g1(−1)

+
(

2σ

q ′ + 1

)

· g1(q ′)
)

, if − 1 < − e1

d1
< 1
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(d)

E

[ |S′|
n

]

≤






1

2
+ 1

π
max

q ′∈[−1,− e1
d1

]

(
2σ − 2

q ′ − 1
· g1(q ′) +

(

1 − 2σ − 2

q ′ − 1

)

· g1(1)

)

,

if − 1 < − e1

d1
< 1

1

2
+ 1

π
· g1(2σ − 1), if − e1

d1
≥ 1

We could show a lower bound in c) also for − e1
d1

≤ −1 and − e1
d1

≥ 1 and an upper bound
in d) also for − e1

d1
≤ −1, but since these cases do not lead to any progress, we omit them.

Define β+(σ, θ, ϑ, κ, ν) as the lower bound on E[ |S′′|
n ] resulting from Lemma 6 (a), (b),

(c) and define β−(σ, θ, ϑ, κ, ν) as the upper bound on E[ |S′′|
n ] resulting from Lemma 6 (a),

(b), and (d).

Proof:

(a) For 1 ≤ i ≤ n let Pr(i) be the probability of putting i into S in step 3 of the algorithm
(Linear Randomized Rounding). Then,

E

[ |S′′|
n

]

= (1 − ν)E

[ |S′|
n

]

+ ν
1

n

n∑

i=1

Pr(i)

= (1 − ν)E

[ |S′|
n

]

+ ν
1

n

n∑

i=1

1 + Xi0

2

= (1 − ν)E

[ |S′|
n

]

+ νσ

(b), (c), and (d) Let d1 be arbitrary. Using the new positive semidefinite matrices, we
can show as by Halperin and Zwick (2002):

E

[ |S′|
n

]

= 1

n

n∑

i=1

(
1

2
+ 1

π
g1(Xi0)

)

= 1

2
+ 1

πn

n∑

i=1

g1(Xi0)

(b) follows immediately from d1 = 0.
(c) Let −1 < − e1

d1
< 1.

By Lemma 5 b) g1(x) is concave in [−1, − e1
d1

] and convex in [− e1
d1

, 1].
Let Xi0, X j0 be in the interval [−1, − e1

d1
] with Xi0 ≤ X j0. So, Xi0 = −1 or X j0 = − e1

d1
,

since otherwise, by Lemma 4 we could decrease the above sum by moving Xi0 and X j0

further apart. So there can only be one summand Xi0 in the interval [−1, − e1
d1

] with
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Xi0 �= −1 and Xi0 �= − e1
d1

. As each summand makes only a difference of O( 1
n ), we can

neglect it.
Let Xi0 and X j0 be in the interval [− e1

d1
, 1] with Xi0 ≤ X j0. So we have Xi0 = X j0,

since otherwise, by Lemma 4 we could decrease the above sum by moving Xi0 and X j0

closer together. So all summands Xi0 in the interval [− e1
d1

, 1] are equal. So we can find
a p ∈ [0, 1] and a q ∈ [− e1

d1
, 1] with

E

[ |S′|
n

]

≥ 1

2
+ 1

πn
(p · n · g1(−1) + (1 − p) · n · g1(q))

= 1

2
+ 1

π
(p · g1(−1) + (1 − p) · g1(q)). (14)

With the above notation we obtain from a) of step 1 of the algorithm:

−p · n + (1 − p) · n · q = 2k − n

which is equivalent to

p = − 2σ

q + 1
+ 1.

Using (14) we see that there is a q ∈ [− e1
d1

, 1] with:

E

[ |S′|
n

]

≥ 1

2
+ 1

π

((

− 2σ

q + 1
+ 1

)

· g1(−1) +
(

2σ

q + 1

)

· g1(q)

)

≥ 1

2
+ 1

π
min

q ′∈[− e1
d1

,1]

((

− 2σ

q ′ + 1
+ 1

)

· g1(−1)

+
(

2σ

q ′ + 1

)

· g1(q ′)
)

(d) Case 1: −1 < − e1
d1

< 1.

Let Xi0, X j0 be in the interval [− e1
d1

, 1] with Xi0 ≤ X j0. By arguing as above we obtain:
Xi0 = − e1

d1
or X j0 = 1. Let Xi0 and X j0 be in the interval [−1, − e1

d1
] with Xi0 ≤ X j0.

We obtain Xi0 = X j0 and so we can find a p ∈ [0, 1] and a q ∈ [−1, − e1
d1

] with

E

[ |S′|
n

]

≤ 1

2
+ 1

π
(p · g1(q) + (1 − p) · g1(1)) (15)
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Hence:

p · n · q + (1 − p) · n = 2k − n

which is equivalent to

p = 2σ − 2

q − 1
.

With (15) it follows for a q ∈ [−1, − e1
d1

]:

E

[ |S′|
n

]

≤ 1

2
+ 1

π

(
2σ − 2

q − 1
· g1(q) +

(

1 − 2σ − 2

q − 1

)

· g1(1)

)

≤ 1

2
+ 1

π
max

q ′∈[−1,− e1
d1

]

(
2σ − 2

q ′ − 1
· g1(q ′) +

(

1 − 2σ − 2

q ′ − 1

)

· g1(1)

)

Case 2: − e1
d1

≥ 1.

From Lemma 5 b) g1(x) is concave in [−1, 1].
If Xi0 and X j0 are in the interval [−1, 1] with Xi0 ≤ X j0, then Xi0 = X j0. So there is
a q ∈ [−1, 1] with

E

[ |S′|
n

]

≤ 1

2
+ 1

π
g1(g). (16)

We have n · q = 2k − n and so q = 2σ − 1. By (16), we get:

E

[ |S′|
n

]

≤ 1

2
+ 1

π
g1(2σ − 1)

4.4. Lemma 2, Part (d)

Lemma 7. For n → ∞ we have:

(a)

E

[ |S′′|(n − |S′′|)
n2

]

= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ νσ (1 − σ )

(b) If d2 = 0, we have: E[ |S′|(n−|S′|)
n2 ] = 1

2π
arccos(e2).
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(c) Let d2 > 0. Then for g2(x) := arccos(d2x + e2),

E

[ |S′|(n − |S′|)
n2

]

≥






1

2π
((−2σ 2 + 2σ) · g2(−1) + (1 + 2σ 2 − 2σ) · g2(1)), if − e2

d2
≤ −1

1

2π
min

q ′∈[−1,− e2
d2

]

{
4σ 2 − 4σ

q ′ − 1
· g2(q ′) +

(

1 − 4σ 2 − 4σ

q ′ − 1

)

· g2(1)

}

if − e2
d2

> −1

(d) Let σ = 1
2 and k = n

2 , respectively and e2 = 0. If

min
x∈[− 1

3 ,0]

{

4g2(x) − 3g2

(
4x − 1

3

)

− g2(1)

}

≥ 0 (17)

we have:

E

[ |S′|(n − |S′|)
n2

]

≥ 1

4π
min

x∈[−1,− 1
3 ]

{

g2(x) + 3x + 3

4
· g2

(

−1

3

)

+ 1 − 3x

4
· g2(1)

}

Define γ (σ, θ, ϑ, κ, ν) as the lower bound on E[ |S′′|(n−|S′′|)
n2 ] resulting from Lemma 7.

Proof: (a) With the same notation as in the proof of Lemma 6(a),

E

[ |S′′|(n − |S′′|)
n2

]

= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ ν
1

n2

∑

1≤i �= j≤n

Pr(i) · (1 − Pr( j))

= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ ν
1

n2

∑

1≤i �= j≤n

1 + Xi0

2
· 1 − X j0

2

= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ ν
1

n2

n∑

i=1

1 + Xi0

2
·
∑

j �=i

1 − X j0

2

≥ (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ ν
1

n2

(
n

2
+ 2k − n

2

)

·
(

n∑

j=1

1 − X j0

2
− 1

)

= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ νσ
1

n
· (n − k − 1)

n→∞= (1 − ν)E

[ |S′|(n − |S′|)
n2

]

+ νσ (1 − σ )
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(b), (c), and (d) Let d2 be arbitrary. Using the new positive semidefinite matrices, we can
show as in [11]:

E

[ |S′|(n − |S′|)
n2

]

= 1

πn2

∑

1≤i< j≤n

g2(Xi j )

(b) follows immediately from d2 = 0 and n → ∞.

(c) Case 1: − e2
d2

≤ −1.

By Lemma 5(c) g2(x) is concave in [−1, 1].
Let Xi j , Xst be in the interval [−1, 1] with Xi j ≤ Xst . Analogously, we obtain Xi j = −1

or Xst = 1. So there is a p ∈ [0, 1] with

E

[ |S′|(n − |S′|)
n2

]

≥ 1

2π

(

1 − 1

n

)

(p · g2(−1 + (1 − p) · g2(1)) (18)

With the above notation it follows from (g) of step 1 of the algorithm:

−p · n2 − n

2
+ (1 − p) · n2 − n

2
= 1

2
((2k − n)2 − n)

which is equivalent to

1 − 2p = 4k2 + n2 − 4kn − n

n2 − n

and to

p = −4kσ + 4k

2(n − 1)
=n→∞ − 2σ 2 + 2σ

With (18) we obtain for n → ∞:

E

[ |S′|(n − |S′|)
n2

]

≥ 1

2π
((−2σ 2 + 2σ ) · g2(−1) + (1 + 2σ 2 − 2σ ) · g2(1))

Case 2: − e2
d2

> −1.

Because of − e2
d2

≤ 0 and Lemma 5(c) g2(x) is convex in [−1, − e2
d2

] and concave in
[− e2

d2
, 1].

If Xi j , Xst are in the interval [− e2
d2

, 1] with Xi j ≤ Xst , we have Xi j = − e2
d2

or Xst = 1.
If Xi j and Xst are in the interval [−1, − e2

d2
] with Xi j ≤ Xst , we conclude Xi j = Xst . So we

can find a p ∈ [0, 1] and a q ∈ [−1, − e2
d2

] with:

E

[ |S′|(n − |S′|)
n2

]

≥ 1

πn2

(

p · n2 − n

2
· g2(q) + (1 − p) · n2 − n

2
· g2(1)

)

= 1

2π

(

1 − 1

n

)

(p · g2(q) + (1 − p) · g2(1)) (19)
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With the above notation (g) of step 1 of the algorithm gives:

p · n2 − n

2
· q + (1 − p) · n2 − n

2
= 1

2
((2k − n)2 − n)

⇔ p · q + (1 − p) = (2k − n)2 − n

n2 − n

⇔ p · (q − 1) = 4k2 + n2 − 4kn − n

n2 − n
− 1

⇔ p = 4kσ − 4k

(n − 1)(q − 1)

n→∞⇒ p = 4σ 2 − 4σ

q − 1

With (19) and n → ∞ there is a q ∈ [−1, − e2
d2

] with:

E

[ |S′|(n − |S′|)
n2

]

≥ 1

2π

(
4σ 2 − 4σ

q − 1
· g2(q) +

(

1 − 4σ 2 − 4σ

q − 1

)

· g2(1)

)

≥ 1

2π
min

q ′∈[−1,− e2
d2

]

(
4σ 2 − 4σ

q ′ − 1
· g2(q ′) +

(

1 − 4σ 2 − 4σ

q ′ − 1

)

· g2(1)

)

(d) The claim has been shown by Halperin and Zwick (2002), under the assumption
that (17) is true for all d2 ≥ 0 (compare footnotes 2 and 3 in Section 6). For the reader’s
convenience, we sketch their proof:

Define

A :=
{

(i, j) | Xi j < −1

3
, 1 ≤ i < j ≤ n

}

B :=
{

(i, j) | −1

3
≤ Xi j < 0, 1 ≤ i < j ≤ n

}

C :=
{

(i, j) | 0 ≤ Xi j , 1 ≤ i < j ≤ n

}

Because of condition (e) of step 1 of the algorithm, the graph G ′ = (V,A) is triangle-free.
By a theorem of Turán (1941), a triangle-free graph with n vertices has at most n2

4 edges.

Thus, |A| ≤ n2

4 .
Because of e2 = 0, g2(x) is convex in [−1, 0] and concave in [0, 1].
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Using the convexity condition of g2(x), it is easy to show that there are p1 := |A|, p2 :=
|B|, p3 := |C| ∈ [0, n2−n

2 ] with

p1 + p2 + p3 = n2 − n

2
(20)

and q1 ∈ [−1, − 1
3 ), q2 ∈ [− 1

3 , 0] with

E

[ |S′|(n − |S′|)
n2

]

≥ 1

πn2
(p1 · g2(q1) + p2 · g2(q2) + p3 · g2(1)) (21)

Clearly, it holds |A ∪ B| ≥ n2

4 . If |A| < n2

4 , we could replace the four points q2, q2, q2, q2

of B by the points 4q2−1
3 ,

4q2−1
3 ,

4q2−1
3 of A and the point 1 of C, using (17). For n → ∞, it

follows

|A| = n2

4
(22)

Using again the convexity condition of g2(x), we get

q2 = −1

3
(23)

With (20), (22), (23) it follows from condition (g) of step 1 of the algorithm:

(I) n2

4 · q1 − p2 · 1
3 + p3 · 1 = − n

2

(II) n2

4 + p2 + p3 = n2−n
2

Solving these linear equalities for constant q1, we conclude:

p2 = 3

16
n2 + 3

16
n2 · q1

p3 = 1

16
n2 − 3

16
n2 · q1 − n

2

With (21), we have:

E

[ |S′|(n − |S′|)
n2

]

≥ 1

πn2
min

x∈[−1, 1
3 ]

{
n2

4
g2(x) +

(
3

16
n2 + 3

16
n2 · x

)

g2

(

−1

3

)
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+
(

1

16
n2 − 3

16
n2 · x − n

2

)

g2(1)

}

n→∞= 1

4π
min

x∈[−1,− 1
3 ]

{

g2(x) + 3x + 3

4
g2

(

−1

3

)

+ 1 − 3x

4
g2(1)

}

5. Maximization of the approximation factors via optimization of the parameters

5.1. The optimization algorithm

We demonstrate our method in this section and also in Section 5.2 for MAX-k-CUT, MAX-
k-UNCUT for all σ , and for MAX-k-DIRECTED-CUT, MAX-k-DIRECTED-UNCUT,
MAX-k-DENSE-SUBGRAPH and MAX-k-VERTEX-COVER for σ �= 1

2 . The other cases
are considered in Section 5.3. In the following let us consider σ as fixed.

The expected approximation factor for the general maximization problem (1) is z, where
z = z(δ, σ, θ, ϑ, κ, ν, x1, x2) is a function depending on the parameters δ ∈ [0, 1], σ ∈
(0, 1), θ, ϑ, ν ∈ [0, 1], κ ∈ [−1, 1], x1 ∈ R, x2 ∈ R

+
0 in a complicated way (see (13)). A

polynomial-time algorithm for an optimal choice of all parameters in (13) is not known.
Thus we choose a hierarchical approach as follows.

1. Fixing the right-hand side.
Let �0 be the previously best known approximation factor for the problem in the literature
(Halperin and Zwick, 2002; Han et al., 2002; Feige and Langberg, 2001) and put � :=
�0 + k · 0.0001 for k = 0, 1, . . .. We would like to prove

z ≥ � (24)

for a k as large as possible.
2. The linear program LP(�).

For the moment let us fix the parameters θ, ϑ, κ, ν and consider them as constants. Let h =
h(δ, σ, θ, v, κ, ν, x1, x2) be the function defined in (6). In Section 5.2, Proposition 10,
we will prove that z is a piecewise linear function in h:

z =






ω · h, if h ≥ 1

v · (1 − h) + ω · h, if 0 ≤ h < 1

v, if h < 0

(25)

where v and ω are constants depending on δ.
Since h is a linear function in x1 and x2 due to (6), we may write:

h(x1, x2) = f1(δ)x1 + f2(δ)x2 + f3 (26)
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suppressing the dependence of h on θ, ϑ, κ, ν, writing h(x1, x2) instead of h(δ, σ, θ, ϑ,

κ, ν, x1, x2) and putting the dependence of h on δ into the coefficients f1(δ) and f2(δ).
Since by (25), z is only piecewise linear in h, (24) is not a linear equality in h. But in

Proposition 10 we can show that (24) is equivalent to the inequality

h ≥ min

{
�

ω
,

� − v

ω − v

}

resp. h ≥ max
{ �

ω
, 1

}
(27)

Clearly, this is a linear inequality in x1 and x2.
Still, the dependence on δ is an obstacle. We choose a discretization of [0, 1] for the
δ’s, i.e. define � := {k · 1

10l , k = 0, 1, · · · , 10l} for l ∈ N as large as possible (we will
choose l = 4). The inequalities in (27) for all δ ∈ � form a finite linear program in the
variables x1 and x2 which we denote by LP(�).

3. Discretization of the other parameters.
Whether LP(�) is solvable or not depends on the choice of the parameters θ, ϑ, κ, ν. We
discretize the ranges of their parameters in finitely many points. For θ, ϑ, ν ∈ [0, 1], κ ∈
[−1, 1] we take the discretization of both intervals with step size 1

10 (for some cases we
try even the finer discretization with step size 1

100 ). We consider all possible values of
θ, ϑ, κ, ν in this discretization and denote it by the parameter set P . These are about
250,000 possibilities.

The algorithm for finding a good � is the following.

Algorithm Parameter Set

1. Choose � as the best previously known approximation factor �0.
2. Choose θ, ϑ, κ, ν from the parameter set P .
3. Given �, solve LP(�) by the simplex algorithm using CPLEX.
4. a) If LP(�) is solvable, increase � by 0.0001 and goto 3.

b) If LP(�) is not solvable and if not all parameters are tested, goto 2.
5. Output �.

Remark 8. The quality of the approximation depends on the simultaneous optimization
of all parameters θ, ϑ, ν, κ, x1, x2. But it is not clear at all how to do this. Thus we have
chosen a hierarchical way, where we optimize θ, ϑ, ν, κ in a preprocessing step and then
focus on the mathematical optimization of the x1, x2. The main advantage of focusing on
the optimization of the parameters x1, x2 is that x1, x2 live in a large range, i.e. x1 ∈ R and
x2 ∈ R

+
0 , while θ, ϑ, ν, κ are only in the relatively small ranges [−1, 1] and [0, 1].

Remark 9. In Section 5.1 we find a good set of parameters θ, ϑ, κ, ν, x1, x2. This step in-
volves the solution of a linear program in the variables x1 and x2. The number of inequalities
of this linear program which we denote by LP(�) is given by a suitable discretization � of
the parameter δ in the interval [0, 1]. The careful reader might note that in the algorithm we
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test whether or not the claimed approximation factor is valid on only a discrete subset from
[0, 1] for the δ’s. This is not a proof, even if we choose a very fine discretization, as the
approximation factor given by (13) is the minimum over the whole range [0, 1] (although in
all our examples this discretization seems to be enough). But in Section 5.4 we show how
to verify for these fixed parameters θ, ϑ, κ, ν, x1, x2 the claimed approximation factors by
solving (13). Note that this verification step and so the correctness of our approximation
factors do not depend on the above discretization.

5.2. The linear program

In this section we derive the linear program LP(�) introduced in Section 5.1. For the
problems considered in Section 5.1, the flipping step in the Algorithm Graph Partitioning
can be omitted. Thus for a fixed δ the minimization problem in (13) has the following form:











min fa1,a2,a3,a4 (λ1, λ2, λ3, λ4) (= z)

s.t.

a1λ1 + a2λ2 + a3λ3 + a4λ4 ≥ h(δ, σ, θ, ϑ, κ, ν, x1, x2)

λ1 + λ2 + λ3 + λ4 ≥ 1

0 ≤ λ1, λ2, λ3, λ4











(28)

where

fa1,a2,a3,a4 (λ1, λ2, λ3, λ4) = b1λ1 + b2λ2 + b3λ3 + b4λ4

with suitable b1, b2, b3, b4. Before we proceed to solve (28), we have to compute the b1,
b2, b3, b4 for the different problems. We will also need the following numbers v, ω. Define

I := {1, 2, 3, 4}, I ′
a1,a2,a3,a4

:= {i ∈ I | ai = 1}
(29)

v := min
l∈I

{bl}, w := min
l∈I ′

a1 ,a2 ,a3 ,a4

{bl}

Furthermore put p := σ
δ
, q := 1−σ

1−δ
, r := σ

1−δ
, s := 1−σ

δ
as in the cases 1–4 of

Section 3.2.
In Tables 3–5 we give the values for (b1, b2, b3, b4) and v, ω for all δ. Note that according to

(11) and (12), (b1, b2, b3, b4) is given by the vector (a1, a2, a3, a4) · M(δ, σ ), where M(δ, σ )
is the matrix defined in (9) and (10). Having computed the b1, b2, b3, b4, it is straightforward
to compute v and ω. Note that we only have to consider 0 < σ ≤ 1

2 in the cases MAX-
k-CUT, MAX-k-UNCUT, MAX-k-DIRECTED-CUT and MAX-k-DIRECTED-UNCUT,
because the approximation factors for σ are the same as for 1 − σ and that the following
tables cover all problems, including those of Section 5.3.

For MAX-k-UNCUT we have:
For σ ≤ δ < 1

2 it holds v = 1 + 2p2 − 2p, if 0 ≤ σ ≤ 1
4 , 2σ ≤ δ < 1

2 and
v = 1 − p otherwise. Analogously, for 1

2 ≤ δ < 1 − σ it holds v = 1 + 2r2 − 2r , if
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Table 3. b1, b2, b3, b4 and v, w for the asymmetric problems.

Case σ ≤ δ ≤ 1 0 ≤ δ < σ

(b1, b2, b3, b4) (b1, b2, b3, b4)
(v, ω) (v, ω)

MAX-k-DS (p2, 0, 0, 0) (1, 1 − q, 1 − q, (1 − q)2)
(0, p2) ((1 − q)2, 1)

MAX-k-VC (2p − p2, p, p, 0) (1, 1, 1, 1 − q2)
(0, p) (1 − q2, 1)

MAX-k-DC (p − p2, p, 0, 0) (0, q, 0, q − q2)
(0, p) (0, q)

MAX-k-DU (1 + p2 − p, 1 − p, 1, 1) (1, 1 − q, 1, 1 + q2 − q)
(1 − p, 1 + p2 − p) (1 − q, 1 + q2 − q)

Table 4. b1, b2, b3, b4 and v, w for the symmetric problems, δ < 1
2 .

Case σ ≤ δ ≤ 1
2 0 ≤ δ < σ

(b1, b2, b3, b4) (b1, b2, b3, b4)
(v, ω) (v, ω)

MAX-k-CUT (2p − 2p2, p, p, 0) (0, q, q, 2q − 2q2)
(0, p) 0, q

MAX-k-UNCUT (1 + 2p2 − 2p, 1 − p, 1 − p, 1) (1, 1 − q, 1 − q, 1 + 2q2 − 2q)
(1 − p/1 + 2p2 − 2p, 1 + 2p2 − 2p) (1 − q, 1 + 2q2 − 2q)

Table 5. b1, b2, b3, b4 and v, w for the symmetric problems, δ ≥ 1
2 .

Case 1
2 ≤ δ < 1 − σ 1 − σ ≤ δ ≤ 1

(b1, b2, b3, b4) (b1, b2, b3, b4)
(v, ω) (v, ω)

MAX-k-CUT (0, r, r, 2r − 2r2) (2s − 2s2, s, s, 0)
(0, r ) (0, s)

MAX-k-UNCUT (1, 1 − r, 1 − r, 1 + 2r2 − 2r ) (1 + 2s2 − 2s, 1 − s, 1 − s, 1)
(1 − r/1 + 2r2 − 2r, 1 + 2r2 − 2r ) (1 − s, 1 + 2s2 − 2s)

0 ≤ σ ≤ 1
4 , 1

2 ≤ δ ≤ 1 − 2σ and v = 1 − r otherwise. Furthermore:

v = w ⇔
(

σ = 1

2
∧ (δ = 0 ∨ δ = 1)

)

∨
(

0 ≤ σ ≤ 1

4
∧ 2σ ≤ δ ≤ 1 − 2σ

)

Before we start with the calculations, let us state the results in a formal way.
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Proposition 10. For all problems except MAX- n
2 -DIRECTED-CUT, MAX- n

2 -DIRECTED-
UNCUT, MAX- n

2 -DENSE-SUBGRAPH, MAX- n
2 -VERTEX-COVER we have:

(a) z =






ω · h, if h ≥ 1

v · (1 − h) + ω · h, if 0 ≤ h < 1

v, if h < 0

(30)

(b) For v = ω, (24) is equivalent to

h ≥ max
{ �

ω
, 1

}
(31)

(c) For v �= ω, (24) is equivalent to

h ≥ min

{
�

ω
,

� − v

ω − v

}

(32)

Proof: (a)

Case 1: h ≥ 1
In this case, the second inequality λ1 + λ2 + λ3 + λ4 ≥ 1 of (28) is always true, thus
redundant. Let i0 be the index with bi0 = ω. Then we put λio = h, λi = 0, i �= i0. It is
easily checked that the minimum of (28) is attained for this choice of the λ1, λ2, λ3, λ4.
So we have z = ω · h.

Case 2: 0 ≤ h < 1
Case 2.1: v = ω

Let i0 be the index with bi0 = v = ω. Then λio = 1, λi = 0, i �= i0 gives a minimum
for (28). So we have z = v = v · (1 − h) + ω · h.
Case 2.2: v �= ω

Let i0 be the index with bi0 = v and i1 be the index with bi1 = ω. Now λi0 = 1−h, λi1 =
h, λi = 0, i �= i0, i1 gives a minimum for (28). Again we have z = v · (1 − h) + ω · h.

Case 3: h < 0
Because of λ1, λ2, λ3, λ4 ≥ 0 the first inequality a1λ1 + a2λ2 + a3λ3 + a4λ4 ≥ h is
redundant. Let i0 be the index with bi0 = v. Again we put λi0 = 1, λi = 0, i �= i0 and
obtain z = v.

(b) Let v = ω. One can check that v < �0 ≤ �. Thus we can omit the second inequality
v · (1 − h) + ω · h = v ≥ � and the third inequality v ≥ � of (30). Obviously, the first
inequality (z = h · ω ≥ �) ∧ (h ≥ 1) is equivalent to (31).

(c) Let v �= ω. As in b), the third inequality in (30) can be omitted. It remains to show

(w · h ≥ �) ∧ (h ≥ 1) ∨ (v · (1 − h) + w · h ≥ �) ∧ (0 ≤ h < 1) (33)

is equivalent to (32). It is easy to show that (33) is equivalent to
(

h ≥ �

ω

)

∧ (h ≥ 1) ∨
(

h ≥ � − v

ω − v

)

∧ (0 ≤ h < 1) (34)
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We prove the equivalence of (34) and (32).
“⇒” Trivial.
“⇐” It holds:

�

ω
≤ � − v

ω − v
⇔ � ≥ ω (35)

(i) Let h ≥ �

ω
, i.e. �

ω
≤ �−v

ω−v
.

It follows from �, ω > 0 that h ≥ 0. From (35) it follows h ≥ �

ω
≥ 1.

(ii) Let h ≥ �−v

ω−v
, i.e. �−v

ω−v
≤ �

ω
.

It follows from � > v and ω > v that h ≥ 0.
In the case h ≥ 1, it holds h ≥ 1 ≥ �

ω
because of (35).

The case 0 ≤ h < 1 is trivial.
With Proposition 10 (b) and (c) we have defined the relevant inequality for h, and ac-

cording to Section 5.1, the discretization of the δ’s defines the linear program LP(�).

5.3. The other cases

Following the argumentation from Section 5.2, we can derive similar expressions for z
for the remaining maximization problems, leading to inequalities for h and finally the
corresponding LP(�). Since these calculations are technical variations of the argumentation
in Section 5.1, we omit the details and list only the inequalities for h.

(1) MAX- n
2 -DIRECTED-CUT: If δ ≥ σ : h ≥ �

p

If δ < σ : h ≥ �

q

(2) MAX- n
2 -DIRECTED-UNCUT:

If δ ≥ σ : h ≥






�

1 + p2 − p
, if � ≥ 1 + p2 − p

� + p2 − 1

2p2 − p
, if � < 1 + p2 − p

If δ < σ : h ≥






�

1 + q2 − q
, if � ≥ 1 + q2 − q

� + q2 − 1

2q2 − q
, if � < 1 + q2 − q
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(3) MAX- n
2 -DENSE-SUBGRAPH: If δ ≥ σ : h ≥ �

p2

If δ < σ : h ≥ � − (1 − q)2

2q − q2

(4) MAX- n
2 -VERTEX-COVER:

If δ ≥ σ : h ≥






�

1 + p2 − p
, if � ≥ 1 + p2 − p

� + p − 1

p2
, if � < 1 + p2 − p

If δ < σ : h ≥ � + q2 − 1

q2

5.4. Verification of the approximation factors

The approximation factor (13) of Algorithm Graph Partitioning is a minimum over the
interval [0, 1]. If we use only a finite discretization of this interval, for example � :=
{k · 1

10l , k = 0, 1, . . . , 10l} with l = 4, the computed approximation factor might be
inaccurate.

For obtaining good parameters x1 and x2 in Section 5.1, this finite discretization is no
problem. But for correctness, we have to verify that the parameter setting really gives the
claimed approximation factor.

So let the problem parameter σ , the parameters θ, ϑ, κ, ν, x1, x2,, and the claimed ap-
proximation factor � be constant. Proposition 10 and the cases (1)–(4) of Section 5.3,
respectively, give inequalities which are equivalent to the claim that the approximation
factor is at least �.

In the following we demonstrate the correctness proof of the approximation factors, in
particular, how to find the minimum of (13) for two of our examples (the proof of the other
196 examples is very similar). In fact, we prove that the inequalities can be verified as they
lead to a system of inequalities for polynomials of degree at most 4. For the corresponding
parameters we refer to Section 6.

Example 1. MAX-k-DENSE-SUBGRAPH with σ = 0.6.

Parameters: � = 0.6753, θ = 0.9, ϑ = 1, κ = 0.2, ν = 0.2, case 3 of (5), x1 = 0,
x2 = 6.39.

We calculate α = 0.7678, β := 0.5648, γ := 0.2338.

From Table 3 we get v = 0, ω = ( σ
δ

)2 for δ ∈ [σ, 1] and v = (1 − 1−σ
1−δ

)2, ω = 1 for
δ ∈ [0, σ ].
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We have (see (6))

h(δ) = α + x1(β − δ) + x2(γ + δ2 − δ)

Then (32) is equivalent to

h1(δ) := hω ≥ � ∨ h2(δ) := h(ω − v) + v ≥ � (36)

where for v = 0 the two inequalities are the same.
So altogether we have to show the correctness of the following inequalities:

(α + x1(β − δ) + x2(γ + δ2 − δ))

(
σ

δ

)2

≥ � for δ ∈ [σ, 1] (37)

α + x1(β − δ) + x2(γ + δ2 − δ) ≥ � (38)

∨(α + x1(β − δ) + x2(γ + δ2 − δ))

(

1 −
(

1 − 1 − σ

1 − δ

)2
)

+
(

1 − 1 − σ

1 − δ

)2
≥ �

for δ ∈ [0, σ ] (39)

If this system of inequalities is valid (for the given range of δ), then by Proposition 10(c)
this is equivalent to the fact that the expected approximation factor in (13) is at least �.

All three inequalities can be transformed to polynomial inequalities of degree at most 4
(this holds even for all 198 cases). Using MAPLE, we prove that (37) is true for all δ ∈ [σ, 1]
and (39) is true for all δ ∈ [0, σ ] ((38) is not true for all δ ∈ [0, σ ]).

So we have proved the claimed approximation factor of � = 0.6753.

Example 2. MAX-k-DIRECTED-UNCUT with σ = 0.5 (or MAX- n
2 -DIRECTED-

UNCUT).

Parameters: � = 0.8164, θ = 1, v = 0.84, κ arbitrary, ν = 0, case 3 of (4), x1 = 0, x2 =
8.59.

We calculate α = 0.8722, β := 0.486, γ := 0.2467.
The inequalities from case 2 of Section 5.3 are relevant for our example. They depend

on the solution of the inequalities

� ≥ 1 +
(

1

2 · δ

)2

− 1

2 · δ
for δ ∈ [0.5, 1] (40)

� ≥ 1 +
(

1

2 · (1 − δ)

)2

− 1

2 · (1 − δ)
for δ ∈ [0, 0.5] (41)

Let c1 ≈ 0.6599. Then (40) is true for δ ∈ [c1, 1] and (41) is true for δ ∈ [0, 1 − c1]. So we
receive the following system of linear inequalities

α + x1(β − δ) + x2(γ + δ2 − δ) ≥ �

1 + 1
4δ2 − 1

2δ

for δ ∈ [c1, 1] (42)
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Table 6. Approximation factors and Parameters for MAX-k-CUT.

σ Prev. Our method ν L P θ ϑ κ x1 x2

0.02 0.5 + c 0.5 − ε 1 – – – – – −1.5 · 107 1.56 · 107

0.04 0.5 + c 0.5 − ε 1 – – – – – −3.59 · 106 3.91 · 106

0.06 0.5 + c 0.5 − ε 1 – – – – – −1.53 · 106 1.74 · 106

0.08 0.5 + c 0.5 − ε 1 – – – – – −8.2 · 105 9.77 · 105

0.1 0.5 + c 0.5 − ε 1 – – – – – −5 · 105 6.25 · 105

0.12 0.5 + c 0.5 − ε 1 – – – – – −3.3 · 105 4.34 · 105

0.14 0.5 + c 0.5 − ε 1 – – – – – −2.3 · 105 3.19 · 105

0.16 0.5 + c 0.5 − ε 1 – – – – – −1.66 · 105 2.44 · 105

0.18 0.5 + c 0.5 − ε 1 – – – – – −1.23 · 105 1.93 · 105

0.2 0.5 + c 0.5 − ε 1 – – – – – −9.37 · 104 1.56 · 105

0.22 0.5 + c 0.5 − ε 1 – – – – – −7.23 · 104 1.29 · 105

0.24 0.5 + c 0.5026 0 3 – 1 0.96 – −2.44 3.32

0.26 0.5 + c 0.5252 0 3 3 0.98 0.97 −0.35 −2.29 3.41

0.28 0.5 + c 0.5467 0 3 3 0.96 0.98 −0.3 −2.17 3.58

0.3 0.527 0.567 0 3 3 0.94 0.99 −0.25 −2.02 3.7

0.32 0.562 0.5864 0 – 3 0.91 1 −0.25 −1.94 4.05

0.34 0.593 0.6045 0 – 3 0.91 1 −0.2 −1.79 4.25

0.36 0.616 0.6218 0 – 3 0.92 1 −0.2 −1.37 3.63

0.38 0.642 0.6451 0 1 – 1 0.99 – 0 0.77

0.4 0.671 0.6727 0 1 – 1 0.99 – 0 1.12

0.42 0.698 0.6994 0 1 – 1 0.98 – 0 1.58

0.44 0.721 0.7216 0 1 – 1 0.96 – 0 2.36

0.46 0.734 0.7351 0 1 1 0.98 0.95 0 0 3.91

0.48 0.725 0.7257 0 1 – 1 0.89 – 0 6.85

0.5 0.7027 0.7016 0 – 1 0.89 1 0 0 7.14

α + x1(β − δ) + x2(γ + δ2 − δ) ≥ � + 1
4δ2 − 1

1
2δ2 − 1

2δ

for δ ∈ [0.5, c1] (43)

α + x1(β − δ) + x2(γ + δ2 − δ) ≥ �

1 + 1
4(1−δ)2 − 1

2(1−δ)

for δ ∈ [0, 1 − c1] (44)

α + x1(β − δ) + x2(γ + δ2 − δ) ≥
� + 1

4(1−δ)2 − 1
1

2(1−δ)2 − 1
2(1−δ)

for δ ∈ [1 − c1, 0.5] (45)

All four inequalities can be transformed to polynomial inequalities of degree at most 4.
Using MAPLE, we prove that (42)–(45) are true for their corresponding range of δ.

So we have proved the claimed approximation factor of � = 0.8164.
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Table 7. Approximation factors and Parameters for MAX-k-UNCUT.

σ Prev. Our method ν L P θ ϑ κ x1 x2

0.02 0.9608 0.9608 0 – 2 0 – −1 −46.08 0

0.04 0.9232 0.9232 0 – 2 0 – −1 −21.16 0

0.06 0.8872 0.8872 0 – 2 0 – −1 −12.91 0

0.08 0.8528 0.8528 0 – 2 0 – −1 −8.82 0

0.1 0.82 0.82 0 – 2 0 – −1 −6.4 0

0.12 0.7888 0.7888 0 – 2 0 – −1 −4.81 0

0.14 0.7592 0.7592 0 – 2 0 – −1 −3.77 0

0.16 0.7312 0.7312 0 – 2 0 – −1 −2.89 0

0.18 0.7048 0.7048 0 – 2 0 – −1 −2.28 0

0.2 0.68 0.68 0 – 2 0 – −1 −1.8 0

0.22 0.6568 0.6568 0 – 2 0 – −1 −1.43 0

0.24 0.6352 0.6352 0 – 2 0 – −1 −1.13 0

0.26 0.6152 0.6152 0 – 2 0 – −1 −0.89 0

0.28 0.5968 0.5968 0 – 2 0 – −1 −0.69 0

0.3 0.58 0.58 0 – 2 0 – −1 −0.53 0

0.32 0.5648 0.5648 0 – 2 0 – −1 −0.41 0

0.34 0.5512 0.5512 0 – 2 0 – −1 −0.3 0

0.36 0.5392 0.5644 0 – 3 0.81 1 −0.35 −2.95 8.52

0.38 0.5288 0.5787 0 – 3 0.81 1 −0.35 −2.43 8.01

0.4 0.5258 0.5973 0 1 – 1 0.97 – 0 1.58

0.42 0.5587 0.6238 0 1 – 1 0.96 – 0 2.51

0.44 0.6013 0.6483 0 1 – 1 0.93 – 0 4.14

0.46 0.6353 0.668 0 1 – 1 0.89 – 0 7.08

0.48 0.6451 0.6737 0 1 – 1 0.82 – 0 13.33

0.5 0.6414 0.6415 0 1 – 1 0.8 – 0 14.93

6. The final approximation results

For all six problems we compute approximation factors as described in Section 5.1. The
numbers for L and P , respectively denote the cases, which we use for d2 and e2, re-
spectively (see (4), (5)). If parameters are arbitrary, we omit them. We consider σ =
0.02, 0.04, . . . , 0.98 for MAX-k-DENSE-SUBGRAPH and MAX-k-VERTEX-COVER
and σ = 0.02, 0.04, . . . 0.5 otherwise, because in these cases the approximation factors
for σ are the same as for 1 − σ .

6.1. MAX-k-CUT

Using linear programming, Ageev and Sviridenko (1999) proved an approximation factor of
0.5 for arbitraryσ which was improved by Feige and Langberg (2001) to 0.5+c for a constant
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Table 8. Approximation factors and Parameters for MAX-k-DIRECTED-CUT.

σ Prev. Our method ν L P θ ϑ κ x1 x2

0.02 0.5 0.1439 0.4 – 2 0.5 1 −1 −7.06 0.24

0.04 0.5 0.18 0.6 2 – 1 0.9 – −4.36 0.41

0.06 0.5 0.2211 0.5 2 – 1 0.9 – −3.51 0.53

0.08 0.5 0.258 0.4 – 3 0.9 1 −0.4 −3.47 1.57

0.1 0.5 0.2916 0.4 – 3 0.9 1 −0.4 −3.3 1.99

0.12 0.5 0.3223 0.4 – 3 0.9 1 −0.3 −3.3 2.55

0.14 0.5 0.351 0.4 – 3 0.9 1 −0.3 −3.28 2.98

0.16 0.5 0.3791 0.3 – 3 0.9 1 −0.3 −3.06 3.03

0.18 0.5 0.4062 0.3 – 3 0.9 1 −0.3 −3.03 3.35

0.2 0.5 0.4321 0.3 – 3 0.9 1 −0.3 −2.95 3.56

0.22 0.5 0.456 0.3 – 3 0.9 1 −0.3 −2.82 3.71

0.24 0.5 0.4779 0.3 – 3 0.9 1 −0.3 −2.68 3.84

0.26 0.5 0.498 0.3 – 3 0.9 1 −0.3 −2.52 3.96

0.28 0.5 0.5165 0.3 – 3 0.9 1 −0.3 −2.38 4.14

0.3 0.5 0.5335 0.3 – 3 0.9 1 −0.3 −2.25 4.36

0.32 0.5 0.5493 0.3 – 3 0.9 1 −0.2 −2.1 4.57

0.34 0.5 0.5644 0.2 – 3 0.9 1 −0.2 −1.86 4.56

0.36 0.5 0.5786 0.2 – 3 0.9 1 −0.2 −1.71 4.84

0.38 0.5 0.5914 0.2 – 3 0.9 1 −0.2 −1.5 4.99

0.4 0.5 0.6029 0.2 – 3 0.9 1 −0.2 −1.31 5.3

0.42 0.5 0.6121 0.2 – 3 0.9 1 −0.1 −1.1 5.65

0.44 0.5 0.6227 0.2 – 3 0.9 1 −0.1 −0.86 5.91

0.46 0.5 0.6305 0.2 – 3 0.9 1 −0.1 −0.6 6.2

0.48 0.5 0.6371 0.2 1 – 1 0.9 – −0.31 6.53

0.5 0.644 0.6507 0.17 3 – 1 0.95 – 0 7.04

c > 0. For 0.3, . . . 0.48 Han et al. (2002) got the previously best factors. For 0.24, . . . 0.48,
we improve these factors. For the case σ = 0.5 we get the same approximation factor 0.7016
as Halperin and Zwick. Feige and Langberg (2001) improved this factor to 0.7027, using
the RPR2 rounding technique, which additionally analyzes the correction step of changing
the sides of so-called misplaced vertices.

We can show the same result as Ageev and Sviridenko, up to ε > 0 arbitrarily small.

Corollary 11. For arbitrary σ MAX-k-CUT has an approximation factor 0.5−ε for ε > 0
arbitrarily small.

Proof: Useν = 1 (i.e. Linear Randomized Rounding), x1 = (2σ−1)·x2 and x2 sufficiently
large. (For the proof of � < 0.5, x2 must be chosen ≥ �2

4.(0.5−�)·σ 2 . In Table 6 we prove an
approximation factor of 0.49999 for σ = 0.02, 0.04, . . . , 0.22.)
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Table 9. Approximation factors and Parameters for MAX-k-DIRECTED-UNCUT.

σ Prev. Our method ν L P θ ϑ k x1 x2

0.02 – 0.9804 0 – 2 0 – −1 −50 0

0.04 – 0.9616 0 – 2 0 – −1 −25 0

0.06 – 0.9436 0 – 2 0 – −1 −16.67 0

0.08 – 0.9264 0 – 2 0 – −1 −12.5 0

0.1 – 0.91 0 – 2 0 – −1 −10 0

0.12 – 0.8944 0 – 2 0 – −1 −8.33 0

0.14 – 0.8796 0 – 2 0 – −1 −7.14 0

0.16 – 0.8656 0 – 2 0 – −1 −6.25 0

0.18 – 0.8524 0 – 2 0 – −1 −5.56 0

0.2 – 0.84 0 – 2 0 – −1 −5 0

0.22 – 0.8284 0 – 2 0 – −1 −4.55 0

0.24 – 0.8176 0 – 2 0 – −1 −4.17 0

0.26 – 0.8076 0 – 2 0 – −1 −3.85 0

0.28 – 0.7984 0 – 2 0 – −1 −3.57 0

0.3 – 0.79 0 – 2 0 – −1 −3.33 0

0.32 – 0.7824 0 – 2 0 – −1 −3.13 0

0.34 – 0.7756 0 – 2 0 – −1 −2.94 0

0.36 – 0.7696 0 – 2 0 – −1 −2.78 0

0.38 – 0.7644 0 – 2 0 – −1 −2.63 0

0.4 – 0.7705 0.1 – 3 0.8 1 −0.3 −1.03 4.21

0.42 – 0.7776 0 3 3 0.9 0.9 −0.2 −1.02 5.42

0.44 – 0.785 0 3 3 0.9 0.9 −0.2 −0.86 6.12

0.46 – 0.7919 0 3 3 0.9 0.9 −0.1 −0.64 6.92

0.48 – 0.798 0 3 – 1 0.8 – −0.45 10.15

0.5 0.811 0.8164 0 3 – 1 0.84 – 0 8.59

6.2. MAX-k-UNCUT

For 0.02, . . . 0.38, Feige and Langberg (2001) obtained the previously best approximation
factor of 1−2σ (1−σ ) by independent sampling. For 0.4, . . . 0.48, Han et al. (2002) got the
best factors. For 0.36, . . . 0.48, we improve these factors. For σ = 0.5 the approximation
factor 0.64142 can be improved by our algorithm to 0.6415.

We obtain the known global approximation factor of Feige and Langberg.

Corollary 12. For arbitrary σ MAX-k-UNCUT has an approximation factor of
1 − 2σ (1 − σ ).

Proof: Use ν = 0, L arbitrary, P = 2, θ = 0, ϑ arbitrary, κ = −1, x1 ≤ 4(1 − σ ) − 1
σ

sufficiently small and x2 = 0.



162 JÄGER AND SRIVASTAV

Table 10. Approximation factors and Parameters for MAX-k-DENSE-SUBGRAPH, σ ≤ 1
2 .

σ Prev. Our method v L P θ ϑ κ x1 x2

0.02 0.02 0.0192 0.96 3 2 0.48 0.99 −1 −48.83 49.08

0.04 0.04 0.0407 0.9 3 2 0.49 0.97 −1 −26.02 26.4

0.06 0.06 0.0604 0.8 3 2 0.5 0.9 −1 −17.23 17.7

0.08 0.08 0.084 0.8 3 – 1 0.9 – −13.65 14.29

0.1 0.1 0.1123 0.7 3 – 1 0.9 – −11.7 12.48

0.12 0.12 0.1421 0.7 3 – 1 0.9 – −10.49 11.52

0.14 0.14 0.1726 0.6 3 – 1 0.9 – −9.35 10.51

0.16 0.16 0.2027 0.6 3 – 1 0.9 – −8.58 10.03

0.18 0.18 0.2335 0.5 3 – 1 0.9 – −7.77 9.36

0.2 0.2008 0.2644 0.5 – 3 0.9 1 −0.4 −6.96 8.58

0.22 0.232 0.295 0.5 – 3 0.9 1 −0.4 −6.47 8.36

0.24 0.2631 0.3248 0.4 – 3 0.9 1 −0.4 −5.95 8.01

0.26 0.2942 0.3548 0.4 – 3 0.9 1 −0.4 −5.55 7.88

0.28 0.3245 0.3833 0.4 – 3 0.9 1 −0.4 −5.17 7.82

0.3 0.3541 0.4061 0.4 – 3 0.9 1 −0.4 −4.81 7.77

0.32 0.3827 0.4359 0.3 – 3 0.9 1 −0.4 −4.35 7.41

0.34 0.4105 0.4619 0.3 – 3 0.9 1 −0.3 −4.05 7.49

0.36 0.4372 0.4864 0.3 – 3 0.9 1 −0.3 −3.73 7.55

0.38 0.4626 0.5092 0.3 – 3 0.9 1 −0.3 −3.39 7.52

0.4 0.4867 0.5305 0.3 – 3 0.9 1 −0.2 −3.11 7.79

0.42 0.5095 0.5505 0.3 – 3 0.9 1 −0.2 −2.76 7.76

0.44 0.531 0.5688 0.3 – 3 0.9 1 −0.2 −2.42 7.78

0.46 0.5511 0.5861 0.2 – 3 0.9 1 −0.1 −2.07 7.56

0.48 0.5697 0.6031 0.2 – 3 0.9 1 −0.1 −1.73 7.53

0.5 0.6221 0.6223 0.21 3 1 0.92 0.97 0 −1.39 8.57

6.3. MAX-k-DIRECTED-CUT

Ageev et al. (2001) showed an approximation factor of 0.5 for arbitrary σ . For 0.28, . . . 0.48,
we substantially improve this factor. For the case σ = 0.5 we improve the approximation
factor 0.644 of Halperin and Zwick to 0.6507.

6.4. MAX-k-DIRECTED-UNCUT

For 0.02, . . . 0.48, the approximation factors have not been considered until now. For
σ = 0.5 the approximation factor 0.8113 can be improved by our algorithm to 0.8164.

We get a global approximation factor for MAX-k-DIRECTED-UNCUT.
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Table 11. Approximation factors and Parameters for MAX-k-DENSE-SUBGRAPH, σ > 1
2

σ Prev. Our method ν L P θ ϑ κ x1 x2

0.52 0.6022 0.6339 0.2 3 – 1 0.9 – −0.94 9.94

0.54 0.6161 0.6471 0.2 3 – 1 0.9 – −0.49 10.25

0.56 0.6287 0.6585 0.2 3 – 1 0.9 – 0 10.64

0.58 0.6402 0.6667 0.2 – 3 0.9 1 0.2 −0.11 7.34

0.6 0.6488 0.6753 0.2 – 3 0.9 1 0.2 0 6.39

0.62 0.6539 0.6807 0.2 – 3 0.9 1 0.3 0 5.31

0.64 0.6563 0.685 0.2 – 3 0.9 1 0.3 0 4.53

0.66 0.66 0.6888 0.2 – 3 0.9 1 0.4 0 3.94

0.68 0.68 0.6927 0.2 – 3 0.9 1 0.4 0.02 3.54

0.7 0.7 0.6976 0.16 – 3 0.91 1 0.44 0 3.13

0.72 0.72 0.7024 0.16 – 3 0.9 1 0.5 0 2.84

0.74 0.74 0.7068 0.2 – 3 0.9 1 0.6 0 2.6

0.76 0.76 0.7266 0.6 – 1 0 – 1 0.56 3.38

0.78 0.78 0.7491 0.6 – 1 0 – 1 0.82 3.6

0.8 0.8 0.7714 0.6 – 1 0 – 1 1.16 3.91

0.82 0.82 0.7934 0.6 – 1 0 – 1 1.5 4.19

0.84 0.84 0.8152 0.6 – 1 0 – 1 1.97 4.63

0.86 0.86 0.8367 0.6 – 1 0 – 1 2.47 5.07

0.88 0.88 0.858 0.6 – 1 0 – 1 3.22 5.78

0.9 0.9 0.8806 0.5 – 1 0 – 1 3.82 6.25

0.92 0.92 0.9048 0.5 – 1 0 – 1 5.2 7.6

0.94 0.94 0.9288 0.5 – 1 0 – 1 7.22 9.55

0.96 0.96 0.9527 0.5 – 1 0 – 1 11.68 13.98

0.98 0.98 0.9764 0.5 – 1 0 – 1 24 26.22

Corollary 13. For arbitrary σ MAX-k-DIRECTED-UNCUT has an approximation factor
of 1 + σ 2 − σ .

Proof: Use v = 0, L arbitrary, P = 2, θ = 0, ϑ arbitrary, κ = −1, x1 = − 1
σ

and x2 = 0.

6.5. MAX-k-DENSE-SUBGRAPH

For 0.2, . . . 0.48 and 0.52, . . . 0.64, the previously best approximation factors were given
by Han et al. (2002) for 0.5 by Halperin and Zwick (2002) and in the other cases by Feige
and Langberg (2001). Our improvement is for 0.04, . . . 0.68.
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Table 12. Approximation factors and Parameters for MAX-k-VERTEX-COVER, σ ≤ 1
2

σ Prev. Our method v L P θ ϑ κ x1 x2

0.02 0.75 + c 0.75 −ε 1 – – – – – −3.37 · 107 3.52 · 107

0.04 0.75 + c 0.75 −ε 1 – – – – – −8.09 · 106 8.79 · 106

0.06 0.75 + c 0.75 −ε 1 – – – – – −3.44 · 106 3.91 · 106

0.08 0.75 + c 0.75 −ε 1 – – – – – −1.85 · 106 2.2 · 106

0.1 0.75 + c 0.75 −ε 1 – – – – – −1.12 · 106 1.41 · 106

0.12 0.75 + c 0.75 −ε 1 – – – – – −7.42 · 105 9.77 · 105

0.14 0.75 + c 0.75 −ε 1 – – – – – −5.17 · 105 7.17 · 105

0.16 0.75 + c 0.75 −ε 1 – – – – – −3.74 · 105 5.49 · 105

0.18 0.75 + c 0.75 −ε 1 – – – – – −2.78 · 105 4.34 · 105

0.2 0.75 + c 0.75 −ε 1 – – – – —- −2.11 · 105 3.52 · 105

0.22 0.75 + c 0.75 −ε 1 – – – – – −1.63 · 105 2.91 · 105

0.24 0.75 + c 0.75 −ε 1 – – – – – −1.27 · 105 2.44 · 105

0.26 0.75 + c 0.75 −ε 1 – – – – – −9.98 · 104 2.08 · 105

0.28 0.75 + c 0.75 −ε 1 – – – – – −7.89 · 104 1.79 · 105

0.3 0.75 + c 0.75 −ε 1 – – – – – −6.25 · 104 1.56 · 105

0.32 0.75 + c 0.75 −ε 1 – – – – – −4.94 · 104 1.37 · 105

0.34 0.75 + c 0.75 −ε 1 – – – – – −3.89 · 104 1.22 · 105

0.36 0.75 + c 0.75 −ε 1 – – – – – −3.04 · 104 1.09 · 105

0.38 0.75 + c 0.7538 0.2 – 3 0.9 1 −0.3 −1.92 2.06

0.4 0.75 + c 0.7684 0.2 – 3 0.9 1 −0.3 −1.79 2.04

0.42 0.7518 0.7819 0.2 – 3 0.9 1 −0.3 −1.67 2.06

0.44 0.7687 0.7947 0.1 – 3 0.8 1 –0.2 −1.63 2.75

0.46 0.7844 0.8082 0.1 – 3 0.8 1 –0.2 –1.47 2.65

0.48 0.7987 0.8209 0.1 – 3 0.8 1 –0.1 –1.34 2.99

0.5 0.8452 0.8454 0.08 2 1 0.89 0.96 0 –1 1.33

6.6. MAX-k-VERTEX-COVER

Using linear programming, Ageev and Sviridenko (1999) proved an approximation factor
of 0.75 for arbitrary σ which was improved by Feige and Langberg (2001) to 0.75 + c
for a constant c > 0. For 0.02, . . . , 0.4, this was the previously best approximation factor.
For 0.42, . . . , 0.48 and 0.52, . . . , 0.6, it was found by Han et al. (2002) and for 0.5 by
Halperin and Zwick (2002). For 0.62, . . . , 0.98, the previously best approximation factor
was 2σ − σ 2 which was received by independent sampling (Feige and Langberg, 2001).
Our improvement is for 0.38, . . . , 0.74.

We can verify the results of Ageev and Sviridenko, up to ε > 0 arbitrarily small, and of
Feige and Langberg:
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Table 13. Approximation factors and Parameters for MAX-k-VERTEX-COVER, σ > 1
2

σ Prev. Our method v L P θ ϑ κ x1 x2

0.52 0.822 0.843 0 – 3 0.8 1 −0.1 −1.06 2.62

0.54 0.8307 0.8532 0 3 1 0.9 0.9 0 −0.86 3.35

0.56 0.8377 0.8625 0 3 1 0.9 0.9 0 −0.71 3.31

0.58 0.8425 0.8707 0 1 – 1 0.8 – −0.75 2.15

0.6 0.8453 0.8784 0 1 – 1 0.8 – −0.69 1.89

0.62 0.8556 0.886 0 1 3 0.8 0.9 0.1 −0.62 1.81

0.64 0.8704 0.8934 0 – 3 0.7 1 0.1 −0.63 1.47

0.66 0.8844 0.9008 0 – 3 0.7 1 0.1 −0.63 1.23

0.68 0.8976 0.9081 0 – 3 0.7 1 0.1 −0.67 0.96

0.7 0.91 0.916 0 – 3 0.6 1 0.1 −0.71 0.75

0.72 0.9216 0.9241 0 1 3 0.6 0.9 0.1 −0.77 0.53

0.74 0.9324 0.9328 0 1 – 1 0.3 – −0.95 0.14

0.76 0.9424 0.9424 0 – 2 0 – −1 −2 0

0.78 0.9516 0.9516 0 – 2 0 – −1 −2 0

0.8 0.96 0.96 0 – 2 0 – −1 −2 0

0.82 0.9676 0.9676 0 – 2 0 – −1 −2 0

0.84 0.9744 0.9744 0 – 2 0 – −1 −2 0

0.86 0.9804 0.9804 0 – 2 0 – −1 −2 0

0.88 0.9856 0.9856 0 – 2 0 – −1 −2 0

0.9 0.99 0.99 0 – 2 0 – −1 −2 0

0.92 0.9936 0.9936 0 – 2 0 – −1 −2 0

0.94 0.9964 0.9964 0 – 2 0 – −1 −2 0

0.96 0.9984 0.9984 0 – 2 0 – −1 −2 0

0.98 0.9996 0.9996 0 – 2 0 – −1 −2 0

Corollary 14. For arbitrary σ MAX-k-VERTEX-COVER has an approximation factor
0.75 − ε for ε > 0 arbitrarily small and at least 2σ − σ 2.

Proof: (a) Use ν = 1 (i.e. Linear Randomized Rounding), x1 = (2σ − 1) · x2 and x2

sufficiently large. (For the proof of � < 0.75, x2 must be chosen >
�

4·(0.75−�)·σ 2 . In Table 12
we prove an approximation factor of 0.74999 for σ = 0.02, 0.04, . . . , 0.36.)

(b) Use ν = 0, L arbitrary, P = 2, θ = 0, ϑ arbitrary, κ = −1, x2 = −2 and x2 = 0.

Remark 15. (a) Algorithm Graph Partitioning with the parameter settings of Corollary 14
(a) is equivalent to Linear Randomized Rounding with Size Adjusting. The approximation
factor of Corollary 14(a) can also be obtained by standard concentration results on the size
of |S′′| without using the Algorithm Graph Partitioning. The same holds for Corollary 11.

(b) Algorithm Graph Partitioning with the parameter settings of Corollary 14(b) is



166 JÄGER AND SRIVASTAV

equivalent to independent sampling. The approximation factor of Corollary 14(b) can also
be obtained by analyzing independent sampling without using the Algorithm Graph Parti-
tioning. The same holds for Corollary 12 and Corollary 13.

7. Questions and open problems

• Can we improve the approximation factors by combining the RPR2 rounding technique
(Feige and Langberg, 2001) with our methods?

• Is there a technique to find “good” parameters θ, ϑ, κ, ν?
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Notes

1. In some literature MAX-k-CUT denotes the problem of partitioning the set of vertices into subsets S1, . . . , Sk ,
so that the total weight of the edges connecting Si and S j for 1 ≤ i �= j ≤ k is maximized.

2. The approximation factor of 0.6436 of Halperin and Zwick (2002) seems to be incorrect. Halperin and Zwick
in section 4.1 claim that (17) holds for d2 ≥ 0. But for d2 = 0.81 (their parameter for MAX-k-UNCUT)
and x = − 1

3 we have: 4 arccos(− 1
3 · 0.81) −3 arccos(− 7

9 · 0.81) − arccos(0.81) < 0 (so the assumption of
Lemma 7 (d) does not hold). Using Lemma 7 (c) of this paper and d2 = 0.81, we get an approximation factor
of 0.6414.

3. Again the approximation factor of 0.8118 of Halperin and Zwick seems to be incorrect, as for d2 = 0.74 and
x = − 1

3 we have: 4 arccos (− 1
3 · 0.74) − 3 arccos(− 7

9 · 0.74) − 3 arccos(0.74) < 0. Using again Lemma 7 (c)
instead of Lemma 7 (d), the approximation factor becomes 0.811.
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