
Journal of Combinatorial Optimization, 9, 401–432, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

An Improved Randomized Approximation
Algorithm for Max TSP

ZHI-ZHONG CHEN∗ chen@r.dendai.ac.jp
Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

LUSHENG WANG
Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Received March 3, 2005; Accepted April 8, 2005

Abstract. We present an O(n3)-time randomized approximation algorithm for the maximum traveling salesman
problem whose expected approximation ratio is asymptotically 251

331 , where n is the number of vertices in the input
(undirected) graph. This improves the previous best.

Keywords: Max TSP, approximation algorithms, randomized algorithms, graph algorithms

1. Introduction

The maximum traveling salesman problem (Max TSP) is to compute a maximum-weight
Hamiltonian circuit (called a tour) in a given edge-weighted (undirected) graph. The problem
is known to be Max-SNP-hard (Barvinok et al., 1998) and there have been a number of
approximation algorithms known for it (Hassin and Rubinstein, 1998, 2000; Serdyukov,
1984). In 1984, Serdyukov (1984) gave an O(n3)-time approximation algorithm for Max
TSP that achieves an approximation ratio of 3

4 . Serdyukov’s algorithm is very simple and
elegant, and it tempts one to ask if a better approximation ratio can be achieved for Max
TSP by a polynomial-time approximation algorithm. Along this line, Hassin and Rubinstein
(2000) showed that with the help of randomization, better approximation ratio for Max
TSP can be achieved. More precisely, they gave an O(n3)-time randomized approximation
algorithm for Max TSP whose expected approximation ratio is asymptotically 25

33 . Their
algorithm is basically a combination of Serdyukov’s algorithm and an earlier algorithm of
their own (Hassin and Rubinstein, 1998).

The asymptotic ratio 25
33 achieved by Hassin and Rubinstein’s algorithm is marginally

better than the ratio 3
4 achieved by Serdyukov’s algorithm. However, Hassin and Rubinstein

said in their paper (Hassin and Rubinstein, 2000): “the better ratio at least demonstrates that
the ratio of 3

4 can be improved and further research along this line is encouraged”. Moreover,
it is widely recognized that improving approximation algorithms for TSP and its variants
are not easy. In this paper, following and improving Hassin and Rubinstein’s work, we

∗Part of work done while visiting City University of Hong Kong.

402 CHEN AND WANG

give a new O(n3)-time randomized approximation algorithm for Max TSP whose expected
approximation ratio is asymptotically 251

331 . Hassin and Rubinstein (2000) show that each
approximation algorithm for Max TSP can be translated into an approximation algorithm
for a problem called the maximum latency TSP which was first studied by Chalasani and
Motwani (1999). Using their translation, our new algorithm can be trivially turned into a
new randomized approximation algorithm for the maximum latency TSP whose expected
approximation ratio improves the previous best.

Like all previous approximation algorithms for Max TSP, our new algorithm starts by
computing a maximum-weight cycle cover C of the input graph G and then modify the cycles
in C (somehow) to a tour of G without losing much weight. All the previous algorithms
modify the cycles in C in an arbitrary order. In contrast, our algorithm modify the cycles
in a carefully chosen order based on suitably constructed auxiliary graphs. Moreover, the
way of modifying a cycle heavily depends on how the previous cycles were modified. This
is why our algorithm is complicated.

After giving some basic definitions in Section 2, we sketch Hassin and Rubinstein’s
algorithm in Section 3. In Section 4, we describe our ideas for improving their algorithm.
Section 5 contains an outline of our new algorithm. Section 6 details how to modify 4-cycles.
Sections 7 and 8 detail how to modify non-4-cycles. Section 9 contains an analysis of the
improved approximation ratio and the running time.

2. Basic definitions

Throughout this paper, a graph means a simple undirected graph (i.e., it has neither parallel
edges nor self-loops), while a multigraph may have parallel edges but no self-loops.

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G
by E(G). In order to avoid confusion, we sometimes call the elements of V (G) the nodes
of G (rather than the vertices of G). For a subset U of V (G), G − U denotes the graph
obtained from G by removing the vertices in U (together with the edges incident to them).
For a subset F of E(G), G − F denotes the graph obtained from G by removing the edges
in F. The degree of a vertex v in G is the number of edges incident to v in G. Two edges of
G are adjacent if they have a common endpoint.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in
G is either a single vertex of G or a connected subgraph of G in which exactly two vertices
are of degree 1 and the others are of degree 2. The length of a cycle or path C is the number
of edges in C. A cycle is called a k-cycle if its length is k. If the length of a cycle or path
P is odd, then we say that P is odd; otherwise, we say that P is even. A tour (also called
a Hamiltonian cycle) of G is a cycle C of G with V (C) = V (G). A cycle cover of G is a
subgraph H of G with V (H) = V (G) in which each vertex is of degree 2. A subtour of G
is a subgraph H of G in which each connected component is a path.

A matching of G is a (possibly empty) set of pairwise nonadjacent edges of G. A perfect
matching of G is a matching M of G such that each vertex of G is incident to an edge in M.
An independent set of G is a (nonempty) set U of vertices in G such that no two vertices
in U are adjacent in G. The distance between two vertices u and v in G is the length of the
shortest path between u and v in G.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 403

For a random event A, Pr[A] denotes the probability that A occurs. For two random
events A and B, Pr[A|B] denotes the (conditional) probability that A occurs given the
known occurrence of event B. For a random variable X, E[X] denotes the expected value
of X.

Throughout the rest of the paper, fix an instance (G, w) of Max TSP, where G is a
complete (undirected) graph and w is a function mapping each edge e of G to a nonnegative
real number w(e). For a subset F of E(G), w(F) denotes

∑
e∈F w(e). The weight of a

subgraph H of G is w(H) = w(E(H)). Our goal is to compute a tour of large weight in
G. For ease of explanation, we assume that n = |V (G)| is even; the case where n is odd is
similar. We first sketch Hassin and Rubinstein’s algorithm (H&R-algorithm) for Max TSP
in the next section, and then detail how to improve it in the subsequent sections.

3. H&R-algorithm

H&R-algorithm starts by computing a maximum-weight cycle cover C. If C is a tour of G,
then we are done. Throughout the rest of the paper, we assume that C is not a tour of G.
Suppose that T is a maximum-weight tour of G. Let Tint denote the set of all edges {u, v}
of T such that some cycle C in C contains both u and V . Let Text denote the set of edges in
T but not in Tint. Let α = w(Tint)/w(T).

H&R-algorithm then computes three tours T1, T2, T3 of G and outputs the one of the
largest weight. Based on an idea in Hassin and Rubinstein (1998), T1 is computed by
modifying the cycles in C as follows. Fix a parameter ε > 0. For each cycle C in C, if
|E(C)| > ε−1, then remove the minimum-weight edge; otherwise, replace C by a maximum-
weight path P in G with V (P) = V (C). Then, C becomes a subtour and we can extend
it to a tour T1 in an arbitrary way. As observed by Hassin and Rubinstein (2000), we
have:

Fact 3.1 w(T1) ≥ (1 − ε)w(Tint) = (1 − ε)αw(T).

When w(Text) is large, w(Tint) is small and w(T1) may be small, too. The two tours T2

and T3 together are aimed at the case where w(Text) is large. By modifying Serdyukov’s
algorithm, T2 and T3 are computed as shown in figure 1.

4. Ideas for improving H&R-algorithm

A bottleneck of H&R-algorithm is that at the beginning of Step 6, there may exist many
cycles C in C with |E(C) ∩ M ′| = 2. Let us call such cycles C bad cycles. Fix a bad
cycle C. Observe that if we remove the two edges in E(C) ∩ M ′ from C, we are left
with two paths P and Q such that some cycle C j in the original cycle cover C contains
P and another cycle Ck in the original cycle cover C contains Q, where j > k. When
executing Step 4 with i = j , we know those pairs ({u1, v1}, {u2, v2}) of edges in M ′ such
that {u1, u2} ⊆ V (C j), {v1, v2} ⊆ V (Ck), and C has a path between v1 and v2. Let us call
such pairs ({u1, v1}, {u2, v2}) of edges in M ′ C j -serious pairs. Assume that when executing
Step 4 with i = j , it were possible to compute two matchings A1 and A2 in C j such that

404 CHEN AND WANG

Figure 1. Computation of tours T2 and T3 in H&R-algorithm.

for each C j -serious pair ({u1, v1}, {u2, v2}) and for each h ∈ {1, 2} C j − Ah contains no
path between u1 and u2. Then, we would have been able to avoid C. This is our main idea
for improving H&R-algorithm.

Unfortunately, not all bad cycles can be avoided. Another idea in our algorithm is to
discard a small-weighted subset R of edges in M ′ so that a large fraction of bad cycles can
be avoided. In order to realize this idea, we need to choose a suitable ordering of the cycles
in the original cycle cover C and process them in this order. In the course of processing the
cycles, we will include some edges of M ′ into R. Yet another idea in our algorithm is to let
the random selection at Step 6 in figure 1 be sometimes nonuniform.

5. Outline of the new algorithm

Like H&R-algorithm, our algorithm starts by computing a maximum-weight cycle cover C
of G, uses it to compute three tours T1, . . . , T3 of G, and outputs the one of the largest weight
among them. Our computation of T1 is the same as in H&R-algorithm. Our computation of
T2 and T3 is as shown in figure 2.

Steps 4 and 5 in figure 2 are rough; their details are very complicated and will be given in
the subsequent sections. An important property will be that w(R) is small compared with
w(M ′).

Several definitions and three useful facts are in order. Throughout the rest of this paper,
for each integer i ∈ {1, . . . , r}, the phrase “at time i” means the time at which zero or

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 405

Figure 2. Computation of T2 and T3 in our algorithm. (Steps 4 and 5 are rough.)

more cycles in C have been processed and Ci is the next cycle to be processed. A set F
of edges in G is available at time i if F is a matching in Ci , F ∩ Mc = ∅, and the graph
(V (G), M ∪ F) is a subtour of G at time i. An edge e in G is available at time i if {e} is
available at time i. A maximal available set at time i is an available set F at time i such that
for every e ∈ E(Ci) − F, F ∪ {e} is not available at time i.

Lemma 5.1. Let F be an available set at time i. Suppose that e1 = {u1, u2} and e2 =
{u2, u3} are two adjacent edges in Ci such that F contains no edge incident to u1, u2, or u3.
Then, F ∪ {e1} or F ∪ {e2} is available at time i.

Proof: If F ∪{e1} is available, then we are done. So, assume that F ∪{e1} is not available.
Consider the subtour Hi,F = (V (G), M ∪ F) at time i. Since Mc is perfect and F contains
no edge incident to u1, u2, or u3, the degree of each u j ∈ {u1, u2, u3} in Hi,F is 1. In turn,
since F ∪ {e1} is not available, some connected component (a path) Q of Hi,F is a path
between u1 and u2 (no matter whether e1 ∈ Mc or not). Because a path can have at most
two vertices of degree 1, u3 is not a vertex of Q. So, {u2, u3} /∈ Mc, and Hi,F remains

406 CHEN AND WANG

to be a subtour even after e2 is added to it. Consequently, F ∪ {e2} is available at time
i.

The following corollary is immediate from Lemma 5.1:

Corollary 5.2. Suppose that F is a maximal available set at time i. Then, Ci − F is a
collection of vertex-disjoint paths each of length ≤3.

Lemma 5.3. Let F be an available set at time i. Suppose that e1 = {u1, u2}, e2 =
{u2, u3}, e3 = {u3, u4}, and e4 = {u4, u5} are four distinct (consecutive) edges in E(Ci)−F
such that no ui ∈ {u1, . . . , u5} is incident to an edge in F and neither F ∪ {e1} nor F ∪ {e3}
is available at time i. Then, F ∪ {e2, e4} is available at time i.

Proof: As in the proof of Lemma 5.1, consider the subtour Hi,F = (V (G), M ∪ F) at
time i. Since neither F ∪{e1} nor F ∪{e3} is available at time i, some connected component
Q of Hi,F is a path between u1 and u2, and another connected component Q′ of Hi,F is a
path between u3 and u4. So, even after we add e2 to Hi,F , u4 and u5 still belong to different
connected components of Hi,F and both u4 and u5 remain to have degree 1 in Hi,F . In turn,
even after we add both e2 and e4 to Hi,F , Hi,F still remains to be a subtour. In other words,
F ∪ {e2, e4} is available at time i.

6. Processing 4-cycles

We say that two distinct edges e1 = {u1, v1} and e2 = {u2, v2} in M ′ form a square pair,
denoted by {e1, e2}sp, if {u1, u2} is an edge in a 4-cycle Ci and {v1, v2} is an edge in another
4-cycle C j . We call Ci and C j the dependent 4-cycles of the square pair. An edge e ∈ M ′

is a square edge if e is contained in some square pair.
We construct a multigraph H1 from M ′ and C1, . . . , C� as follows. The nodes of H1 one-

to-one correspond to C1, . . . , C�. For convenience, we still use Ci (1 ≤ i ≤ �) to denote the
node of H1 corresponding to it. The edges of H1 one-to-one correspond to the square pairs.
In more detail, corresponding to each square pair p, H1 has an edge between the dependent
4-cycles of p. H1 has no other edges. For each edge f of H1, we denote the square pair
corresponding to f by p(f).

An edge {u, v} ∈ M ′ is 4-cycle-closed if there are two 4-cycles Ci and C j in C with
u ∈ V (Ci) and v ∈ V (C j). An edge e ∈ M ′ is 4-cycle-pendent if for exactly one endpoint
u of e, there is a 4-cycle Ci in C with u ∈ V (Ci). Let Q be a connected subgraph of H1. An
edge {u, v} ∈ M ′ is Q-closed if there are two nodes Ci and C j in Q with u ∈ V (Ci) and
v ∈ V (C j). An edge e ∈ M ′ is Q-pendent if for exactly one endpoint u of e, there is a node
Ci in Q with u ∈ V (Ci). The weight of Q is the total weight of Q-closed edges in M ′, and
is denoted by w(Q).

Obviously, we can classify the connected components Q of H1 into ten types as follows:

Type 1: Q is a single node.
Type 2: Q is a bunch of four parallel edges between two nodes.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 407

Type 3: Q is an odd cycle.
Type 4: Q is an even cycle of length 4 or more.
Type 5: Q is a path of length 1 or more, and Q has an endpoint Ci (a 4-cycle in C) such

that neither a Q-pendent edge nor a Q-closed non-square edge is incident to a vertex of
Ci . (Comment: We call Ci a dead end of Q. Note that if there is a Q-closed non-square
edge, then Q has no dead end.)

Type 6: Q is a path of length 3 or more, and Q has no dead end.
Type 7: Q is a 2-cycle.
Type 8: Q is a path of length 1 and Q has no dead end.
Type 9: Q is a path of length 2, Q has no dead end, and there is no Q-closed non-square

edge.
Type 10: Q is a path of length 2 and there is a Q-closed non-square edge.

The following two facts are obvious and help the reader understand the above
definitions.

Fact 6.1 Let M ′
4c be the set of all 4-cycle-closed edges in M ′. Let C be a cycle in the graph

(V (G), E(C) ∪ M ′
4c) with |E(C) ∩ M ′| = 2. Let e1 and e2 be the two edges in E(C) ∩ M ′.

Let Ci be the 4-cycle containing an endpoint u1 of e1 and an endpoint u2 of e2. Let C j be
the 4-cycle containing the other endpoint v1 of e1 and the other endpoint v2 of e2. Suppose
that the two edges e1 and e2 in E(C) ∩ M ′ do not form a square pair. Then, we cannot
remove exactly one edge e3 from Ci and exactly one edge e4 from C j so that each vertex in
{u1, v1, u2, v2} is an endpoint of e3 or e4.

Fact 6.2 Let Q be a connected component of H1. Then, the following hold:

1. If Q is of Type-2, 3, or 4, then there is no Q-pendent edge in M ′ and every Q-closed
edge in M ′ is a square edge.

2. If Q is of Type-5 or 7, then there are at most two Q-pendent edges in M ′ and every
Q-closed edge in M ′ is a square edge.

3. Suppose that Q is of Type 6, 8, 9, or 10. Then, the following hold:
(a) For each Q-pendent edge {u, v}, the node Ci of Q with {u, v} ∩ V (Ci)
= ∅ is an

endpoint of Q.

(b) There are at most four Q-pendent edges in M ′ and there is at most one Q-closed
non-square edge in M ′.

(c) If there is a Q-closed non-square edge {u, v} in M ′, then there are at most two
Q-pendent edges in M ′ and the two 4-cycles containing u or v are the endpoints of
Q.

The following two simple results are very useful for processing 4-cycles.

Lemma 6.3. Suppose that our algorithm has processed zero or more 4-cycles and that Ci

and C j are two distinct 4-cycles not yet processed. Let e1 and e2 be two nonadjacent edges

408 CHEN AND WANG

in Ci such that for each ek ∈ {e1, e2}, ek /∈ Mc and the graph (V (G), M ∪{ek}) is a subtour
of G. Then, we can choose two nonadjacent edges e3 and e4 in E(C j) − Mc, such that for
each ex ∈ {e1, e2} and for each ey ∈ {e3, e4}, the graph (V (G), M ∪ {ex , ey}) is a subtour
of G.

Proof: Consider the graph H2 = (V (G), M ∪ {e1, e2}). The degree of each vertex in H2

is at most 2 and the degree of each vertex of C j in H2 is 1. Moreover, if H2 contains a cycle,
then both e1 and e2 appear on the cycle. If C j has no edge e such that e ∈ Mc or adding e
to H2 creates a new cycle in H2, then we can choose e3 and e4 to be any two nonadjacent
edges in C j . On the other hand, if C j has an edge e = {v1, v2} such that e ∈ Mc or adding e
to H2 creates a new cycle in H2, then we can choose e3 and e4 to be the two edges incident
to exactly one of v1 and v2 because for each ey ∈ {e3, e4} adding ey to H2 does not create a
new cycle in H2.

Corollary 6.4. For every 4-cycle Ci in C, there are two nonadjacent edges available at
time i.

Proof: The first 4-cycle Ci processed by the algorithm must have two nonadjacent edges
available at time i. So, Lemma 6.3 implies this corollary.

To process the 4-cycles in C, our algorithm considers the connected components of H1

one by one. When considering a connected component Q of H1, our algorithm processes
those 4-cycles (in a row) that are nodes of Q. Since the details heavily depend on the type
of Q, we describe the Type-1 case immediately and describe the other cases in six separate
subsections.

In general, immediately after considering a connected component Q of H1 and processing
the 4-cycle(s) that are nodes of Q, the following three invariants hold:

(I1) The graph (V (G), M) remains to be a subtour of G.
(I2) Let Ci be a 4-cycle that is a node of Q. Then, exactly one edge of Ci was moved from

Ci to M during considering Q.
(I3) Let u be a vertex in a 4-cycle Ci that is a node of Q. Suppose that no Q-closed edge in

M ′ is incident to u. Then, with probability at least 1/2, exactly one edge of Ci incident
to u was moved from Ci to M during considering Q.

Obviously, immediately after considering a Type-1 connected component Q of H1, Invari-
ants (I1) through (I3) hold.

6.1. Type-2, Type-3, or Type-4 connected components

Let Q be a Type-2, Type-3, or Type-4 connected component of H1. Then, there is no Q-
pendent edge in M ′, and there is no Q-closed non-square edge in M ′, either. So, immediately

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 409

after considering Q, Invariant (I3) is trivially true. In detail, to process Q, our algorithm
performs the following steps:

1. If Q is of Type-2, then perform the following steps:

(a) Let Ci and C j be the nodes of Q (4-cycles of G). Let e1, . . . e4 be the four edges in
M ′ each of which has one endpoint in Ci and the other in C j .

(b) Compute an edge e ∈ {e1, . . . , e4} such that w(e) ≥ w(ex) for all x ∈ {1, . . . , 4}.
(c) Color e blue. (Comment: The total weight of Q-closed edges in M ′ is at most 4 times

the weight of the edge colored blue at this step.)
(d) Find an edge e′ ∈ E(Ci) − Mc incident to an endpoint of e such that the graph

(V (G), M ∪ {e′}) is a subtour of G; further move e′ from Ci to M. (Comment: By
Corollary 6.4, e′ exists.)

(e) Find an edge e′′ ∈ E(C j) − Mc incident to an endpoint of e such that the graph
(V (G), M ∪ {e′′}) is a subtour of G; further move e′′ from Ci to M. (Comment: By
Corollary 6.4, e′′ exists. Moreover, Invariants (I1) through (I3) still hold after this
step.)

(f) Color all uncolored Q-closed edges red.

2. If Q is of Type-3, then perform the following steps:

(a) Find an edge f1 of Q such that maxe∈p(f1) w(e) ≤ maxe∈p(f2) w(e) for all edges f2

of Q.
(b) Partition E(Q) − { f1} into two disjoint matchings N1 and N2.
(c) Compute an integer h ∈ {1, 2} such that

∑
f ∈Nh

w(e) ≥ ∑
f ∈N ′

h
maxe∈p(f) w(e),

where h′ is the integer in {1, 2} − {h}.
(d) For each edge f ∈ Nh , perform the following steps:

i. Let Ci and C j be the dependent 4-cycles of p(f).
ii. Compute an edge e ∈ p(f) such that w(e) = maxe′∈p(f) w(e′).

iii. Perform Steps 1c through 1e.
(Comment: The total weight of Q-closed edges in M ′ is at most 6 times the total
weight of edges colored blue at Step 2(d)iii.)

(e) Color all uncolored Q-closed edges red.
(f) For each node Ci of Q incident to no edge in Nh , select an arbitrary edge e′′ ∈

E(Ci) − Mc such that the graph (V (G), M ∪ {e′′}) is a subtour of G; further move
e′′ from Ci to M. (Comment: By Corollary 6.4, e′′ exists. Moreover, Invariants (I1)
through (I3) still hold after this step.)

3. If Q is of Type-4, then perform the following steps:

(a) Partition E(Q) into two disjoint matchings N1 and N2.
(b) Perform Steps 2c through 2e. (Comment: Invariants (I1) through (I3) still hold after

this step.)

410 CHEN AND WANG

The following lemma should be clear from the comments on Step 1c and 2(d)iii:

Lemma 6.5. Immediately after the above steps for Q, Invariants (I 1) through (I 3) and
the following hold:
1. The total weight of Q-closed edges in M ′ is at most 6 times the total weight of blue

Q-closed edges in M ′.
2. Let C ′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each

blue Q-closed edge in M ′, the degree of each endpoint of e in C ′ is at most 2 and no
cycle in C ′ contains e.

The following corollary follows from Lemma 6.5 immediately:

Corollary 6.6. Recall M ′
7 in the comment on Step 7 in Figure 2. Let S be the set of Q-closed

edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/6.

6.2. Type-5 connected components

Let Q be a Type-5 connected component of H1. In order to maintain Invariant (I3), we need
to carefully deal with the endpoint of path Q that is not a dead end of Q. In detail, to process
Q, our algorithm performs the following steps:

1. Let Ci1 and Ci2 be the endpoints of path Q, where node Ci2 is a dead end of Q. Let
f1 = {Ci1 , Ci3} be the edge of Q incident to node Ci1 .
(Comment: If |E(Q)| = 1, then i3 = i2.)

2. Let Ei1 be a set of two nonadjacent edges in E(Ci1) − Mc such that for each ex ∈ Ei1 ,
the graph (V (G), M ∪ {ex }) is a subtour of G. (Comment: By Corollary 6.4, Ei1 exists.)

3. Partition E(Q) into two disjoint matchings N1 and N2.
4. Select an h ∈ {1, 2} uniformly at random.
5. If f1 ∈ Nh , then perform the following steps:

(a) Select an e ∈ p(f1) uniformly at random.
(b) Color e purple, and color the other edge in p(f1) red.
(c) Move the edge in Ei1 adjacent to e from Ci1 to M.
(d) Find an edge e′ ∈ E(Ci3) − Mc adjacent to e such that the graph (V (G), M ∪ {e′})

is a subtour of G; further move e′ from Ci3 to M. (Comment: By Corollary 6.4, e′

exists.)

6. If f1 /∈ Nh , then perform the following step:

(a) If there is an edge e′ ∈ Ei1 such that no edge in p(f1) is adjacent to e′, then move
e′ from Ci1 to M; otherwise, select an e′′ ∈ Ei1 uniformly at random, and move e′′

from Ci1 to M.

(Comment: Obviously, Invariant (I3) still holds after this step.)

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 411

7. If node Ci2 is incident to no edge in Nh , then move an edge e ∈ E(Ci2) − Mc from Ci2

to M such that the graph (V (G), M ∪ {e}) is a subtour of G. (Comment: By Corollary
6.4, e exists.)

8. For each edge f ∈ Nh − { f1}, perform the following steps:

(a) Let Ci and C j be the dependent 4-cycles of p(f).
(b) Select an e ∈ p(f) uniformly at random.
(c) Color e purple, and color the other edge in p(f) red.
(d) Perform Steps 1d and 1e in Section 6.1.

(Comment: After this step, Invariants (I1) and (I2) hold.)
9. Color all uncolored Q-closed edges red.

The following lemma should be clear:

Lemma 6.7. Immediately after the above steps for Q, Invariants (I1) through (I3) and the
following hold:
1. For each Q-closed square edge e in M ′, the probability that e was colored purple during

considering Q is at least 1/4.
2. Let C ′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each

edge e ∈ M ′ colored purple during considering Q, the degree of each endpoint of e in
C ′ is at most 2 and no cycle in C ′ contains e.

Since Q is of Type-5, there is no Q-closed non-square edge. So, the following corollary
follows from Lemma 6.7 immediately:

Corollary 6.8. Let S be the set of Q-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/4.

6.3. Type-6 connected components

Let Q be a Type-6 connected component of H1. In order to maintain Invariant (I3), we need
to carefully deal with both endpoints of path Q. This is the difficulty. To overcome this
difficulty, the idea is to delete a light edge f from Q and then apply the steps in Section 6.2
or the steps in Figure 3 to each connected component (a path) of Q. Here, the word “light”
means that

∑
e∈p(f) w(e) is the smallest among all edges of Q. Because f is light and Q was

originally long (of length 3 or more), the weight of Q is at least two thirds of its original
weight.

In detail, to process Q, our algorithm performs the following steps:

1. Find an edge f1 of Q such that
∑

e∈p(f1) w(e) ≤ ∑
e∈p(f2) w(e) for all edges f2 of Q.

(Comment: We call the two edges in p(f1) Q-closed sacrifice edges. Note that the total
weight of Q-closed square edges is at least three times the total weight of Q-closed
sacrifice edges.)

412 CHEN AND WANG

Figure 3. Steps for processing a Type-1 connected component Q of H1.

2. Color the edges in p(f1) red.
3. Let Q1 and Q2 be the connected components (paths) of Q − { f1}.
4. For each Qh(h ∈ {1, 2}), if |E(Qh)| = 0 then apply the steps in Figure 3 to Qh (by

replacing each occurrence of Q there with Qh here); otherwise, apply the steps in Section
6.2 to Qh (by replacing each occurrence of Q there with Qh here).

5. If there is a Q-closed non-square edge e = {u, v}, in M ′ then perform the followin
step:

(a) If both an edge of C incident to u and an edge of C incident to v were moved to M
at Step 4, then color e yellow; otherwise, color e red.

The following lemma should be clear:

Lemma 6.9. Immediately after the above steps for Q, Invariants (I1) through (I3) still
holds, and Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.10. Let S be the set of Q-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/6.

Proof: Let S1 be the set of Q-closed square edges in M ′. Let S2 be the set of Q-closed
sacrifice edges. Then, by our choice of Q-closed sacrifice edges, w(S1 − S2) ≥ 2w(S1)/3.
On the other hand, E[w((S1 − S2) ∩ M ′

7)] ≥ w(S1 − S2)/4 by Lemma 6.9. So, E[w((S1 −
S2) ∩ M ′

7)] ≥ w(S1)/6. It remains to prove that for every e ∈ S − S1, Pr[e ∈ M ′
7] ≥ 1

6 .
Suppose e ∈ S − S1. By Lemma 6.7 and Invariant (I3), e is colored yellow at Step 5

above with probability at least 1
4 , and in turn Pr[e ∈ M ′

6] ≥ 1
4 (recall M ′

6 in the comment on
Step 6 in Figure 2). Moreover, Pr[e ∈ M ′

7 | e ∈ M ′
6] ≥ 2

3 , because Fact 6.1 guarantees that
after Step 6 in Figure 2, no cycle C in C can satisfy both e ∈ E(C) and |E(C) ∩ M ′| = 2.
Hence, Pr[e ∈ M ′

7] ≥ 1
6 .

6.4. Type-7 or Type-8 connected components

Let Q be a Type-7 or Type-8 connected component of H1. Again, in order to maintain
Invariant (I3), we need to carefully deal with the two nodes of Q. Moreover, since Q has
very few edges, we cannot afford to delete any edge of Q. Fortunately, since Q has only

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 413

two nodes, things turn out to be easy. In detail, to process Q, our algorithm performs the
following steps:

1. Let Ci and C j be the nodes of Q (4-cycles of G).
2. If Q is of Type-7, then perform the following steps:

(a) Let {{u1, v1}, {u2, v2}}sp and {{u2, v2}, {u3, v3}}sp be the square pairs corresponding
to the edges of Q, where {u1, u2, u3} ⊆ V (Ci) and {v1, v2, v3} ⊆ V (C j).

(b) Let u4 be the vertex in V (Ci)−{u1, u2, u3}. Letv4 be the vertex in V (Ci)−{v1, v2, v3}.
(c) Let e1 and e2 be two nonadjacent edges in E(Ci) − Mc such that the graphs

(V (G), M ∪{e1}) and (V (G), M ∪{e2}) are subtours of G. (Comment: By Corollary
6.4, e1 and e2 exist.)

(d) Choose two nonadjacent edges e3 and e4 of C j as stated in Lemma 6.3.
(e) Let � be the set of all (ordered) pairs (ex , ey) such that (1) ex ∈ {e1, e2}, (2) ey ∈

{e3, e4}, and (3) there is a k ∈ {1, 2, 3, 4} such that both uk and vk are of degree 1
in the graph C − {ex , ey}. (Comment: By a simple case-analysis where one looks at
which edges of Ci are in {e1, e2} and which edges of C j are in {e3, e4}, we can prove
that either |�| = 2 or |�| = 4.)

(f) Select a pair (ex , ey) from � uniformly at random.
(g) Move ex from Ci to M, and move ey from C j to M.

(Comment: After this step, Invariants (I1) through (I3) still hold. In particular, In-
variant (I3) can be seen by a simple case-analysis where one looks at which edges
of Ci are in {e1, e2} and which edges of C j are in {e3, e4}.)

(h) If there is a unique k ∈ {1, 2, 3} such that both uk and vk have just become of degree
1 in C, then color edge {uk, vk} yellow.

(i) If there are two integers k ∈ {1, 2, 3} such that both uk and vk have just become
of degree 1 in C, then select one of them uniformly at random and color it yellow.
(Comment: For each Q-closed edge e, the probability that e is colored yellow at Step
2h or 2i is at least 1/4. This can be seen by a simple case-analysis where one looks
at which edges of Ci are in {e1, e2} and which edges of C j are in {e3, e4}.)

(j) Color all uncolored Q-closed edges red.

3. If Q is of Type-8, then perform the following steps:

(a) Let {{u1, v1}, {u2, v2}}sp be the square pair corresponding to the edge of Q, where
{u1, u2} ⊆ V (Ci) and {v1, v2} ⊆ V (C j).

(b) Let u3, u4 be an ordering of the two nodes in V (Ci) − {u1, u2} and v3, u4 be an
ordering of the two nodes in V (C j) − {v1, v2} such that if there is a Q-closed non-
square edge in M ′, then that edge is {u3, v3}. (Comment: See Statement 3b in Fact
6.2.)

(c) Perform Steps 2c through 2g.
(d) If there is a unique k ∈ {1, 2, 3} such that both uk and vk have just become of degree

1 in Ci and {uk, vk} is a Q-closed edge in M ′, then color edge {uk, vk} yellow.

414 CHEN AND WANG

(e) If there are two integers k ∈ {1, 2, 3} such that both uk and vk have just become of
degree 1 in C and {uk, vk} is a Q-closed edge in M ′, then select one of them uniformly
at random and color it yellow.
(Comment: For each Q-closed edge e, the probability that e is colored yellow at Step
3d or 3e is at least 1/4. This can be seen by a simple case-analysis where one looks
at which edges of Ci are in {e1, e2} and which edges of C j are in {e3, e4}.)

(f) Color all uncolored Q-closed edges red.

The following should be clear from the comments on Steps 2i and 3e.

Lemma 6.11. Immediately after the above steps for Q, Invariants (I 1) through (I 3) and
the following hold:
1. For each Q-closed edge e in M ′, the probability that e was colored yellow during

considering Q is at least 1/4.
2. Let C ′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each

edge e ∈ M ′ colored yellow during considering Q, the degree of each endpoint of e in
C ′ is at most 2 and each cycle in C ′ containing e contains at least three edges in M ′.

Corollary 6.12. Let S be the set of Q-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/6.

Proof: It suffices to prove that for every e ∈ S, Pr[e ∈ M ′
7] ≥ 1

6 . Suppose e ∈ S. By
Lemma 6.11, Pr[e ∈ M ′

6] ≥ 1
4 . Moreover, Pr[e ∈ M ′

7 | e ∈ M ′
6] ≥ 2

3 by Statement 2 in
Lemma 6.11. Thus, Pr[e ∈ M ′

7] ≥ 1
6 .

6.5. Type-9 connected components

Let Q be a Type-9 connected component of H1. Yet again, in order to maintain Invariant
(I3), we need to carefully deal with the endpoints of Q. This is not difficult because there is
no Q-closed non-square edge. In detail, to process Q, our algorithm performs the following
steps:

1. Let Ci1 and Ci2 be the endpoints of path Q. Let Ei1 be a set of two nonadjacent edges in
E(Ci1) − MC such that for each ex ∈ Ei1 , the graph (V (G), M ∪ {ex }) is a subtour of G.
(Comment: By Corollary 6.4, Ei1 exists.)

2. Choose a set Ei2 of two nonadjacent edges in E(Ci2) − Mc such that for each ex ∈ Ei1

and for each ey ∈ Ei2 , the graph (V (G), M ∪ {ex , ey}) is a subtour of G. (Comment: By
Lemma 6.3, Ei2 exists.)

3. Let Ci3 be the other node of Q than Ci1 and Ci2 .
4. Select a Q-closed square edge e = {u, v} uniformly at random. (Comment: Since there

are exactly four Q-closed square edges in M ′, each Q-closed square edge is selected at
this step with probability 1/4.)

5. Color e purple and color the other Q-closed square edges in M ′ red.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 415

6. Let i4 be the integer in {i1, i2} with {u, v} ∩ V (Ci4)
= ∅. Let i5 be the other integer in
{i1, i2} − {i4}.

7. If there is an edge e′ ∈ Ei5 adjacent to no Q-closed square edge in M ′, then move e′

from Ci5 to M; otherwise, select an e′ ∈ Ei5 uniformly at random, and move e′ from Ci5

to M.
8. Move the edge in Ei4 incident to u or v from Ci4 to M. (Comment: After this step,

(V (G), M) remains to be a subtour of G by our choice at Step 2.)
9. Move an edge e′′ of Ci3 incident to u or v from Ci3 to M such that the graph (V (G), M)

remains to be a subtour of G.
(Comment: By Corollary 6.4, e′′ exists. Moreover, after this step, Invariants (I1) through
(I3) still hold. In particular, Invariant (I3) can be seen by a simple case-analysis where
one looks at which edges of Ci1 are in Ei1 and which edges of Ci2 are in Ei2 .)

The following lemma should be clear:

Lemma 6.13. Immediately after the above steps for Q, Invariants (I 1) through (I 3) still
holds, and Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.14. Let S be the set of Q-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/4.

6.6. Type-10 connected components

Let Q be a Type-10 connected component of H1. Let e1 be the unique Q-closed non-square
edge in M ′. Still again, in order to maintain Invariant (I3), we need to carefully deal with
the endpoints of Q. This is not easy because of the existence of e1. Fortunately, since there
are only five Q-closed edges in M ′, things turn out to be easy. In detail, to process Q, our
algorithm performs the following steps:

1. Perform Steps 1 through 3 in Section 6.5 in turn.
2. If w(e1) ≥ w(Q)/3, then color e1 red; otherwise, find an edge f1 of Q with

∑
e∈p(f1) w(e)

≤ w(Q)/3, and color the two edges in p(f1) red.
(Comment: We call the edge(s) colored red at Step 2 Q-closed sacrifice edge(s).)

3. If e1 is red, then perform Steps 4 through 9 in Section 6.5 in turn.
(Comment: See Lemma 6. 13.)

4. If e1 is uncolored and Ei1 or Ei2 contains an edge adjacent to a Q-closed square edge in
M ′, then perform Steps 3 through 5 in Section 6.3 in turn. (Comment: See Lemma 6.9.)

5. If e1 is uncolored and both Ei1 and Ei2 contain an edge adjacent to no Q-closed square
edge in M ′, then perform the following steps:

(a) Select an uncolored Q-closed edge e2 at random in such a way that e2 = e1 with
probability 1/2 and each of the two uncolored Q-square edges is e2 with probability
1/4.

416 CHEN AND WANG

(b) If e2 = e1, then color e1 orange, move the two edges in Ei1 ∪ Ei2 adjacent to e1

from C to M, and move an edge e′ of Ci3 from C to M such that the graph (V (G), M)
remains to be a subtour of G. (Comment: By Corollary 6.4, e′ exists.)

(c) If e2
= e1, then color e2 purple, move the two edges in Ei1 ∪ Ei2 not adjacent to e1

from C to M, and move an edge e′ of Ci3 from C to M such that the graph (V (G), M)
remains to be a subtour of G. (Comment: By Corollary 6.4, e′ exists.)

(d) Color all uncolored edges red.

The following lemma should be clear:

Lemma 6.15. Immediately after the above steps for Q, Invariants (I 1) through (I 3) still
holds, and Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.16. Let S be the set of Q-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/6.

Proof: Let S1 be the set of Q-closed square edges in M ′. Let S2 be the set of Q-closed
sacrifice edges. Then, by our choice of Q-closed sacrifice edges, w(S − S2) ≥ 2w(S)/3.
Thus, it suffices to prove that for each edge e ∈ S − S2, Pr[e ∈ M ′

7] ≥ 1
4 . By Lemma 6.15,

Pr[e ∈ M ′
7] ≥ 1

4 for every e ∈ S1 − S2. So, it remains to prove that if the unique Q-closed
non-square edge e1 is in S − S2, then Pr[e1 ∈ M ′

7] ≥ 1
4 .

Suppose e1 ∈ S − S2. Then, either the condition in Step 4 or the condition in Step 5 is
true. We distinguish two cases as follows:

Case 1: The condition in Step 4 is true. Then, as observed in the proof of Corollary 6.10,
e1 is colored yellow at Step 4 (more precisely at Step 5 in Section 6.3) with probability
at least 1

4 , and hence Pr[e1 ∈ M ′
6] ≥ 1

4 . A crucial observation is that if the event e1 ∈ M ′
6

occurs, then after Step 6 in Figure 2, no cycle of C contains e1 and so e1 ∈ M ′
7. This can

be seen from the condition in Step 4 by a simple case-analysis where one looks at which
edges of Ci1 are in Ei1 and which edges of Ci2 are in Ei2 . Thus, Pr[e1 ∈ M ′

7 | e1 ∈ M ′
6] = 1

and in turn Pr[e1 ∈ M ′
7] ≥ 1

4 .
Case 2: The condition in Step 5 is true. Then, by Steps 5a and 5b, e1 is colored orange

at Step 5b with probability 1
2 , and in turn Pr[e1 ∈ M ′

6] ≥ 1
2 . Moreover, if the event

e1 ∈ M ′
6 occurs, then after Step 6 in Figure 2, each cycle C in C with e ∈ E(C) satisfies

|E(C) ∩ M ′ | ≥ 3 by Fact 6.1. This implies that Pr[e1 ∈ M ′
7 | e1 ∈ M ′

6] ≥ 2
3 . Thus,

Pr[e1 ∈ M ′
7] ≥ 1

4 in this case, too.

6.7. A main lemma

We are now ready to prove the following:

Lemma 6.17. Immediately after Step 4 in Figure 2 (i.e., immediately after processing the
4-cycles C1, . . . , C�), the following hold:

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 417

1. The graph (V (G), M) is a subtour of G.

2. Each Ci (1 ≤ i ≤ �) becomes a path in C.

3. Let e be a 4-cycle-pendent edge in M ′. Then, with probability at least 1/2, the endpoint
of e in a Ci (1 ≤ i ≤ �) is of degree 1 in C.

4. Let S be the set of 4-cycle-closed edges in M ′. Then, E[w(S ∩ M ′
7)] ≥ w(S)/6.

Proof: The first three statements are obviously true from Invariants (I1) through (I3) and
the lemmas in Sections 6.1 through 6.6. To see Statement 4, let S1 be the set of Q-closed
edges where Q ranges over all connected components of H1. Then, by the corollaries in
Sections 6.1 through 6.6, E[w(S1 ∩ M ′

7)] ≥ w(S1)/6. So, it suffices to show that for each
e ∈ S − S1, Pr[e ∈ M ′

7] ≥ 1
6 .

Suppose that e = {u, v} is an edge in S − S1. Then, with probability at least 1
4 , both u and

v are of degree 1 in C immediately after Step 4 in Figure 2. This follows from Invariant (I3)
and the lemmas in Sections 6.1 through 6.6 immediately. So, Pr[e ∈ M ′

6] ≥ 1
4 . Moreover,

if the event e ∈ M ′
6 occurs, then after Step 6 in Figure 2, each cycle C in C with e ∈ E(C)

satisfies |E(C) ∩ M ′| ≥ 3 by Fact 6.1. This implies that Pr[e ∈ M ′
7 | e ∈ M ′

6] ≥ 2
3 . Thus,

Pr[e ∈ M ′
7] ≥ 1

6 .

7. Ideas for processing non-4-cycles

For convenience, we transform each edge {u, v} in M ′ to an ordered pair (u, v), where the
Ci with u ∈ V (Ci) and the C j with v ∈ V (C j) satisfy that i > j .

Let i be an integer in {� + 1, . . . , r} A Ci -settled edge is an edge (u, v) ∈ M ′ such that
u ∈ V (Ci) (and so v ∈ V (C j) for some j < i). A Ci -settled edge (u, v) is active at time
i if the degree of v in C at time i is 1. A Ci -settled vertex is a vertex of Ci incident to a
Ci -settled edge.

A matching-pair in Ci . is an (unordered) pair {A1, A2} such that both A1 and A2 are
(possibly empty) matchings in Ci . An available matching-pair at time i is a matching-
pair {A1, A2} in Ci such that both A1 and A2 are available at time i. A maximal available
matching-pair at time i is a matching-pair {A1, A2} in Ci such that both A1 and A2 are
maximal available sets at time i.

To break the cycles C�+1, . . . , Cr our algorithm processes them in this order. While
processing Ci , our algorithm colors zero or more Ci -settled vertices red and computes an
available matching-pair {A1, A2} at time i satisfying the following two conditions (and
additionally some other conditions to be specified later):

(C1) Both A1 and A2 are nonempty.
(C2) Each non-red vertex of Ci is incident to at least one edge in A1 ∪ A2.

The details of coloring Ci -settled vertices and computing {A1, A2} will be given later. After
computing {A1, A2}, our algorithm then selects an integer h ∈ {1, 2} uniformly at random,
and move the edges of Ah from Ci to M. Since we only color some Ci -settled vertices red

418 CHEN AND WANG

and move the edges of Ah to M while processing Ci , we indeed maintain the following
invariants:

(I4) At time i(� + 1 ≤ i ≤ r), M − Mc consists of some edges of C1, . . . Ci−1, and the
graph (V (G), M) is a subtour of G.

(I5) For each i ∈ {� + 1, . . . , r} and for each Ci -settled edge e, the probability that e is
active at time i is at least 1/2.

Note that Invariants (I4) and (I5) hold at time � + 1 by Lemma 6.17.

7.1. Serious pairs, critical pairs, and dangerous pairs

Throughout this subsection, fix a Ci with � + 1 ≤ i ≤ r .
A serious pair at time i is an unordered pair {(u1, v1), (u2, v2)} of Ci -settled edges satis-

fying the following condition:

• At time i, some connected component of C is a path between v1 and v2. (Comment: By
this condition, both (u1, v1) and (u2, v2) are active at time i.)

Obviously, no edge in M ′ is contained in two or more serious pairs at time i.
A matching-pair {A1, A2} in Ci covers a vertex u of Ci if at least one edge in A1 ∪ A2

is incident to u. A matching-pair {A1, A2} in Ci favors a vertex u of Ci if A1 contains an
edge e1 ∈ E(Ci) incident to u and A2 contains an edge e2 ∈ E(Ci) incident to u (possibly
e1 = e2). A matching-pair {A1, A2} in Ci is good for a serious pair p = {(u1, v1), (u2, v2)}
at time i if {A1, A2} satisfies at least one of the following three conditions:

(G1) For each h ∈ {1, 2}, Ci − Ah has no path from u1 to u2 or at least one of u1 and u2

has degree 2 in Ci − Ah .
(G2) {A1, A2} favors both u1 and u2.

(Comment: If Condition (G1) or (G2) is satisfied, we say that {A1, A2} is strongly
good for p.)

(G3) {A1, A2} favors exactly one of u1 and u2.
(Comment: If this condition is satisfied but Condition (G1) is not, we say that {A1, A2}
is weakly good for p.)

A critical pair at time i is a serious pair p = {(u1, v1), (u2, v2)} at time i such that there
is a path Q from u1 to u2 in Ci with |E(Q)| ≤ 3. We call the path Q a witness path of the
critical pair p. Obviously, if |E(Ci)| ≥ 5 and {u1, u2} ∈ E(Ci), then Q is unique. Similarly,
if |E(Ci)| ≥ 7, then Q is unique. Hereafter, when |E(Ci)| ≥ 5 and p is a critical pair at time
i with a unique witness path, we will use the following notations and definitions:

• Q(p) denotes the unique witness path of p.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 419

• Q̃(p) denotes the extended witness path of p, i.e., the path obtained from Q(p) by adding
the two edges in E(Ci) − E(Q(p)) incident to an endpoint of Q(p).

• If |E(Q(p))| = 1, then a matching-pair {A1, A2} in Ci is harmful for p if either A1 ∩
E(Q̃(p)) = {e1, e2} and A2 ∩ E(Q̃(p)) = ∅, or A2 ∩ E(Q̃(p)) = {e1, e2} and A1 ∩
E(Q̃(p)) = ∅, where e1 and e2 are the two edges in E(Q̃(p)) − E(Q(p)).

• If |E(Q(p)) = 3, then a matching-pair {A1, A2} in Ci is harmful for p if either A1 ∩
E(Q̃(p)) = {e1, e2} and A2 ∩ E(Q̃(p)) = {e3}, or A2 ∩ E(Q̃(p)) = {e1, e2} and A1 ∩
E(Q̃(p)) = {e3}, where e1 and e2 are the two edges in E(Q̃(p)) − E(Q(p)) and e3 is the
edge of Q(p) not incident to an endpoint of Q(p).

Lemma 7.1. An arbitrary maximal available matching-pair at time i is strongly good for
every serious but not critical pair at time i.

Proof: Immediate from Corollary 5.2 and Condition (G1).

Using Corollary 5.2, we can prove the following lemma by a simple case-analysis:

Lemma 7.2. Suppose that either |E(Ci)| ≥ 5 and p = {(u1, v1), (u2, v2)} is a critical
pair at time i with {u1, u2} ∈ E(Ci), or |E(Ci)| ≥ 7 and p = {(u1, v1), (u2, v2)} is a critical
pair at time i with {u1, u2} /∈ E(Ci). Then, the following hold:
1. Suppose that a maximal available matching-pair {A1, A2} at time i covers all vertices

of Q(p) but is not good for p. Then, {A1, A2} is harmful for p.

2. If a matching-pair {A1, A2} in Ci covers all vertices of Q(p) and is not harmful for p,

then every matching-pair {B1, B2} in Ci with A1 ⊆ B1 and A2 ⊆ B2 covers all vertices
of Q(p) and is not harmful for p.

Lemma 7.3. Let p be a critical pair at time i having a witness path Q with |E(Q)| = 2.

Let {A1, A2} be a matching-pair in Ci covering all vertices of Q. Then, {A1, A2} is good
for p.

Proof: The lemma is obvious if |E(Ci)| = 3. So, suppose |E(Ci)| ≥ 5. If {A1, A2}
satisfies Condition (G1) for p, then we are done. So, assume that {A1, A2} does not satisfy
Condition (G1) for p. Then, for some h ∈ {1, 2}, Ah contains both the edge in E(Ci)− E(Q)
incident to u1 and the edge in E(Ci)− E(Q) incident to u2. Moreover, since {A1, A2} covers
all vertices of Q, one edge in Q is in A1 ∪ A2. Thus, {A1, A2} is weakly good for p.

Lemma 7.4. Suppose that |E(Ci)| ≥ 5. Let p = {(u1, v1), (u2, v2)} be a critical pair at
time i having no witness path Q satisfying the following condition:

(C3) {e1, e2} is an available set at time i, where e1 and e2 are the two edges in E(Ci)−E(Q)
incident to an endpoint of Q.

Let {A1, A2} be a maximal available matching-pair at time i covering all vertices of Q.

Then, {A1, A2} is good for p.

420 CHEN AND WANG

Proof: By Lemma 7.3, we may assume that p has no witness path of length 2. In turn,
if {u1, u2} ∈ E(Ci) or |E(Ci)| ≥ 7, then {A1, A2} cannot be harmful for p (because the
unique witness path Q of p does not satisfy Condition (C3)), and hence is good for p by
Lemmas 7.2. So, it suffices to consider only the case where |E(Ci)| = 6 and the distance
between u1 and u2 in Ci is 3. In this case, one can easily verify that {A1, A2} is good for p.

Because of Lemmas 7.3 and 7.4, we define a dangerous pair at time i to be a critical pair
at time i that has a witness path Q of length 1 or 3 satisfying Condition (C3). A dangerous
edge at time i is a Ci -settled edge contained in a dangerous pair at time i. A dangerous
vertex at time i is a vertex u of Ci incident to a dangerous edge at time i.

7.2. A useful procedure

Figure 4 shows a procedure useful for computing an available matching-pair at time i that
covers the vertices of a given subgraph P of Ci . In most cases, we call FindMatch(i, ∅, ∅, Ci ,

e), where e is an available edge at time i.

Lemma 7.5. For the output (Z1, Z2) of FindMatch(i, Y1, Y2, P, e), the following hold:
1. {Z1, Z2} is an available matching-pair at time i with Z1 ∩ Z2 = ∅.

2. {Z1, Z2} covers all vertices in V (P) − {u2}.
3. {Z1, Z2} does not cover u2 only if P is a path and {Y1, Y2} does not cover u2.

4. If P = Ci or |E(P)| ≥ 4, then neither Z1 − Y1 nor Z2 − Y2 is empty.
5. If P
= Ci (i.e., P is a path), then e ∈ Z1.

6. For every h ∈ {1, 2}, if Yh − Zh
= ∅, then Yh − Zh consists of only the edge e′ ∈
E(Ci) − E(P) incident to u2 and {Z1, Z2} covers the other endpoint of e′ than u2.

7. If P
= Ci , then there is no j ∈ {1, 2, . . . , t −2−b} such that for some h ∈ {1, 2}, Zh ∩
{e j , e j+1, e j+2} = {e j , e j+2} and Zh′ ∩ {e j , e j+1, e j+2}, where h′ is the integer in
{1, 2} − {h}, b = 0 if the edge e′ ∈ E(Ci) − E(P) incident to u2 does not belong to
Y1 ∪ Y2, and b = 1 if e′ ∈ Y1 ∪ Y2.

8. If P = Ci and |E(Ci)| ≥ 5, then there is no j ∈ {2, 3, . . . , t − 3} such that for some
h ∈ {1, 2}, Zh ∩ {e j , e j+1, e j+2} = {e j , e j+2} and Zh′ ∩ {e j , e j+1, e j+2} = ∅, where h′

is the integer in {1, 2} − {h}.
9. If |E(P)| ≥ 6, then it is impossible that Z1∩{e1, . . . , e5} = {e3} and Z2∩{e1, . . . ,e5} =

{e1, e5}.
10. If P = Ci , |E(Ci)| ≥ 6, and e4 is available at time i, then it is impossible that

Z1 ∩ {e1, . . . , e5} = {e1, e5} and Z2 ∩ {e1, . . . , e5} = {e3}.

Proof: The first six statements are obvious. Statements 7 and 8 follows from Step 3b
immediately.

To see Statement 9, suppose that |E(P)| ≥ 6. For a contradiction, assume that Z1 ∩
{e1, . . . , e5} = {e3} and Z2∩{e1, . . . , e5} = {e1, e5}. Then, since e1 was put to Z1 at Step 3a,
it holds that at the beginning of Step 4, Z1∩{e1, . . . , e3} = {e1, e3} and Z2∩{e1 . . . , e3} = ∅,
which is impossible by Step 3b.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 421

Figure 4. A procedure useful for computing A1 and A2.

To see Statement 10, suppose that P = Ci and |E(Ci)| ≥ 6. For a contradiction,
assume that Z1 ∩ {e1, . . . , e5} = {e1, e5} and Z2 ∩ {e1, . . . , e5} = {e3}. Since P =
Ci , we have Y1 = Y2 = ∅. So, by procedure FindMatch, neither {e2} nor {e1, e4} is
available at time i. For each e j with 1 ≤ j ≤ 4 let v j and v j+1 be the endpoints
of e j . Let H3 be the graph (V (G), M) at time i. Note that the degree of each v j (1 ≤
j ≤ 5) in H3 is 1. Since {e2} is not available at time i, some connected component
of H3 is a path between v2 and v3. On the other hand, since both e1 and e4 are avail-
able at time i but {e1, e4} is not, some connected component of H3 is a path between v2

and some v j ∈ {v4, v5}. This leads to a contradiction because no path can have three
endpoints.

422 CHEN AND WANG

Figure 5. Processing Ci when there is no dangerous pair at time i.

8. Details of processing non-4-cycles

If there is no dangerous pair at time i, then our algorithm colors no vertex of Ci red and
processes Ci as shown in figure 5.

Lemma 8.1. Let S be the set of Ci -settled edges. Suppose that there is no dangerous pair
at time i and our algorithm processes Ci as shown in figure 5. Recall M ′

7 in the comment
on Step 7 in figure 2. Then, E[w(S ∩ M ′

7)] ≥ w(S)/6.

Proof: Let S1 be the set of edges in S that are active at time i. Let S2 be the set of edges in S1

that are serious at time i. Consider an edge e = (u, v) in S. By Invariant (I5), Pr[e ∈ S1] ≥ 1
2 .

So, it remains to show that Pr[e ∈ M ′
7 | e ∈ S1] ≥ 1

3 . To this end, we distinguish four cases
as follows:

Case 1: e ∈ S1 − S2. In this case, the event e ∈ M ′
6 occurs with probability at least 1

2 (recall
M ′

6 in the comment on Step 6 in figure 2). Moreover, if the event e ∈ M ′
6 occurs, then

after Step 6 in figure 2, each cycle C in C with e ∈ E(C) satisfies |E(C) ∩ M ′| ≥ 3. This
implies that Pr[e ∈ M ′

7 | e ∈ M ′
6] ≥ 2

3 . Thus, Pr[e ∈ M ′
7 | e ∈ S1 − S2] ≥ 1

3 .
Case 2: e ∈ S2. Let D1 be the event that {A1, A2} satisfies Condition (G1) for the serious pair

p = {e, e′} at time i containing e. Let D2 be the event that {A1, A2} satisfies Condition
(G2) for p. Let D3 be the event that {A1, A2} satisfies Condition (G3) for p. By Lemmas
7.1, 7.3, and 7.4, at least one of the following three cases occurs:

Case 2.1: Event D1 occurs. In this case, the event e ∈ M ′
6 occurs with probability 1

2 .
Moreover, if the event e ∈ M ′

6 occurs, then after Step 6 in figure 2, each cycle C in C
with e ∈ E(C) satisfies |E(C) ∩ M ′| ≥ 4. This implies that Pr[e ∈ M ′

7 | e ∈ M ′
6] 3

4 .
Thus, Pr[e ∈ M ′

7 | e ∈ S2 ∧ D1] ≥ 3
8 .

Case 2.2: Event D2 occurs. In this case, the event e ∈ M ′
6 occurs with probability 1.

Obviously, Pr[e ∈ M ′
7 | e ∈ M ′

6] ≥ 1
2 . So, Pr [e ∈ M ′

7 | e ∈ S2 ∧ D2] ≥ 1
2 .

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 423

Case 2.3: Event D3 occurs. In this case, the probability that e ∈ M ′
6 occurs depends on

whether {A1, A2} favors u or not. If {A1, A2} favors u, then the event e ∈ M ′
6 always

occurs and Pr[e ∈ M ′
7 | e ∈ M ′

6] = 1
3 (because e is colored green at Step 3 in figure 5).

On the other hand, if {A1, A2}, does not favor u, then the event e ∈ M ′
6 occurs with

probability 1/2 and Pr[e ∈ M ′
7 | e ∈ M ′

6] = 2
3 (because e is colored black at Step 3 in

figure 5). Thus, no matter wheter {A1, A2} favors u or not, Pr[e ∈ M ′
7 | e ∈ S2 ∧ D3] ≥

1
3 .

By Cases 2.1 through 2.3, we always have Pr[e ∈ M ′
7 | e ∈ S2] ≥ 1/3. Combining this

with the result in Case 1, we now have Pr[e ∈ M ′
7 | e ∈ S1] ≥ 1

3 .

Hereafter, we assume that there are at least one dangerous pair at time i. Then, |E(Ci)| ≥ 5.

8.1. The case with only one dangerous pair

In this case, our algorithm colors no vertex of Ci red. Let p = {(u1, v1), (u2, v2)} be the
dangerous pair at time i. Note that if |E(Ci)| = 5, then {u1, u2} ∈ E(Ci).

Lemma 8.2. Suppose that {u1, u2} ∈ E(Ci). Then, the following hold:
1. If |E(Ci)| = 5, then we can choose an ordering e1, . . . , et of the edges in Ci (appearing

in Ci in this order) such that ei is available at time i and {u1, u2} = e3.

2. If |E(Ci)| ≥ 6, then we can choose an ordering e1, . . . , et of the edges in Ci (appearing in
Ci in this order) such that e1 is available at time i and {u1, u2} = e j for some j ∈ {3, 4}.

3. Let (Z1, Z2) be the output of FindMatch (i, ∅, ∅, Ci , e1) where the ordering e1, . . . , et

in Statement 1 or 2 of this lemma is used at Step 1 in figure 4. Then, an arbitrary
maximal available matching-pair {A1, A2} at time i with Z1 ⊆ A1 and Z1 ⊆ A2 satisfies
Conditions (C1) and (C2) and is good for p.

Proof: Statements 1 and 2 follow from Lemma 5.1. To see Statement 3, first observe that
{A1, A2} satisfies Conditions (C1) and (C2) by the first four statements in Lemma 7.5. Now,
by Statement 1 in Lemma 7.2 and Statement 8 in Lemma 7.5, {A1, A2} is good for p.

Lemma 8.3. Suppose that {u1, u2} /∈ E(Ci) and |E(Ci)| ≥ 7. Then, we can easily
compute a maximal available matching-pair {A1, A2} at time i that satisfies Conditions
(C1) and (C2) and is good for p. Moreover, {A1, A2} is good for every dangerous pair p′

such that Q(p′) is of length 1 and Q̃(p) and Q̃(p′) are vertex-disjoint.

Proof: Let p′ be as described in the lemma. We distinguish two cases as follows.

Case 1: Some edge e of Q(p) incident to an endpoint of Q(p) is available at time i. Let
e1, . . . , et be an ordering of the edges in Ci (appearing in Ci in this order) such that the
edges in Q(p) are e2, e3, e4 and e4 = e. By definition, {e1, e5} is available. Let (Z1, Z2) be
the output of FindMatch (i, ∅, ∅, Ci , e1) where the ordering e1, . . . , et is used at Step 1 in

424 CHEN AND WANG

figure 4. Let {A1, A2} be a maximal available matching-pair at time i with Z1 ⊆ A1 and
Z2 ⊆ A2. Then, by the first four statements in Lemma 7.5, {A1, A2} satisfies Conditions
(C1) and (C2). Moreover, by Lemma 7.2 and Statements 9 and 10 in Lemma 7.5, {A1, A2}
is good for p. Furthermore, by Lemma 7.2 and Statement 8 in Lemma 7.5, {A1, A2} is
good for p′.

Case 2: No edge of Q(p) incident to an endpoint of Q(p) is available at time i . Let e1, . . . , e5

be an ordering of the edges in the extended witness path of p (appearing in Ci in this
order) such that E(Q(p)) = {e2, e3, e4}. Then, neither {e2} nor {e4} is available. By
Lemma 5.3, both {e1, e3} and {e3, e5} are available at time i . So, to compute {A1, A2},
we can proceed as follows: Initialize Y1 = {e1, e3} and Y2 = {e5}; Remove e1 from Y1

and let (A1, A2) be the output of FindMatch(i, Y1, Y2, P, e1), where P is the unique path
in Ci − {e2, . . . , e5} with |E(P)| ≥ 1. Then, {e1, e3} ⊆ A1 by Statements 5 and 6 in
Lemma 7.5. In turn, {A1, A2} is good for p by Lemma 7.2. Moreover, by the first four
statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2). Furthermore, by
Lemma 7.2 and Statement 7 in Lemma 7.5, {A1, A2} is good for p′.

Lemma 8.4. Suppose that {u1, u2} /∈ E(Ci) and |E(Ci)| = 6. Then, we can easily
compute a maximal available matching-pair {A1, A2} at time i that satisfies Conditions
(C1) and (C2) and is good for p.

Proof: Let e1, . . . , e6 be the edges in Ci (appearing in Ci in this order), where e1 and e2

are incident to u1, and e4 and e5 are incident to u2. Then, by definition, {e1, e5} or {e2, e4}
is available at time i . If both {e1, e5} and {e2, e4} are available at time i , then we are done
by first setting A1 = {e1, e5} and A2 = {e2, e4} and further extending them to maximal
available sets at time i . So, assume that either {e1, e5} or {e2, e4} is available at time i . We
assume that {e1, e5} is available at time i but {e2, e4} is not; the other case is symmetric. We
distinguish two cases as follows:

Case 1: Neither {e2} nor {e4} is available at time i. Then, by Lemma 5.3, {e1, e3} is available
at time i. So, we are done by first setting A1 = {e1, e3} and A2 = {e5} and further
extending them to maximal available sets at time i.

Case 2: e2 or e4 is available at time i . We assume that e4 is available at time i ; the other
case is symmetric. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci , e1) where the
ordering e1, e2, . . . , e6 is used at Step 1 in figure 4. Then, by the first four statements in
Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2). Moreover, {A1, A2} is good for
p, by Lemma 7.2, Statements 9 and 10 in Lemma 7.5, and the fact that {e2, e4} is not
available at time i .

Now, based on Lemmas 8.2, 8.3, 8.4, and 7.1, our algorithm processes Ci as shown in
figure 6.

Lemma 8.5. Let S be the set of Ci -settled edges. Suppose that there is exactly one danger-
ous pair at time i and our algorithm processes Ci as shown in figure 6. Then, ε[w(S ∩ M ′

7)] ≥
w(S)/6.

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 425

Figure 6. Processing Ci when there is only one dangerous pair.

Figure 7. Processing Ci when there are two or three dangerous pairs.

Proof: Same as the proof of Lemma 8.1

8.2. The case with two or three dangerous pairs

In this case, our algorithm colors no vertex of Ci red and processes Ci as shown in figure 7.

Lemma 8.6. Let S be the set of Ci -settled edges. Suppose that there are two or three
dangerous pairs at time i and our algorithm processes Ci as shown in figure 7. Then,

ε[w(S ∩ M ′
7)] ≥ 5w(S)/36.

Proof: Let S1 be the set of edges in S that are active at time i. Let S2 be the set of edges
in S1 that are dangerous at time i. Consider an edge e = (u, v) in S. By Invariant (I5),
Pr[e ∈ S1] ≥ 1

2 . So, it remains to show that Pr[e ∈ M ′
7 | e ∈ S1] ≥ 5

18 . By the proof
of Lemma 8.1, Pr[e ∈ M ′

7 | e ∈ S1 − S2] ≥ 1
3 > 5

18 . In turn, it remains to show that
Pr[e ∈ M ′

7 | e ∈ S2] ≥ 5
18 .

Let b be the number of dangerous pairs at time i. Let D1 be the event that e ∈ S2 and the
dangerous pair containing e is selected at Step 1 in figure 7. Let D2 be the event that e ∈ S2

but the dangerous pair containing e is not selected at Step 1 in figure 7. Note that D1 occurs
with probability 1

b . Pr[e ∈ S2] and D2 occurs with probability (1 − 1
b). Pr[e ∈ S2]. By the

proof of Lemma 8.1, Pr[e ∈ M ′
7 | D1] ≥ 1

3 . On the other hand, Pr[e ∈ M ′
7 | D2] ≥ 1

4 . Thus,
Pr[e ∈ M ′

7 | e ∈ S2] ≥ 1
b · 1

3 + (1 − 1
b) · 1

4 ≥ 5
18 .

8.3. The case with four or more dangerous pairs

This case is more complicated than the previous cases. In this case, the length of Ci is at
least 8 and hence we can prove the following important lemma:

Lemma 8.7. Let p = {(u1, v1), (u2, v2)} be a dangerous pair at time i. Suppose that a
maximal available matching-pair {A1, A2} at time i covers all vertices of Q(p) and satisfies
Condition (G3) for p. Then, {A1, A2} satisfies Condition (G1) for p.

426 CHEN AND WANG

Proof: By Condition (G3) and renaming, we can assume that the two edges incident to
u1 in Ci belong to A1 ∪ A2. Let e1 and e2 be the two edges incident to u1 in Ci , where e2

is also an edge in Q(p). Let e3 be the edge of Q(p) incident to u2, and let e4 be the other
edge incident to u2 in Ci . Note that e2 = e3 when the length of Q(p) is 1.

Since A1 and A2 are matchings, we can assume that e1 ∈ A1 and e2 ∈ A2 (again
by renaming). A simple but crucial observation is that A2 contains at least one edge in
E(Ci) − E(Q(p)). This observation follows from the maximality of A2 and Corollary 5.2
immediately. By this observation, the graph Ci − A2 has no path between u1 and u2. If
E(Q(p)) ∩ A1
= ∅, then Ci − Ai has no path between u1 and u2, either. So, it remains to
consider the case where E(Q(p)) ∩ A1 = ∅.

Suppose that E(Q(p)) ∩ A1 = ∅. Then, e3 ∈ A2 because A2 is a matching and each
vertex of Q(p) is incident to an edge in A1 ∪ A2. In turn, by Condition (G3), e4 /∈ A1 ∪ A2.
So, the degree of u2 in the graph Ci − A1 is 2. Thus, {A1, A2} satisfies Condition (G1) for
p.

Suppose that Ci has been embedded in the plane. For each dangerous pair p at time i,
the left endpoint of Q(p) is the endpoint u of Q(p) such that the other endpoint (called the
right endpoint) of Q(p) can be reached by starting at u, proceeding clockwise around Ci ,
and traversing the edges of Q(p) only.

We construct a graph H4 as follows. The nodes of H4 are the dangerous pairs at time i.
For two dangerous pairs p1 and p2 at time i, {p1, p2} is an edge in H4 if and only if one of
the following two conditions holds true:

• E(Q(p1)) ∩ E(Q(p2))
= ∅.
• E(Q(p1)) ∩ E(Q(p2)) = ∅ and Ci contains a path P from some endpoint u of Q(p1) to

some endpoint v of Q(p2) such that E(P) ∩ E(Q(p1)) = E(P) ∩ E(Q(p2)) = ∅ and P
contains at most one other dangerous vertex than u and v.

A simple inspection shows that the degree of each node in H4 is at most 5. Moreover, if p
is a node of degree 5 in H4, then p has a neighbor of degree 3 in H4. Thus, the nodes of H4

can be colored with at most five colors so that no two adjacent nodes get the same color.
Now, our algorithm processes Ci as follows:

1. Partition the node set of H4 into at most five (nonempty) independent sets of H4, and
then select one independent set I among them uniformly at random.

2. Let H5 be the graph Ci − (∪p∈I V (Q(p))). (Comment: By the construction of H4 and the
independence of I , each connected component of H5 contains at least two dangerous
vertices at time i and hence is a path of length at least 1.)

3. Let J be those p ∈ I with |E(Q(p))| = 3.
4. If J = ∅, then perform the following steps:

(a) If H5 has a connected component K with |E(K)| ≥ 2, then perform the following
steps:

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 427

i. Find an available edge e ∈ E(K) at time i. (Comment: By Lemma 5.1, e exists.)
ii. Let e1, . . . , et be the edges of Ci (appearing in Ci in this order), where e1 = e

and et ∈ E(K).
iii. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci , e).
iv. Extend A1 and A2 to maximal available sets at time i. (Comment: By the first four

statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2). Moreover,
by Lemma 7.2 and Statement 8 in Lemma 7.5, {A1, A2} is good for all p ∈ I .)

(b) If every connected component K of H5 satisfies |E(K)| = 1, then perform the
following steps:

i. Choose an arbitrary dangerous pair q = {(u1, v1), (u2, v2)} at time i. (Comment:
Since every connected component of H5 is an edge and E(Ci)| ≥ 8, |I | ≥ 2. In
turn, by the independence of I, q must exist.)

ii. Choose one integer j ∈ {1, 2} uniformly at random.
iii. Color vertex u j and edge (u j , v j) red.
iv. Let e′ be the edge of H5 incident to u j . Let e be the edge in E(Ci)−{e′} adjacent

to e′ but not incident to u j . (Comment: By the definition of a dangerous pair at
time i, e is available at time i because e ∈ E(Q̃(p))− E(Q(p)) for some p ∈ I .)

v. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci −{e′}, e), and extend A1 and
A2 to maximal available sets at time i. (Comment: Note that one vertex of Ci is
red now. By the first four statements in Lemma 7.5, {A1, A2} satisfies Conditions
(C1) and (C2). So, by Lemma 7.2 and Statement 7 in Lemma 7.5, {A1, A2} is
good for all p ∈ I .)

5. If J contains exactly one dangerous pair p, then compute A1 and A2 as described in
Lemma 8.3. (Comment: Lemma 8.3 still holds for p, even if there are other dangerous
pairs at time i. By this lemma, {A1, A2} satisfies Conditions (C1) and (C2) and is good
for every p ∈ I .)

6. If |J | ≥ 2, then perform the following steps:

(a) Let p1, . . . , pk be the dangerous pairs (nodes) in J (appearing in Ci in this order
clockwise).

(b) Let H6 be the graph Ci − (∪1≤ j≤k E(Q(pi))). (Comment: By the construction of H4

and the independence of I, each connected component K of H6 with |E(K)| = 0 is
a vertex of Q(p j) for some j ∈ {1, . . . , k}, and each connected component K of H6

with |E(K)| > 0 is a path of length at least 3.)
(c) For each j ∈ {1, . . . , k}, color the dangerous vertex at time i closest to the left

endpoint of Q(p j) in H6 olive, and color the dangerous vertex at time i closest
to the right endpoint of Q(p j) in H6 brown. (Comment: By the construction of
H4 and the independence of I, no vertex is colored twice at this step. For the
same reason, for each vertex u colored at this step, the dangerous pair contain-
ing the dangerous edge incident to u is not in I. Moreover, there is no danger-
ous pair {(u1, v1), (u2, v2)} such that u1 and u2 are assigned the same color at this
step.)

428 CHEN AND WANG

(d) Let UO be the set of olive vertices. Let UB be the set of brown vertices.
(e) For each dangerous pair p = {(u1, v1), (u2, v2)} /∈ I at time i such that exactly one

of u1 and u2 is colored, color the uncolored vertex in {u1, u2} with a suitable color in
{olive, brown} so that u1 and u2 get different colors. (Comment: Immediately after
this step, for each dangerous pair p = {u1, v1), (u2, v2)} /∈ I at time i, either both
u1 and u2 are uncolored, or they are colored with different colors.)

(f) Select a color c among olive and brown uniformly at random.
(g) If c is olive, then set UR = U0 and color all edges in M ′ incident to olive vertices

red; otherwise, set UR = UB and color all edges in M ′ incident to brown vertices
red. (Comment: All red edges are dangerous at time i.)

(h) Recolor the vertices in UR red. (Comment: Some red edges may have no red end-
points.)

(i) Compute an available matching-pair {A1, A2} that satisfies Condition (C2) and is
good for all p ∈ I .

(j) Extend A1 and A2 to maximal available sets at time i. (Comment: By Corollary 5.2,
{A1, A2} satisfies Condition (C1) after this step. So, after this step, {A1, A2} satisfies
Conditions (C1) and (C2) and is good for all p ∈ I .)

7. Perform Steps 3 through 5 in figure 5 in turn.

Step 6i is rough; the remainder of this subsection is devoted to it. Hereafter, we assume
that |J | ≥ 2. The following lemma is clear from our choice of olive vertices and brown
vertices at Step 6c.

Lemma 8.8. The following hold:

1. For every connected component (path) K of graph Ci −UR, there is exactly one dangerous
pair p ∈ J with E(Q(p)) ⊆ E(K). (Comment: Hereafter, we denote this dangerous
pair by p(K) for convenience.)

2. Ci − UR has no connected component K equal to Q(p(K)).
3. For each p ∈ I − J, C1 − UR has a connected component K with E(Q(p)) ⊂ E(K),

and neither endpoint of Q(p) is an endpoint of path K.

To compute A1 and A2 as required in Step 6i, our algorithm first initializes A1 and A2

to be empty, and then processes the connected components of Ci − UR one by one (in an
arbitrary order). In a nutshell, during processing a connected component K of Ci −UR , our
algorithm does nothing else but the following two jobs:

(J1) Add some edges in E(K) ∪ { f1, f2} to A1 and A2, where f1 and f2 are the two edges
in E(Ci) − E(K) incident to an endpoint of path K.

(J2) Delete zero or more edges in { f ′
1, f ′

2} from A1 or A2, or move zero or more suitable
edges in { f ′

1, f ′
2} from one of A1 and A2 to the other, where f ′

1 (respectively, f ′
2) is the

edge in E(Ci) − E(K) adjacent to f1 (respectively, f2).

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 429

The addition in Job (J1) is required to satisfy the following two conditions:

(C4) Immediately after the addition, {A1, A2} is an available matching-pair at time i with
A1 ∩ A2 = ∅, covers all vertices of K, and is not harmful for all p ∈ I with E(Q(p)) ⊆
E(K).

(C5) Even if one or both of the two edges in E(Ci) − E(K) incident to an endpoint of path
K are deleted from A1 or A2, or are moved from one of A1 and A2 to the other in the
future, {A1, A2} will remain to be not harmful for all p ∈ I with E(Q(p)) ⊆ E(K).

The deletion in Job (J2) is required to satisfy the following condition:

(C6) If a non-red vertex of Ci was covered by {A1, A2} before the deletion, then it remains
to be covered by {A1, A2} after the deletion.)

Lemma 8.9. After processing all connected components K of Ci −UR as above, {A1, A2}
is an available matching-pair at time i, satisfies Condition (C2), and is good for all p ∈ I.

Proof: Immediate from Conditions (C4) and (C6) and Lemma 7.2.

We next detail how our algorithm does Jobs (J1) and (J2). The idea is similar to that in
the proof of Lemma 8.3. To do Jobs (J1) and (J2) for a connected component K of Ci −UR ,
our algorithm performs the following steps:

8. If there are distinct edges e1 and e2 in Q(p(K)) such that both A1 ∪ {e1} and A2 ∪ {e2}
are available at time i, then perform the following steps:

(a) For each j ∈ {1, 2} add e j to A j , and find the path Pj in Ci such that e j ∈ E(Pj), e j ′ /∈
E(Pj) and |E(Pj) − E(K)| = 1 where j ′ is the integer in {1, 2} − { j}.

(b) For each j ∈ {1, 2} (in any order), remove e j from A j , call FindMatch(i, A j , A j ′ , Pj ,

e j) to obtain (Z1, Z2), add the edges in Z1 to A j , and add the edges in Z2 to A j ′ ,
where j ′ is the integer in {1, 2} − { j}.
(Comment: By procedure FindMatch, it is easy to see that what our algorithm does at
Steps 8a and 8b are exactly Jobs (J1) and (J2). Moreover, immediately after Step 8b,
e ∈ A1 and e2 ∈ A2 (implying that {A1, A2} is not harmful for p(K)) by Statement 5
in Lemma 7.5, {A1, A2} covers all vertices of K by Statement 2 in Lemma 7.5, and
{A1, A2} is not harmful for all p ∈ I −{p(K)} with E(Q(p)) ⊆ E(K) by Statement
3 in Lemma 8.8 and Statement 7 in Lemma 7.5. So, by Statement 1 in Lemma 7.5,
{A1, A2} satisfies Condition (C4). By the contents of Jobs (J1) and (J2) to be done
for other connected components of Ci − UR , edges e1 and e2 will remain in A1 and
A2 forever, respectively. In turn, {A1, A2} will remain to be not harmful for p(K)
forever. Furthermore, for each q ∈ I − {p(K)} with E(Q(q)) ⊆ E(K), because of
Statement 3 in Lemma 8.8, the contents of Jobs (J1) and (J2) to be done for other

430 CHEN AND WANG

connected components of Ci − UR guarantee that {A1, A2} will remain to be not
harmful for q forever. Thus, {A1, A2} satisfies Condition (C5). Finally, by Statement
6 in Lemma 7.5, {A1, A2} satisfies Condition (C6).)

9. If there are no distinct edges e1 and e2 in Q(p(K)) such that both A1 ∪{e1} and A2 ∪{e2}
are available at time i, then perform the following steps:

(a) Let e1, . . . , e5 be the edges of Q̃(p(K)) (appearing in Ci in this order), where
Q(p(K)) = {e2, e3, e4} and e5 ∈ E(K).
(Comment: By Statement 2 in Lemma 8.8, e5 exists. By Lemma 5.1, both A1 ∪ {e3}
and A2 ∪ {e3} are available at time i, and neither A j ∪ {e2} nor A j ∪ {e4} is available
at time i for each j ∈ {1, 2}. So, by Lemma 5.3, A j ∪{e3, e5} is available at time i for
each j ∈ {1, 2} such that A j does not contain the edge in E(Ci) − {e1, e2} adjacent
to e1.)

(b) Find an integer j ∈ {1, 2} such that A j ∪ {e3, e5} is available at time i. (Comment:
By the comment on Step 9a and the fact that A j ∩ A2 = ∅, j exists.)

(c) Add both e3 and e5 to A j .
(d) Let P1 be the path in Ci such that {e3, e4} ∩ E(P1) = {e3} and |E(P1) − E(K)| = 1.

Let P2 be the path in Ci such that {e4, e5} ∩ E(P2) = {e5} and |E(P2) − E(K)| = 1.
Let j ′ be the integer in {1, 2} − { j}.

(e) Remove e3 from A j , call FindMatch(i, A j , A j ′ , P1, e3) to obtain (Z1, Z2), add the
edges in Z1 to A j , and add the edges in Z2 to A j ′ .

(f) Remove e5 from A j , call FindMatch(i, A j , A j ′ , P2, e5) to obtain (Z1, Z2), add the
edges in Z1 to A j , and add the edges in Z2 to A j ′ .
(Comment: By procedure FindMatch, it is easy to see that what our algorithm does
at Steps 9a and 9f are exactly Jobs (J1) and (J2). Moreover, immediately after Step
9f, {e3, e5} ⊆ A j (implying that {A1, A2} is not harmful for p(K)) by Statement 5
in Lemma 7.5, {A1, A2} covers all vertices of K by Statement 2 in Lemma 7.5, and
{A1, A2} is not harmful for all p ∈ I −{p(K)} with E(Q(p)) ⊆ E(K) by Statement 3
in Lemma 8.8 and Statement 7 in Lemma 7.5. So, by Statement 1 in Lemma 7.5,
{A1, A2} satisfies Condition (C4). By the contents of Jobs (J1) and (J2) to be done for
other connected components of Ci − UR , edges e3 and e5 will remain in A j forever.
In turn, {A1, A2} will remain to be not harmful for p(K) forever. Furthermore, for
each q ∈ I − {p(K)} with E(Q(q)) ⊆ E(K), because of Statement 3 in Lemma
8.8, the contents of Jobs (J1) and (J2) to be done for other connected components of
Ci − UR guarantee that {A1, A2} will remain to be not harmful for q forever. Thus,
{A1, A2} satisfies Condition (C5). Finally, by Statement 6 in Lemma 7.5, {A1, A2}
satisfies Condition (C6).)

Lemma 8.10. Let S be the set of Ci -settled edges. Suppose that there are four or more dan-
gerous pairs at time i and our algorithm processes Ci as described above in this subsection.

Then, ε[w(S ∩ M ′
7)] ≥ 11w(S)/80.

Proof: Let S1 be the set of edges in S that are active at time i . Let S2 be the set of edges
in S1 that are dangerous at time i. Consider an edge e = (u1, v1) in S. By Invariant (I5),

AN IMPROVED RANDOMIZED APPROXIMATION ALGORITHM FOR MAX TSP 431

Pr[e ∈ S1] ≥ 1
2 . So, it remains to show that Pr[e ∈ M ′

7 | e ∈ S1] ≥ 11
40 . By the proof

of Lemma 8.1, Pr[e ∈ M ′
7 | e ∈ S1 − S2] ≥ 1

3 > 5
18 . In turn, it remains to show that

Pr[e ∈ M ′
7 | e ∈ S2] ≥ 11

40 .
Assume that the event e ∈ S2 has occurred. Let p = {(u1, v1), (u2, v2)} be the dangerous

pair at time i containing e. Let b be the number of independent sets into which the node set
of H4 has been partitioned at Step 1. Clearly, Pr[p ∈ I | e ∈ S2] = 1

6 and Pr[p /∈ I | e ∈
S2] = b−1

b . Consider three cases as follows:

Case 1: p ∈ I . By Steps 4 through 6 and Lemma 8.7, {A1, A2} is strongly good for p. Thus,
as in the proof of Lemma 8.1, we can show that given the event p ∈ I , the event e ∈ M ′

7
occurs with probability at least 3

8 . That is, Pr[e ∈ M ′
7 | p ∈ I] ≥ 3

8 .
Case 2: p /∈ I and J = ∅. Clearly, p is the dangerous pair q chosen at Step 4(b)i or not.

Case 2.1: p
= q . Then, Pr[e ∈ M ′
6 | p /∈ I] ≥ 1

2 and hence Pr[e ∈ M ′
7 | p /∈ I] ≥ 1

4 .
Case 2.2: p = q. Let D be the event that u1 is not colored red at Step 4(b)iii. D occurs

with probability 1
2 , and hence Pr[e ∈ M ′

6 | p /∈ I] ≥ 1
4 . Moreover, if D occurs, then

edge (u2, v2) is colored red at Step 4(b)iii. Thus, given the event e ∈ M ′
6, the event

(u2, v2) ∈ M ′
6 cannot occur and so e ∈ M ′

7 with probability 1 (because no cycle in C
can contain e immediately after Step 6 in figure 2). Therefore, Pr[e ∈ M ′

7 | p /∈ I] ≥ 1
4 .

Case 3: p /∈ I and |J | ≥ 2. Clearly, u1 ∈ UO ∪ UB or not (cf. Step 6c).

Case 3.1: u1 /∈ UO ∪ UB . Then, the event u1 ∈ UR cannot occur. So, Pr[e ∈ M ′
6 | p /∈

I] ≥ 1
2 and hence Pr[e ∈ M ′

7 | p /∈ I] ≥ 1
4 .

Case 3.2: u1 ∈ Uo ∪ UB . Then, the event u1 /∈ UR occurs with probability 1
2 and hence

Pr[e ∈ M ′
6 | p /∈ I] ≥ 1

4 . A crucial point is that if u1 /∈ UR , then edge (u2, v2) is red
because of Steps 6e and 6g. So, given the event u1 /∈ UR and the event e ∈ M ′

6, the
event e ∈ M ′

7 occurs with probability 1 (because after Step 6 in figure 2, edge (u2, v2)
is not in C and hence no cycle in C can contain e). Thus, Pr[e ∈ M ′

7 | p /∈ I] ≥ 1
4 .

By Cases 2.1, 2.2, 3.1, and 3.2, we always have Pr[e ∈ M ′
7 | p /∈ I] ≥ 1

4 . Combining this
with the result in Case 1, we have Pr[e ∈ M ′

7 | e ∈ S2] ≥ 3
8 · 1

b + 1
4 · b−1

b . Since b ≥ 5, we
now have Pr[e ∈ M ′

7 | e ∈ S2] ≥ 11
40 .

9. The Result

Recall T, Tint, Text, and α (they are defined in the beginning of Section 3).

Lemma 9.1. Let δw(T) be the expected total weight of edges moved from C to M at Step 4
or 5 in figure 2. Then, ε[w(T2)] ≥ (0.5+δ)w(T) and ε[w(T3)] ≥ ((1−δ)+ 11

160 (1−α))w(T).

Proof: Since T2 contains Mc (a maximum-weight perfect matching of G) as a subset and
also contains the edges moved from C at Step 4 or 5 in figure 2, it is clear that E[w(T2)] ≥
(0.5 + δ)w(T).

432 CHEN AND WANG

Obviously, each edge in M ′ is either 4-cycle-closed or Ci -settled for some i ∈ {� +
1, . . . , r}. By Lemmas 6.17, 8.1, 8.5, 8.6, and 8.10, we have E[w(M ′

7)] ≥ 11
80w(M ′). Thus,

after Step 7 in figure 2,E[w(C)] ≥ (1−δ)w(T)+ 11
80w(M ′). Now, since w(M ′) ≥ 1

2w(Text) =
1
2 (1 − α)w(T), we have E[w(T3)] ≥ ((1 − δ) + 11

160 (1 − α))w(T).

Now, combining Fact 3.1 and Lemma 9.1 and noting that the running time of the algorithm
is dominated by the O(n3)-time needed for computing a maximum-weight cycle cover and
two maximum-weight matchings, we have:

Theorem 9.2. For any fixed ε > 0, there is an O(n3)-time approximation algorithm for
Max TSP achieving an expected approximation ratio of 251(1−ε)

331−320ε
.

References

A.I. Barvinok, D.S. Johnson, G.J. Woeginger, and R. Woodroofe, “Finding maximum length tours under polyhe-
dral norms,” Proceedings of the Sixth International Conference on Integer Programming and Combinatorial
Optimization (IPCO), Lecture Notes in Computer Science, vol. 1412, pp. 195–201, 1998.

P. Chalasani and R. Motwani, “Approximating capacitated routing and delivery problems,” SIAM Journal on
Computing, vol. 28, pp. 2133–2149, 1999.

R. Hassin and S. Rubinstein, “An approximation algorithm for the maximum traveling salesman problem,” Infor-
mation Processing Letters, vol. 67, pp. 125–130, 1998.

R. Hassin and S. Rubinstein, “Better approximations for max TSP,” Information Processing Letters, vol. 75,
pp. 181–186, 2000.

R. Hassin and S. Rubinstein, “A 7/8-approximation approximations for metric max TSP,” Information Processing
Letters, vol. 81, pp. 247–251, 2002.

A.V. Kostochka and A.I. Serdyukov, “Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling
salesman problem of maximum (in Russian),” Upravlyaemye Sistemy, vol. 26, pp. 55–59, 1985.

A.I. Serdyukov, “An algorithm with an estimate for the traveling salesman problem of maximum (in Russian),”
Upravlyaemye Sistemy, vol. 25, pp. 80–86, 1984.

