
Journal of Combinatorial Optimization, 9, 381–399, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Robotic-Cell Scheduling: Special Polynomially
Solvable Cases of the Traveling Salesman Problem
on Permuted Monge Matrices

VLADIMIR G. DEĬNEKO v.deineko@warwick.ac.uk
Warwick Business School, The University of Warwick, Coventry CV4 7AL, UK

GEORGE STEINER steiner@mcmaster.ca
ZHIHUI XUE xzhm@yahoo.com
DeGroote School of Business, McMaster University, Hamilton, Ontario L8S 4M4, Canada

Received January 28, 2004; Revised March 8, 2005; Accepted April 8, 2005

Abstract. In this paper, we introduce the 1− K robotic-cell scheduling problem, whose solution can be reduced
to solving a TSP on specially structured permuted Monge matrices, we call b-decomposable matrices. We also
review a number of other scheduling problems which all reduce to solving TSP-s on permuted Monge matrices.
We present the important insight that the TSP on b-decomposable matrices can be solved in polynomial time by
a special adaptation of the well-known subtour-patching technique. We discuss efficient implementations of this
algorithm on newly defined subclasses of permuted Monge matrices.

Keywords: robotic-cell scheduling, traveling salesman problem, permuted Monge matrix, polynomial-time
algorithm

1. Introduction

Robots and cellular manufacturing are widely used in modern production systems. In cellular
manufacturing, a group of similar parts is to be produced together in a specialized and
automated manufacturing cell. Typically, the manufacturing cell consists of a small number
of versatile machines that can perform a variety of tasks. A robotic cell is a cluster of
machines arranged within the reach of a robot, which is used to load, unload, and move
parts between machines. There are a number of issues to be considered for a robotic cell,
e.g., cell design, robot movement, part processing sequence, to name just a few. In this
paper, we study scheduling problems in certain types of robotic cells. As most frequently
there is only one robot in a cell in the normal setting, it is often the bottleneck of systems.
Therefore, unlike traditional scheduling models in which we are looking for the processing
sequence of parts, both the robot activities and the part processing sequence should be
optimized in order to improve the productivity of these automated systems.

High-volume manufacturing environments are often controlled by cyclic production. This
means that instead of sequentially processing a large batch of each part, a smaller set of
parts is loaded into the system and processed repetitively. For example, consider the need

382 DEĬNEKO, STEINER AND XUE

to process 2,000 units of part A, 4,000 units of part B, and 3,000 units of part C in a day.
A part mix ratio or minimal part set (MPS) is calculated as {2A, 4B, 3C}—namely, two of
A, four of B, and three of C—which is the smallest set of parts in proportion to the day’s
production. Then the MPS is fed into the system and produced 1,000 times to fulfill the
production target. In this context, we develop the class of cyclic schedules that perform
each required operation on an MPS exactly once. When such a schedule is formed, it will
be identically repeated at regular intervals. To measure the performance of such a repetitive
manufacturing system, where there is no need to track each individual order, one often-
used objective is to minimize the cycle time of an MPS—the time between completions of
successive MPS-s, which is equivalent to maximizing the throughput rate over the long run.
Due to its simplicity in management and control, cyclic production is suitable for producing
large quantities of different parts which have small setup cost.

The traveling salesman problem (TSP) is one of the most widely studied problems
in combinatorial optimization. Simply, the problem may be stated as follows: Given a
collection of “cities,” find the shortest tour that visits all of them exactly once and returns
to the starting city. The TSP belongs to the class of difficult optimization problems, as it
is strongly NP-hard. Nevertheless, many special cases of it can be solved in polynomial
time when the distance matrix satisfies certain properties. For a comprehensive review of
the extensive results on this subject, the interested reader is referred to the earlier survey by
Gilmore et al. (1985), the papers by Burkard et al. (1998) and Kabadi (2002).

The TSP plays an important role in applications like production scheduling. A large
number of scheduling problems can be formulated as special cases of the TSP, and many
well-solvable cases of the TSP originate from scheduling problems. For example, we know
that a special case of the TSP with distance matrix C = (ci j) = max{ fi , e j } can be solved
by the Gilmore-Gomory algorithm (Gilmore and Gomory, 1964), which was originally
designed to solve the problem of sequencing jobs on a one-state-variable machine. This
also can be used to find the minimum makespan in the two-machine no-wait flow-shop
scheduling problem in O(n log n) time (Reddi and Ramamoorthy, 1972). Thus investigating
special cases of the TSP that can be solved by polynomial algorithms is of great practical
significance.

An n × n matrix C = (ci j) is a Monge (distribution) matrix, if it fulfills the so-called
Monge property:

ci j + ci ′ j ′ ≤ ci j ′ + ci ′ j for all 1 ≤ i < i ′ ≤ n and 1 ≤ j < j ′ ≤ n.

Furthermore, C = (ci j) is a permuted Monge (distribution) matrix, if there exists a permu-
tation φ such that Cφ = (ciφ(j)) is a Monge matrix. These matrices can be recognized and
their permutation φ can be found in O(n2) time (Burkard et al., 1998). The Monge property
has received considerable attention in combinatorial optimization (Burkard et al., 1996),
as its particular structure often leads to easier solutions for problems. For instance, for the
linear assignment problem with a Monge cost matrix, the identity permutation φ(i) = i for
i = 1, 2, . . . , n is an optimal solution. Based on this fact, if φ is the permutation for which
Cφ is a Monge matrix, then φ is an optimal assignment for C. See e.g. Gilmore et al. (1985)
for details.

ROBOTIC-CELL SCHEDULING 383

There are many previously studied robotic-cell scheduling problems where determining
the minimum cycle time is based on solving special cases of the TSP on certain permuted
Monge matrices. For a two-machine bufferless robotic cell which uses only a fixed robot
move cycle, Sethi et al. (1992) show that the minimum cycle time can be determined by
solving an auxiliary TSP using the Gilmore-Gomory algorithm (Gilmore and Gomory,
1964). Hall et al. (1997) extend this result to a general two-machine bufferless robotic cell
with n parts by showing that, through the repeated use of the Gilmore-Gomory algorithm,
one can find the optimal cycle time and part sequence in O(n4) time, even with multiple
robot move cycles and parts. Aneja and Kamoun (1999) show that this last problem can
be solved by finding a minimum tour in an n-city TSP with distance matrix C = (ci j) =
min{bi + a j , max{µ, bi , a j }}, where µ, bi , a j are given non-negative numbers. They also
claim to reduce the complexity of the solution to O(n log n) by solving a complicated set
of auxiliary problems, again using the Gilmore-Gomory algorithm repeatedly. For recent
surveys on cyclic scheduling in robotic cells with various configurations, we refer the reader
to Crama et al. (2000), Middendorf and Timkovsky (2002), Xue (2004), and Steiner and
Xue (2005).

In this paper, we introduce the 1 − K robotic-cell scheduling problem. It can be shown
(Steiner and Xue, 2002; Xue, 2004) that this problem also reduces to solving an n-city
TSP with a specially structured permuted Monge distance matrix which can be defined as
follows: C̃ = (c̃i j) = min{λ + η + K bi + a j , max{λ + (K − 1)bi + max{η + ρ, bi }, a j }},
where all parameters are given non-negative numbers. We present an O(n log n) algo-
rithm to solve the TSP with distance matrix C̃ . Notice that when K = 1 and λ = η = 0,
then this last distance matrix reduces to the matrix of Aneja and Kamoun (1999). As it
often happens in cases when a general approach to tackle a problem is found, our ap-
proach not only solves the problem for a much larger class of instances, but it is also
easier to understand and implement. The Aneja-Kamoun algorithm for the special case
mentioned above contains a very large number of branches with calls to the Gilmore-
Gomory algorithm using different auxiliary distance matrices. The algorithm is extremely
difficult to understand and validate. Our approach uses an important insight, by show-
ing that both matrices share the newly defined crucial property of ‘b-decomposability’
that we introduce later. Based on this insight, we define a hierarchy of subclasses within
the class of permuted Monge matrices, and show that the TSP is polynomially solv-
able on each of these subclasses. As a result, we present a new O(n log n) algorithm
for solving the TSP on the smallest one of these subclasses. We also describe an effi-
cient implementation of our algorithm for the largest subclass, which has an O(n2) time
complexity.

The remainder of the paper is organized as follows. In Section 2, we describe in more
detail the 1 − K robotic-cell scheduling problem, which triggered our investigations of
special classes of the TSP. In Section 3, we introduce several preliminary definitions and
review the theory of subtour patching. In Section 4, we present the main structural insight
and the algorithm, which enable us to solve the TSP with a ‘b-decomposable’ distance
matrix. We also demonstrate our new algorithm on an example in the paper. The detailed
calculations for this example are contained in the Appendix. Section 5 contains our final
remarks.

384 DEĬNEKO, STEINER AND XUE

2. Scheduling a 1 − K robotic cell

We introduce a new scheduling problem, which is a generalization of the classical robotic-
cell scheduling model. In a flexible manufacturing cell, there are two machines, M1 and
M2, and a robot, all without buffer. The parts are available at the input station (In) at time
zero. Each part i (i = 1, 2, . . . , n) consists of K ≥ 1 identical components to be processed
together first on machine M1 for ai time, then processed on machine M2 item-by-item, each
component requiring bi processing time. As each part involves one processing step at the
first machine and K processing steps at the second machine, we call this type of processing
1 − K processing.

The robot first picks up each part at In, then moves it to the first machine, M1, and loads it
on that machine for processing; after the processing is completed, the robot unloads the part
and moves it to the second machine, M2, for processing its individual components. Since
the components need the robot to perform the loading and unloading tasks at M2 before
or after each of the K processing steps, these K steps cannot be combined into one single
step. After all of its components are processed on M2, the robot moves the finished part to
an output station (Out) and drops it there. During the entire process, both the operations of
the robot and the processing of parts (components) on machines are nonpreemptive. The K
components of a part are handled as a whole except at machine M2. In, M1, M2, and Out
are located on the arc of a circle or on a straight line with the robot at the center. Figure 1
depicts the movement of a part (or component) in such a two-machine robotic cell. The
input and output stations have unlimited storage capacity. Since there is no buffer space on
machines, any part (component) being produced must be either on one of the machines or
on the robot. Neither a machine nor the robot can handle more than one part at a time.

This model has a variety of applications. In particular, our study was inspired by a real-life
application in an automated pharmaceutical laboratory in which a large number of samples
need to go through a given chemical process. Each sample is a set of test tubes. Sample i
(1 ≤ i ≤ n) is composed of K test tubes. After a sample is picked up from an input station,
it is moved to an instrument (M1)—a versatile and flexible (multifunctional) machine—for
a chemical process. When the process finishes, the sample is moved to the reader (M2) to
measure the data for each test tube (one by one). When all measurements are taken, the
sample is dropped at an output station. To realize automation and increase efficiency, a robot
performs all moving, loading and unloading tasks during the entire process.

Figure 1. 1 − K processing in a two-machine robotic cell.

ROBOTIC-CELL SCHEDULING 385

This model is also encountered in semiconductor test facilities consisting of burn-in
ovens and testers in sequence, where the oven is viewed as a batch processing machine
and testers are modeled as a unit-capacity machine. A batch processing machine is one
where a number of components (jobs) are processed together as a batch. Examples of
batch processing machines in semiconductor manufacturing are etchers in wafer fab and
burn-in ovens in final test. Here the processing of each batch consists of two stages. The
first stage is undertaken on the batch processing machine common to all components in a
batch. All of these components start and finish processing at the same time. The second
stage is undertaken on the unit-capacity machine for one component at a time. Components
are regarded as single indivisible entities. Thus, once the processing of a component on
a machine has started, this operation must be completed before this component can be
processed on any other machine.

We have examined the problem of determining the part processing sequence in the
MPS and the corresponding robot move activities, which jointly minimize the steady-
state cycle time required for repeated production of the MPS in the aforementioned 1 − K
robotic cell. We have established that an optimal solution can be found by solving an
n-city TSP with distance matrix C̃ = (c̃i j) = min{λ + η + K bi + a j , max{λ+ (K − 1)bi +
max{η + ρ, bi }, a j }}, where λ = 2(K − 1)ε, η = 2ε + 2δ, ρ = 2δ, ε is the time needed
by the robot to pick up, load or unload a part (or component) and δ is the travel time of
the robot between adjacent locations in the cell. The technical details of this reduction can
be found in Steiner and Xue (2002) and Xue (2004). Using extensive case analysis, it is
also shown there that C̃ is a permuted Monge matrix. This application has served as our
motivation to study the TSP on permuted Monge matrices. In the next section, we briefly
review some relevant preliminary definitions and results for this problem.

3. Preliminary definitions and results

3.1. Permutations

For any n-city TSP with a given n × n distance matrix C = (ci j), we denote the set of cities
by {1, 2, . . . , n}. A permutation φ on these n elements, which may be written as

φ =
(

1 2 · · · n

φ(1) φ(2) · · · φ(n)

)
,

corresponds to an assignment i → φ(i) for i = 1, 2, . . . , n with the associated cost c(φ) =∑n
i=1 Ciφ(i). An optimal assignment is one that minimizes the cost. An assignment can also

be expressed as a directed graph with arcs (i, φ(i)) for i = 1, 2, . . . , n, representing the
fact that φ(i) is visited immediately after city i. If the associated graph is connected, then
φ forms a (TSP) tour, and φ is said to be a cyclic permutation. Otherwise, φ consists of
several subtours.

We can modify an assignment φ by multiplying it with a permutation ψ , which produces
a new assignment φ′ defined as φ′(i) = φ ◦ ψ(i) = φ(ψ(i)) for i = 1, 2, . . . , n. A
transposition 〈i, j〉 is a permutation that interchanges i and j. An adjacent transposition

386 DEĬNEKO, STEINER AND XUE

is of the form 〈i, i + 1〉. Performing 〈i, j〉 on the permutation φ yields the permutation
φ′ = φ◦〈i, j〉 with φ′(i) = φ(j), φ′(j) = φ(i) and φ′(k) = φ(k) for k �= i, j . Recall that the
product of two transpositions is a non-commutative operation if they have a common index,
otherwise it is commutative. For a given permutation φ, the cost of performing transposition
〈i, j〉 on φ is defined by cφ(i, j) = c(φ ◦ 〈i, j〉) − c(φ) = ciφ(j) + c jφ(i) − ciφ(i) − c jφ(j).

For the TSP with a Monge distance matrix, there exists an optimal tour which is pyramidal.
If we number the cities by 1, 2, . . . , n, then a tour is called pyramidal, if starting from the
initial city 1, they are first visited in increasing order of their index, and then the remaining
cities are visited in decreasing order. For example, the six-city tours (1, 3, 5, 6, 4, 2) i.e.,
1 → 3 → 5 → 6 → 4 → 2 → 1, and (1, 4, 5, 6, 3, 2) are pyramidal, but the tour
(1, 5, 3, 6, 4, 2) is not. For any distance matrix C = (ci j), a shortest pyramidal tour can
be found by an efficient dynamic programming scheme in O(n2) time. See e.g. Gilmore et
al. (1985) for details. Further improvement in the time complexity can be achieved if the
distance matrix C is a Monge matrix. By exploiting the combinatorial structure of Monge
matrices, Park (1991) showed that the calculation can be speeded up so that the TSP on
Monge matrices is solvable in O(n) time.

3.2. Review of the theory of subtour patching

A matrix C = (ci j) of the form ci j = ai b j with real numbers ai and b j , 1 ≤ i, j ≤ n,
is called a product matrix. Sarvanov (1980) proved that the TSP on product matrices is
NP-hard. Since product matrices are contained in the more general class of permuted
Monge matrices, it follows immediately that the TSP with a permuted Monge matrix is also
NP-hard. Nevertheless, as we shall describe in detail later, the TSP is solvable in polyno-
mial time on certain subclasses of permuted Monge matrices, if they satisfy some additional
crucial properties. As the solution technique is based on the theory of subtour patching, we
briefly review its important points that will be used in this paper; the interested reader is re-
ferred to Gilmore et al. (1985) and Burkard et al. (1998) for a more comprehensive coverage.

In general, the strategy of subtour patching works as follows: First solve an assignment
problem for the given distance matrix. If the optimal assignment φ is a tour, it is clearly
optimal for the underlying TSP, as the cost of φ is a lower bound on the length of an
optimal tour. Otherwise, the assignment, φ consists of r ≥ 2 subtours φ1, φ2, . . . , φr . In
this case, patch the subtours together by a series of transpositions so as to yield an optimal
solution for the TSP. More precisely, if i and j are in different subtours of φ, then performing
the transposition 〈i, j〉 on φ will patch these two subtours into a single tour. A series of
transpositions, in any order, can be expressed as a single permutation by forming their
product. For an optimal assignment φ, a permutation ψ is called a patching permutation if
φ ◦ ψ is a cyclic permutation (tour). Thus the problem is, “Given an optimal assignment φ,
find an optimal patching permutation ψ∗ such that φ ◦ ψ∗ is an optimal tour.”

In order to determine an optimal patching permutation, it is often useful to examine
the so-called patching graph. With respect to a given optimal assignment φ, a patching
graph Gφ = (V, E) may be constructed as follows: The vertices are the subtours φi of
φ, 1 ≤ i ≤ r . Every edge e ∈ E corresponds to an adjacent transposition 〈i, i + 1〉,
that is, if city i is in subtour φ j and city i + 1 is in subtour φk, j �= k, then the two

ROBOTIC-CELL SCHEDULING 387

Figure 2. A patching graph Gφ = (V, E).

corresponding vertices in Gφ are connected by an edge labeled (i, i + 1). For the sake of
simplicity, we will refer to edge (i, i + 1) as i . Since the same pair of vertices may be
connected by multiple edges, this construction will yield a connected multigraph with r
vertices and at most n − 1 edges. As an example, suppose we have an 11-city TSP with the
optimal assignment φ = φ1φ2φ3φ4φ5 = (1,11)(2,10) (3,6,9)(4,7)(5,8). The corresponding
patching graph Gφ = (V, E) is shown in figure 2, where V = {φi : 1 ≤ i ≤ 5} and
E = {(i, i + 1) : 1 ≤ i ≤ 10}.

A spanning tree T of a graph G is a tree connecting all its vertices. A permutation
obtained by multiplying a set of adjacent transpositions which correspond to a spanning
tree in Gφ is called a tree permutation. Gilmore and Gomory (1964) have shown that
every tree permutation is a patching permutation. For example, the edges 1, 2, 5 and 7
form a spanning tree in Gφ of the above example (see the bold lines of figure 2). Thus
the product of the transpositions 〈1, 2〉, 〈2, 3〉, 〈5, 6〉 and 〈7, 8〉, in any order, forms a tree
permutation, which patches together the subtours of φ into a tour. With each edge i in Gφ , we
associate a non-negative weight wi that represents the cost of performing the corresponding
transposition 〈i, i + 1〉 on φ, i.e., wi = c(φ ◦ 〈i, i + 1〉) − c(φ) = cφ(i, i + 1). The weight
w(T) of a tree T is defined as the sum of the weights of the edges in T. A minimum-weight
spanning tree, or MST for short, is a spanning tree of G whose weight is minimum.

Recall that if a permutation (assignment) ψ consists of t subtours ψ1, ψ2, . . . , ψt , then

c(φ ◦ ψ) − c(φ) =
t∑

i=1

(c(φ ◦ ψi) − c(φ)). (1)

(See Theorem 14 in Gilmore et al., 1985). Corresponding to a given spanning tree T, we
define ψT as a patching permutation that minimizes (1). To solve a special case of the TSP,
Gilmore and Gomory (1964) developed a subtour-patching strategy that uses only adjacent
transpositions with minimum total cost, which can be found by determining an MST for the
patching graph. Burdyuk and Trofimov (1976) and Gilmore et al. (1985) proved that this
basic patching strategy of using only adjacent transpositions is extendible also to permuted
Monge matrices. Their result is essentially contained in the following theorem.

Theorem 1 (Burdyuk and Trofimov 1976, Gilmore et al. 1985). Let Cφ = (ciφ(j))
be a Monge matrix. For any cyclic permutation π, there exists a spanning tree T =

388 DEĬNEKO, STEINER AND XUE

{i1, i2, · · · , ir−1} of the patching graph Gφ and a sequence σ for performing the trans-
positions of T such that the permutation φT = φ ◦ 〈iσ (1), iσ (1) + 1〉 ◦ 〈iσ (2), iσ (2) + 1〉 ◦ · · · ◦
〈iσ (r−1), iσ (r−1) + 1〉 is a cyclic permutation with c(φT) ≤ c(π).

Theorem 1 is important as it allows us to restrict our search for an optimal patching per-
mutation only to those permutations which can be formed of adjacent transpositions of Gφ ,
but it does not say anything about how to find the spanning tree T corresponding to these
transpositions and the sequence σ in which they have to be multiplied. In the following we
take a closer look at these problems. A set of edges in Gφ is said to be dense if it is of the form
{i, i + 1, . . . , j̄} with j ≥ i . Let T be a spanning tree for the patching graph Gφ . We partition
the set of edges (i.e., the transpositions) of T into t (1 ≤ t ≤ r − 1) dense, pairwise disjoint
subsets I(i1, j1) = {i1, i1 + 1, . . . , j1}, I(i2, j2) = {i2, i2 + 1, . . . , j2}, . . . , I(it , jt) =
{i t , it + 1, . . . , jt }, which will be called branches hereafter, such that T = I(i1, j1) ∪
I(i2, j2) ∪ · · · ∪ I(it , jt) and jk + 1 < ik+1 for k = 1, 2, . . . , t − 1. Refer to the example
illustrated in figure 2. Suppose again that T = {1, 2, 5, 7}. Then T is composed of three
branches with I(1, 2) = {1, 2}, I(5, 5) = {5}, and I(7, 7) = {7}. Since jk + 1 < ik+1

for any two branches I(ik, jk) and I(ik+1, jk+1), k = 1, 2, . . . , t − 1, the permutations
corresponding to transpositions of different branches have no common element and thus
are commutative and can be performed independent of each other in any order. Further-
more, since the patching costs of these permutations are additive by (1), the best patching
permutation corresponding to T can be identified by finding the minimum cost permutation
for each branch and taking the product of these. It is well known that, as branches are
dense, performing transpositions of a branch in any order will yield a pyramidal subtour.
In summary, the best patching permutation ψT can be derived by constructing a shortest
pyramidal subtour for each branch I(i, j) of T. Since finding the shortest pyramidal tour
on a given set of vertices is solvable in polynomial time, the remaining hard part of the
problem is how to find the best spanning tree.

Let us now define the b-weight wb
i j of a branch I(i, j) by

wb
i j = c(φ ◦ ψ∗

i) − c(φ),

where ψ∗
i is a shortest pyramidal subtour corresponding to the branch I(i, j). Also, we

define the weight wi j of a branch I(i, j) as the total weight of the edges in the branch, i.e.,
wi j = ∑ j

k=i wk . Note that from these definitions, we have wb
ii = wi i = wi = cφ(i, i + 1)

for a branch I(i, i) that contains only edge i . Further, we define the b-weight wb(T) of a
spanning tree T as the total b-weight of its branches, i.e., wb(T) = ∑t

k=1 wb
ik jk

. It is easy
to verify from the definitions of ψT and wb(T) that wb(T) = c(φ ◦ ψT) − c(φ). As c(φ) is
constant, ψT is an optimal patching permutation if and only if the corresponding spanning
tree T has minimum b-weight. In other words, the best spanning tree is actually a minimum-
b-weight spanning tree of Gφ . Thus, the TSP on permuted Monge matrices is essentially
reduced to the problem of finding a spanning tree of Gφ with minimum b-weight.

If the distance matrix C is a permuted Monge matrix, then it has been established
by Burkard et al. (1998) that for any branch I(i, j), we have wb

i j ≥ wb
ik + wb

k+1, j for
1 ≤ i ≤ n − 1 and i ≤ k < j ≤ n − 1, and wb

i j ≥ ∑ j
k=i wk(= wi j) for 1 ≤ i ≤ j ≤ n,

ROBOTIC-CELL SCHEDULING 389

i.e., the b-weight is super-additive. This further implies that for a spanning tree T its
b-weight is never lower than its weight, i.e., wb(T) ≥ w(T). We call a permuted Monge
matrix b-weight-additive if the b-weight of any branch is additive, i.e., wb

i j = ∑ j
k=i wk for

1 ≤ i ≤ j ≤ n. It is important to note that these matrices can be recognized in O(n2)
time combining Park’s (1991) method for computing the b-weights with the algorithm for
recognizing permuted Monge matrices. From the definition of an MST and Theorem 1,
we know that the cost of the optimal assignment φ plus the weight of the MST T̂ for Gφ ,
i.e., c(φ) + w(T̂), is a lower bound on the length of an optimal tour. Consequently, if the
subtours of φ can be patched with cost w(T̂), the resulting tour is clearly optimal, and we
are done. Since for b-weight-additive matrices, the b-weight of a spanning tree is the same
as its weight, the MST is the best patching tree in this case. It can be shown that the
b-weight-additivity property is satisfied by Gilmore–Gomory matrices (Burkard et al.,
1998). Hence, Gilmore–Gomory matrices form a subclass of the b-weight-additive
matrices.

4. Polynomially solvable classes

4.1. b-decomposable matrices

Consider an n×n permuted Monge matrix C = (ci j) such that D = (di j) with di j = ciφ(j) is a
Monge matrix. We call C b-decomposable if D can be partitioned by an index i0(1 ≤ i0 ≤ n)
into two b-weight-additive sub-matrices D′ = (d ′

i j) for i, j ≤ i0 and D′′ = (d ′′
i j) for i, j > i0.

Note that if i0 = n, then D′′ is empty and D itself is a b-weight-additive matrix. We show
in this section the important insight that the class of TSP with a b-decomposable distance
matrix is solvable in polynomial time.

As we have already noted, this special case of the TSP originated from robotic-cell
scheduling problems. It was shown in Steiner and Xue (2002) and Xue (2004) that the
distance matrix C̃ is b-decomposable. To avoid overloading the paper with unnecessary
technical details, we show this fact only for the special subclass C = (ci j) = min{bi +
a j , max{µ, bi , a j }} of C̃ . Without loss of generality, we assume that the cities have been
renumbered so that b1 ≤ · · · ≤ bn . Let φ be an assignment (ordering) for which aφ(i) ≤
aφ(i+1). It can be shown that φ is an assignment for which Cφ = (ciφ(j)) is a Monge matrix
(Aneja and Kamoun, 1999). Observe that bi+aφ(i) ≤ bi+1+aφ(i+1) for all i = 1, 2, . . . , n−1.
If there exists an index i0, i0 < n, such that bi0 +aφ(i0) ≤ µ < bi0+1+aφ(i0+1), then the Monge
matrix D = Cφ = (ciφ(j)) can be split into two submatrices D′ = (d ′

i j) and D′′ = (d ′′
i j),

where D′ is a sum matrix, i.e., d ′
i j = bi + aφ(j) for i, j ≤ i0, and d ′′

i j = max{µ, bi , aφ(j)}
for i, j > i0 is a Gilmore–Gomory matrix. Thus C is b-decomposable indeed.

The Aneja-Kamoun algorithm is specifically designed for solving the TSP with the above
distance matrix C and it cannot be adapted for solving the 1−K robotic-cell scheduling prob-
lem with distance matrix C̃ , which was introduced in Section 2. However, both scheduling
problems lead to matrices belonging to the subclass of b-decomposable matrices in which
D′ is a sum matrix. Of course, the class of b-decomposable matrices is larger, as a matrix in
it can have any b-weight-additive submatrix for its two parts. Figure 3 depicts the hierarchy
of these newly defined matrix classes.

390 DEĬNEKO, STEINER AND XUE

Figure 3. Hierarchical classes of permuted Monge matrices.

Let us return now to b-decomposable TSP-s in general. Since φ is the permutation for
which Cφ = (ciφ(j)) is a Monge matrix, φ is an optimal assignment for C, and φ is also
optimal for the TSP in case it is a tour. As a result, hereafter, we concentrate on the case
when φ consists of r ≥ 2 subtours. Let Gφ = (V, E) be the patching graph relative to φ. We
will use the subtour-patching technique by reformulating our TSP as a minimum-b-weight
spanning tree problem.

For a given spanning tree T of Gφ , we begin with a characterization of the branches of T.
Let I(i, j) be a branch of T. If I(i, j) does not contain the edge i0, then the weights of the
whole edge set of I(i, j) are either in D′ or in D′′, and thus wb

i j = wi j , because both D′ and
D′′ are b-weight-additive. Otherwise, it is known that wb

i j ≥ wi j . As we will demonstrate

later, the branch containing the edge i0, if it exists, is of primary interest among all branches
of T, as it is the only branch which may not be b-weight-additive. From here on, we will
refer to this branch as a b-branch.

Let us examine now specifically the MST T̂ of Gφ . Note that during the construction of
T̂ by Kruskal’s (1956) algorithm (see e.g. Ahuja et al., 1993), if there is an edge available
with the same weight as edge i0, we consider that edge first. This manner of construction
will ensure that T̂ does not have a b-branch unless it is necessary. If T̂ does not contain
a b-branch, then the b-weight of T̂ is the same as the weight of the tree, and the TSP is
solved by using this MST as a patching tree. If T̂ contains a b-branch, then it must be of
the form I(h0, j0) = {h0, . . . , i0 − 1, i0, i0 + 1, . . . , j0} for some h0 ≤ i0 and j0 ≥ i0.
Then the b-weight of T̂ is calculated as the b-weight wb

h0, j0
of the branch I(h0, j0) plus

the weights of all edges in T̂ \I(h0, j0). If I(h0, j0) = {i0} then wb
h0, j0

= wh0, j0 = wi0 ,

implying that wb(T̂) = w(T̂), which means T̂ is a minimum-b-weight spanning tree. Thus
we assume for the remainder of the discussion that |I(h0, j0)| > 1. Clearly, wb

h0, j0
can be

ROBOTIC-CELL SCHEDULING 391

Table 1. The example instance.

Cities 1 2 3 4 5 6 7 8 9 10

ai 100 120 10 32 130 90 30 110 20 39

bi 5 15 25 36 45 83 95 106 117 125

aφ(i) 10 20 30 32 39 90 100 110 120 130

φ(i) 3 9 7 4 10 6 1 8 2 5

obtained by using an algorithm for finding a shortest pyramidal tour on the set of cities
{h0, · · · , i0 − 1, i0, i0 + 1, · · · , j0, j0 + 1} with the corresponding distances extracted from
the matrix D = (di j) = (ciφ(j)). Since D is a Monge matrix, this can be done in linear
time by using Park’s (1991) recursions. Note that in Park’s recursions, by computing the
length of a shortest pyramidal tour on the set of cities {1, 2, . . . , n}, we can obtain at the
same time the lengths of the shortest pyramidal tours for all sets of cities {1, 2, . . . , j} for
j = 2, . . . , n. Therefore, these recursions allow us to calculate in linear time all b-weights
wb

h0,h0+1, w
b
h0,h0+2, . . . , w

b
h0, j0

. Now let us compare the weight wh0, j0 of the branch I(h0, j0)

with its b-weight. If wb
h0, j0

= wh0, j0 , then the b-weight of T̂ is the same as the weight of the

tree, and the problem is solved by using T̂ as a patching tree. Otherwise, i.e., in the case
when wb

h0, j0
> wh0, j0 , the MST T̂ may not be the best spanning tree to patch the subtours

of φ, as illustrated by the following example.

Example. Let us consider a 10-city TSP with the distance matrix C = (ci j) = min{bi +
a j , max{µ, bi , a j }}, where µ = 80. The b’s and a’s are given in Table 1. Observe that the
bi -s are in the order bi ≤ bi+1. Table 1 also shows the ordering φ for which aφ(i) ≤ aφ(i+1).
As discussed above, Cφ = (ciφ(j)) is a Monge matrix and thus φ is an optimal assignment
for C. Furthermore, it is easy to see that φ consists of six subtours φ = φ1φ2φ3φ4φ5φ6 =
(1, 3, 7)(2, 9)(4)(5, 10)(6)(8), and the cost of φ is equal to c(φ) = ∑n

i=1 ciφ(i) = 803. The
patching graph Gφ , as shown in figure 4, has 6 vertices and 9 edges.

As b4 + aφ(4) < µ and b5 + aφ(5) > µ, we have i0 = 4, which means that D′ = (d ′
i j) =

bi + aφ(j) for all i, j ≤ 4, and D′′ = (d ′′
i, j) = max{µ, bi , aφ(j)} for all i, j > 4. The weights

of the edges as determined by wi = ciφ(i+1) + ci+1,φ(i) − ciφ(i) − ci+1,φ(i+1) are as follows:

Figure 4. The patching graph Gφ in the example (numbers in bold are edge-weights).

392 DEĬNEKO, STEINER AND XUE

w1 = w2 = w3 = 0, w4 = 4, w5 = 3, w6 = 5, w7 = 6, w8 = 7, and w9 = 5. It is easy
to see that T̂ = {1̄, 3̄, 4̄, 5̄, 7̄} is an MST in Gφ , and it is indicated in bold line in figure
4. The spanning tree contains three branches I(1, 1), I(3, 5) and I(7, 7). According to the
patching scheme, we have to calculate the b-weight of the tree, which is the sum of the
three branches’ b-weights. The b-weight of I(1, 1) and I(7, 7) is 0 and 6, respectively.
With the corresponding distances extracted from the matrix D = (di j) = (ciφ(j)), it is not
difficult to find that (3, 5, 6, 4) is a shortest pyramidal tour on the set of cities {3, 4, 5, 6},
and the tour length is 303. (See the Appendix for the detailed calculations.) Thus, the b-
weight of I(3, 5), which is a b-branch, can be calculated as wb

3,5 = 303 − ∑6
i=3 ciφ(i) =

303 − 55 − 68 − 80 − 90 = 10. Unfortunately, the inequality wb
3,5 > w3 + w4 + w5 = 7

holds for this branch. In this case, another spanning tree may have a lower b-weight. For
instance, the spanning tree T ′ = {2, 3, 5, 6, 8} has a b-weight of 15, which is lower than
wb(T̂) = w1 + wb

3,5 + w7 = 16. (Since T ′ contains no edge i0, its b-weight can easily be
calculated as wb(T ′) = w(T ′) = 15.)

The above example demonstrates that the MST T̂ may not have minimum b-weight if
wb

h0, j0
> wh0, j0 . Thus we need to determine a minimum-b-weight spanning tree T ∗ for this

case, which may contain a b-branch. Of course, if we knew which of the b-branches has to
be included in the patching tree, the other edges could easily be found by any of the greedy
algorithms for finding an MST, such as Kruskal’s (1956) algorithm. Hence, our focus here
is on the selection of the b-branch. A straightforward strategy would be to search through
all possible b-branches, which would lead to an O(n3) algorithm. Before we present our
more efficient search procedure, we note that we cannot restrict the choices of the b-branch
only to sub-branches of I(h0, j0)—the b-branch of the MST T̂ . For example, if we decide
to remove edge h0 from the tree T̂ (and from the branch I(h0, j0)), a new edge has to be
added to form a spanning tree in the patching graph. If the edge selected happens to be
the edge j0 + 1, its addition will create a new branch I ′(h0 + 1, jx) with jx > j0. For
instance, in the example above, if we remove edge 3 from T̂ and add edge 6, a new branch
I ′(4, 7) = {4, 5, 6, 7} will be created.

A b-branch must start with an edge h with 1 ≤ h ≤ i0. We call such a branch a bh-branch.
Let hmin be the minimal possible index of the starting edge of a b-branch in the patching
graph Gφ . The b-branches can then be chosen exclusively from among bh-branches with
hmin ≤ h ≤ i0. It is clear that hmin can be easily determined as the smallest index h(h ≥ 1)
for which {h, h + 1, . . . , i0} is a cycle-free path in Gφ . For the example above, since it will
create a cycle 1 → 2 → 1 when edge 1 is inserted, we have hmin = 2.

We are now ready to state our search strategy: For each h, hmin ≤ h ≤ i0, first find a
minimum-b-weight spanning tree T b

h in Gφ\{h − 1} among all trees containing a bh-branch
(we define Gφ\{0} = Gφ). After this, find the minimum-b-weight spanning tree T b among
the T b

h -s.
Next we give details of a linear-time procedure to find the tree T b

h . This means that the
tree T b can be obtained in O(n2) time. To find an MST when the underlying graph changes,
we use the following lemma from Ahuja et al. (1993).

Lemma 2. Let T be an MST for a graph G. If an edge (i, j) of T is removed from G, which
results in a graph G ′ = G\{(i, j)} and two components of T containing sets of vertices V ′

ROBOTIC-CELL SCHEDULING 393

and V ′′, then T ′ = T ∪ {(i ′, j ′)}\{(i, j)} is an MST for G ′, where (i ′, j ′) is an edge with
the minimum weight in the cut [V ′, V ′′] of G ′.

Proof: The proof follows from the “cut optimality conditions” for a minimum-weight
spanning tree. That is, for every edge (i, j) of T ′, its weight is not larger than the weight of
any edge (k, l) contained in the cut of G ′ formed by deleting edge (i, j) from T ′. See e.g.
Ahuja et al. (1993) for details.

Given h, hmin ≤ h ≤ i0, we first find, if possible, a spanning tree T̂h in G ′
φ = Gφ\{h − 1}

with minimum weight w(T̂h) among all trees containing the edges h, h + 1, . . . , i0: Start
with the initial working sub-tree {h, h + 1, . . . , i0}, then T̂h can be determined by Kruskal’s
MST algorithm, which keeps adding to the tree the next smallest-weight edge from those
that remain as long as it does not create a cycle. It should be noted here that the removal
of edge h − 1 from Gφ may disconnect the patching graph, which would make finding a
spanning tree in G ′

φ impossible. Therefore, if T̂h does not exist, then there is no T b
h either;

otherwise, let I(h, jh) = {h, h + 1, . . . , , i0, i0 + 1, . . . , jh} be the b-branch in T̂h . Then
the b-weight of T̂h can be calculated as the b-weight of the branch I(h, jh) plus the weights
of all edges in T̂h\I(h, jh), i.e., wb(T̂h) = wb

h, jh
+ w(T̂h) − ∑ jh

k=h wk . For spanning trees of
Gφ which contain a bh-branch, there is a simple but very useful property as shown in the
following lemma.

Lemma 3. For any spanning tree T of Gφ that contains a branch I(h, j) such that j ≥ jh ,
its b-weight is not less than that of T̂h, i.e., wb(T) ≥ wb(T̂h).

Proof: Notice that both T̂h and T have the edges h, h + 1, . . . , i0, i0 + 1, . . . , jh . Since
T̂h has minimum weight among all spanning trees containing a bh-branch, the total weight
of the remaining edges of T is not less than the same in T̂h—that is, w(T̂h) − ∑ jh

k=h wk .
Moreover, as the b-weight fulfills the property wb

i j ≥ wb
ik + wb

k+1, j for any i ≤ k < j , it is

easy to verify that wb(T) ≥ wb
h, jh

+ w(T̂h) − ∑ jh
k=h wk = wb(T̂h).

Lemma 3 tells us that we can restrict our search for the tree T b
h only to T̂h and trees

containing sub-branches of I(h, jh). We will take advantage of this observation in our
search. If the b-weight of the branch I(h, jh) is the same as its weight, i.e., wb

h, jh
= wh, jh ,

then T b
h = T̂h ; otherwise, we assume without loss of generality that jh ≥ i0 +1. The search

for T b
h can be conducted by computing next, one by one, the b-weights for the MST-s

containing branches I(h, j − 1), j = i0 + 1, i0 + 2, . . . , jh . Notice that if we remove, for
instance, edge j for some j ∈ [i0 + 1, jh] from T̂h , then based on Lemma 2, the MST that
contains the branch I(h, j − 1) = {h, h + 1, . . . , i0, i0 + 1, . . . , j − 1}, if it exists, can be
found by connecting two components of T̂h\{ j} by the edge s(j) with the minimum weight
ws(j) in the cut between the two components of T̂h\{ j}. Furthermore, it is easy to verify that
the b-weight of this spanning tree is equal to w(T̂h) − ∑ j

k=h wk + ws(j) + wb
h, j−1. As we

already mentioned above, all b-weights wb
h,i0

, wb
h,i0+1, . . . , w

b
h, jh

can be calculated in linear
time. At this point, the only question left to be answered is how to find in linear time the
“replacement” edges s(j) for all j with i0 + 1 ≤ j ≤ jh .

394 DEĬNEKO, STEINER AND XUE

Figure 5. A rooted tree for edge replacement.

In order to identify the replacement edges, we represent the tree T̂h as a rooted tree with
the vertex (subtour) containing index i0 + 1 as the root. For each vertex u in the tree T̂h , we
assign a pointer p(u) to be the largest index of the edges from I(h, jh) on the path from the
root to vertex u. For the vertices for which the path from the root does not contain any edge
from I(h, jh) at all, we define p(u) = i0. For the root, we assign its pointer to be i0. Now
consider an edge i of Gφ\{h − 1}, which is not in the tree T̂h . Suppose it connects vertices
v1 and v2 with p(v1) = h1 and p(v2) = h2, h1 ≤ h2. If h1 < h2, then this edge can be used
as a replacement edge after removing any one of the edges h1 + 1, . . . , h2; otherwise, i.e.
when h1 = h2, it cannot be used as a replacement for any edge j with i0 + 1 ≤ j ≤ jh
at all, as it will not be in any cut between the two components of T̂h\{ j}. Therefore,
by looking through the sorted list of edges (e.g. in non-decreasing order of weight) not
included in T̂h , we can identify a best replacement edge, if possible, for each edge j with
i0 + 1 ≤ j ≤ jh . Thus clearly, the entire replacement search can be executed in linear
time.

Let h = 4 in the example above (see also figure 5). It is easy to verify that an MST
of Gφ\{h − 1} = Gφ\{3} that contains a bh-branch is T̂h = T̂4 = {1, 4, 5, 6, 7}. So
I(h, jh) = I(4, 7). Note that edge 3 has been removed from the patching graph Gφ . The
pointers p are defined as follows: p(φ4) = 4, p(φ5) = 5, p(φ1) = 6, p(φ6) = 7, p(φ2) = 6,
and p(φ3) = 4. Here edges 2, 8 and 9 are not in the tree. For edge 2, as p(φ1) = p(φ2), it
cannot be used as replacement for any of the edges 5, 6 and 7. For edge 8, as p(φ2) = 6
and p(φ6) = 7, it could be a replacement for edge 7. For edge 9, as p(φ4) = 4 and
p(φ2) = 6, it could be a replacement for edges 5 and 6. Now let us determine the minimum-
b-weight spanning tree T b

4 in Gφ\{3} among all trees containing a b4-branch. Using the
dynamic programming scheme of Park, the b-weight of branches I(4, 4), I(4, 5), I(4, 6),
and I(4, 7) can be computed as follows: wb

4,4 = w4 = 4, wb
4,5 = 10, wb

4,6 = 15, and
wb

4,7 = 21. (The detailed calculations are shown in the last paragraph of the Appendix.)
Therefore, the tree T̂4 has a b-weight of wb(T̂4) = w1 + wb

4,7 = 21. It is easy to verify that
the MST-s containing branches I(4, 4), I(4, 5) and I(4, 6) are {1, 4, 6, 7, 9}, {1, 4, 5, 7, 9}

ROBOTIC-CELL SCHEDULING 395

and {1, 4, 5, 6, 8}, respectively. Furthermore, the b-weight of these trees is 20, 21 and 22,
respectively. Hence, we have T b

4 = {1, 4, 6, 7, 9} and wb(T b
4) = 20.

Similarly, we can find that T̂3 = {1, 3, 4, 5, 7} in Gφ\{2}. The computation of the
b-weight for branch I(3, 5) gives wb

3,4 = 4 and wb
3,5 = 10, see the Appendix for de-

tails. Replacing edge 5 with edge 6 in T̂3, we obtain the tree {1, 3, 4, 6, 7}. Its b-weight is
equal to w1+wb

3,4+w6+w7 = 15, which is lower than wb(T̂3) = w1+wb
3,5+w7 = 16. This

yields T b
3 = {1, 3, 4, 6, 7} and wb(T b

3) = 15. Again, beginning from T̂2 = {2, 3, 4, 5, 7} in
Gφ\{1}, we can find that T b

2 = {2, 3, 4, 6, 7} and wb(T b
2) = 15. Since both T b

2 and T b
3 have

the same minimum b-weight among {T b
2 , T b

3 , T b
4 }, we can choose T b

2 or T b
3 for T b.

Until now, we have assumed that the minimum-b-weight spanning tree T ∗ contains a
b-branch. It is possible, however, that T ∗ does not contain a b-branch at all. For this scenario,
we can simply find a spanning tree T̂0 with minimum weight w(T̂0) in Gφ\{i0}. Clearly, T̂0

has minimum b-weight among all spanning trees that do not have a b-branch. In the case
of our example, T̂0 = {1, 3, 5, 6, 7} with a b-weight (weight) of 14.

Finally, after T b and T̂0 have been determined, we select for T ∗ the one with the lower
b-weight. Since the entire search procedure is exhaustive in nature, T ∗ is obviously the
optimal spanning tree for this problem.

Returning to our example, since T̂0 has the lowest b-weight, we have T ∗ = T̂0 =
{1̄, 3, 5, 6, 7}. Now equipped with T ∗, an optimal tour τ ∗ can be obtained by τ ∗ = φ◦〈1, 2〉◦
〈3, 4〉◦〈7, 8〉◦〈6, 7〉◦〈5, 6〉 = (1, 3, 7)(2, 9)(4)(5, 10)(6)(8)◦〈1, 2〉◦〈3, 4〉◦〈7, 8〉◦〈6, 7〉◦
〈5, 6〉. Note that we have followed the special order of the optimal pyramidal subtour (5, 8, 7,
6) while performing the transpositions of the branch I(5, 7). As a result, an optimal solution
for the TSP is given by the tour 1 → 9 → 2 → 3 → 4 → 7 → 6 → 10 → 5 → 8 → 1
with a length of c(φ) + wb(T ∗) = 803 + 14 = 817.

The following algorithm summarizes our overall solution strategy explained above.

Algorithm b-Decomposable

Input: A b-decomposable permuted Monge matrix Cφ = (ciφ(j)) with the permutation φ.
Output: An optimal TSP tour.

BEGIN
Construct the patching graph Gφ ;
Define the Monge matrix D = (di j) as di j = ciφ(j);
Define the weights of the edges in Gφ by wi = di,i+1 + di+1,i − dii − di+1,i+1;
Sort the edges of Gφ into non-decreasing order by the weights wi ;
Find an MST T̂ of Gφ trying to delay the inclusion of edge i0 in the tree as long as

possible;
IF T̂ does not contain edge i0 THEN

Patch all subtours of φ by using edge-transpositions from T̂ in the order of an
optimal pyramidal subtour for each of its branches.

ELSE
Find a spanning tree T̂0 with minimum weight in Gφ\{i0};

396 DEĬNEKO, STEINER AND XUE

Find a minimum-b-weight spanning tree T b in Gφ among those containing a
b-branch;
IF the weight of T̂0 is less than the b-weight of T b THEN

Patch all subtours of φ by using edge-transpositions from T̂0 in the order of an
optimal pyramidal subtour for each of its branches.

ELSE
Patch all subtours of φ by using edge-transpositions from T b in the order of an
optimal pyramidal subtour for each of its branches.

END

Now let us consider the running time of the algorithm. It takes O(n log n) time to sort
the edges of Gφ . As previously described, T̂ and T̂0 can be found by Kruskal’s (1956)
algorithm for the MST, which requires in this case only O(n) time because the edges are
in sorted order. Using the pointers, it takes O(n2) time to determine all T b

h -s and T b. The
time to perform each of the remaining procedures is O(n). Therefore, the running time for
the entire algorithm is O(n2). Thus we have proved the following theorem.

Theorem 4. Let C = (ci j) be an n × n b-decomposable permuted Monge matrix with an
optimal assignment φ. Then the TSP with distance matrix C is solvable in O(n2) time.

4.2. A subclass with a faster solution

In the preceding section, we have studied TSP-s whose matrix can be decomposed into
two b-weight-additive submatrices. Here we show that this TSP is solvable in O(n log
n) time if at least one of the two submatrices is a sum matrix. In particular, we establish
that the bottleneck step of finding the minimum-b-weight spanning tree T b in Algorithm
b-Decomposable can be executed in linear time. Without loss of generality, we assume that
the matrix D′ = (d ′

i j) for i, j ≤ i0 is the sum matrix.
First, it is interesting to note that if the distance matrix is a sum matrix, then for a given

permutation ψ , the cost of performing any transposition on ψ is always zero. Thus, when
D′ is a sum matrix, the edges of the patching graph Gφ can be classified into two classes:
The first class contains the edges i for i ≤ i0 − 1, and their weight is zero; the second class
consists of the edges i for i ≥ i0, which have non-negative weight.

Now consider a series of edge-transpositions 〈i, i + 1〉, 〈i + 1, i + 2〉, . . . , 〈 j, j + 1〉
in Gφ with i < i0 − 1 and j ≥ i0. If we first perform, in any order, all transpositions
for i ≥ i0 − 1, the remaining transpositions can always be performed with zero cost. This
observation implies that for any b-branch I(i, j) in Gφ with i < i0 − 1, its b-weight is
the same as that of I(i0 − 1, j). Hence, while looking for T b, it is unnecessary to consider
those spanning trees that contain a bh-branch with h < i0 − 1. In other words, to find a
minimum-b-weight spanning tree T b

h in Gφ\{h − 1} among all trees containing a bh-branch,
we need to consider only two cases, h = i0 − 1 and i0, if i0 > 1 or only one case, h = i0,
if i0 = 1. (In the example above, the two cases are h = 3 and 4.) Therefore, the tree T b can
be found in only O(n) time.

ROBOTIC-CELL SCHEDULING 397

Corollary 5. Let C = (ci j) be an n ×n b-decomposable permuted Monge matrix in which
one of the b-weight-additive components is a sum matrix. If an optimal assignment φ is
given for C, then a minimum b-weight spanning tree and an optimal TSP tour can be found
in O(n log n) time.

Let us take a look again at the TSP studied by Aneja and Kamoun (1999), which had
the permuted Monge matrix C = (ci j) = min{bi + a j , max{µ, bi , a j }}. The Corollary
represents a new, simpler solution for this problem. It can be also easily seen that the
distance matrix for the TSP corresponding to the 1 − K robotic-cell scheduling problem,
C̃ = (c̃i j) = min{λ + η + K bi + a j , max{λ + (K − 1)bi + max{η + ρ, bi }, a j }} also has a
sum submatrix in its b-decomposition and therefore the Corollary applies to this problem too.

5. Conclusions

We have introduced the 1 − K robotic-cell scheduling problem, whose solution can be
reduced to solving a TSP on specially structured permuted Monge matrices. We have pre-
sented the insight that the TSP on b-decomposable permuted Monge matrices can be solved
in polynomial time by a special adaptation of the well-known subtour-patching technique.
We have discussed how this new class of matrices can be recognized in polynomial time.
Based on the subtour-patching technique, we formulated the TSP on this special class of
matrices as a minimum-b-weight spanning tree problem and described an O(n2) algorithm
for it. Furthermore, we considered a special case of b-decomposable matrices whose one
component is a sum submatrix, and showed that the optimal solution can be obtained even
faster for this case. As a byproduct of this, we have given a new algorithm and a simpler
proof for the special TSP studied in Aneja and Kamoun (1999).

Appendix

The following are the detailed steps of calculating the lengths of the shortest pyramidal
tours and the b-weights for the example in the paper.

Let Q(i, j) denote the length of a shortest pyramidal path from city i to city j that visits
each city in {1, 2, . . . , max{i, j}} exactly once. Here, a path is called pyramidal, if it first
passes through the cities in descending order of index from i to 1 and then in ascending
order of index from 1 to j. By decomposing a pyramidal path into smaller parts, it is not
difficult to see that

Q(j, j + 1) = min
1≤i< j

{
Q(i + 1, i) + ci, j+1 +

j−1∑
k=i+1

ck+1,k

}
(2)

and

Q(j + 1, j) = min
1≤i< j

{
Q(i, i + 1) + c j+1,i +

j−1∑
k=i+1

ck,k+1

}
. (3)

398 DEĬNEKO, STEINER AND XUE

Note that
∑ j−1

k=i+1 ck+1,k = ∑ j−1
k=i+1 ck,k+1 = 0 if i ≥ j − 1. Starting from the initial

conditions Q(1, 2) = c12 and Q(2, 1) = c21, this recurrence allows us to compute Q(i, j)
for all 1 ≤ i, j ≤ n and i �= j . For example, the recurrence yields

Q(2, 3) = Q(2, 1) + c13, Q(3, 2) = Q(1, 2) + c31,

Q(3, 4) = min{Q(2, 1) + c14 + c32, Q(3, 2) + c24},
Q(4, 3) = min{Q(1, 2) + c41 + c23, Q(2, 3) + c42},
Q(4, 5) = min{Q(2, 1) + c15 + c32 + c43, Q(3, 2) + c25 + c43, Q(4, 3) + c35},
Q(5, 4) = min{Q(1, 2) + c51 + c23 + c34, Q(2, 3) + c52 + c34, Q(3, 4) + c53}

for n = 5. The length of a shortest pyramidal tour τn on cities 1, 2, . . . , n is then given by

c(τn) = min{Q(n − 1, n) + cn,n−1, Q(n, n − 1) + cn−1,n}.

See Park (1991) for details.
Now let us consider the set of cities {3, 4, 5, 6} with the corresponding distances extracted

from the matrix D = (di j) = (ciφ(j)). Using the above recursions, we can obtain

Q(1, 2) = 57, Q(2, 1) = 66,

Q(2, 3) = 66 + 64 = 130, Q(3, 2) = 57 + 75 = 132,

Q(3, 4) = min{66 + 90 + 77, 132 + 90} = 222,

Q(4, 3) = min{57 + 83 + 75, 130 + 83} = 213.

Then we have c(τ3) = min{130 + 77, 132 + 75} = 207 and c(τ4) = min{222 + 83, 213 +
90} = 303. By backtracking, a shortest pyramidal tour on cities 3, 4, 5, 6 is τ4 = (3, 5, 6, 4).
The b-weight of branches I(3, 4) and I(3, 5) can thus be determined as wb

3,4 = c(τ3) −∑5
i=3 ciφ(i) = 207 − 55 − 68 − 80 = 4 and wb

3,5 = c(τ4) − ∑6
i=3 ciφ(i) = 303 − 55 − 68 −

80 − 90 = 10, respectively.
Again, consider the set of cities {4, 5, 6, 7, 8} with the corresponding distances extracted

from the matrix D = (di j) = (ciφ(j)). The recursions are computed in a similar way:

Q(1, 2) = 75, Q(2, 1) = 77,

Q(2, 3) = 77 + 90 = 167, Q(3, 2) = 75 + 83 = 158,

Q(3, 4) = min{77 + 100 + 83, 158 + 100} = 258,

Q(4, 3) = min{75 + 95 + 90, 167 + 95} = 260,

Q(4, 5) = min{77 + 110 + 83 + 95, 158 + 110 + 95, 260 + 110} = 363,

Q(5, 4) = min{75 + 106 + 90 + 100, 167 + 106 + 100, 258 + 106} = 364.

Then we obtain c(τ3) = min{167 + 83, 158 + 90} = 248, c(τ4) = min{258 + 95, 260 +
100} = 353, and c(τ5) = min{363 + 106, 364 + 110} = 469. This gives us wb

4,5 =

ROBOTIC-CELL SCHEDULING 399

c(τ3) − ∑6
i=4 ciφ(i) = 248 − 238 = 10, wb

4,6 = c(τ4) − ∑7
i=4 ciφ(i) = 353 − 338 = 15, and

wb
4,7 = c(τ5) − ∑8

i=4 ciφ(i) = 699 − 448 = 21.

Acknowledgement

We would like to acknowledge an anonymous reviewer whose comments led to a better
presentation for the paper. Partial support for this research by the Natural Sciences and
Engineering Research Council of Canada under Grant No. 1798–03 is also acknowledged.

References

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall,
Upper Saddle River: New Jersey, 1993.

Y.P. Aneja and H. Kamoun, “Scheduling of parts and robot activities in a two machine robotic cell,” Computers
and Operations Research, vol. 26, pp. 297–312, 1999.

V.Y. Burdyuk and V.N. Trofimov, “Generalization of the results of Gilmore and Gomory on the solution of the
traveling salesman problem,” Engineering Cybernetics, vol. 14, pp. 12–18, 1976.

R.E. Burkard, V.G. Deı̆neko, R. van Dal, J.A.A. van der Veen, and G.J. Woeginger, “Well-solvable special cases
of the traveling salesman problem: A survey,” SIAM Review, vol. 40, pp. 496–546, 1998.

R.E. Burkard, B. Klinz, and R. Rudolf, “Perspectives of Monge properties in optimization,” Discrete Applied
Mathematics, vol. 70, pp. 95–161, 1996.

Y. Crama, V. Kats, J. van de Klundert, and E. Levner, “Cyclic scheduling in robotic flowshops,” Annals of
Operations Research, vol. 96, pp. 97–124, 2000.

P.C. Gilmore and R.E. Gomory, “Sequencing a one state-variable machine: A solvable case of the traveling
salesman problem,” Operations Research, vol. 12, pp. 655–679, 1964.

P.C. Gilmore, E.L. Lawler, and D.B. Shmoys, “Well-solved special cases,” in E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan, and D.B. Shmoys, eds., The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, ch. 4, pp. 87–143, John Wiley & Sons, Chichester, England, 1985.

N.G. Hall, H. Kamoun, and C. Sriskandarajah, “Scheduling in robotic cells: Classification, two and three machine
cells,” Operations Research, vol. 45, pp. 421–439, 1997.

S.N. Kabadi, “Polynomially solvable cases of the TSP,” in G. Gutin and A.P. Punnen, eds., The Traveling Salesman
Problem and its Variations, ch. 11, pp. 489–583, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

J.B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proceedings of
the American Mathematical Society, vol. 7, pp. 48–50, 1956.

M. Middendorf and V.G. Timkovsky, “On scheduling cycle shops: Classification, complexity and approximation,”
Journal of Scheduling, vol. 5, pp. 135–169, 2002.

J.K. Park, “A special case of the n-vertex traveling-salesman problem that can be solved in O(n) time,” Information
Processing Letters, vol. 40, pp. 247–254, 1991.

S.S. Reddi and C.V. Ramamoorthy, “On the flow-shop sequencing problem with no wait in process,” Operational
Research Quarterly, vol. 23, pp. 323–331, 1972.

V.I. Sarvanov, “On the complexity of minimizing a linear form on a set of cyclic permutations,” Soviet Mathematics-
Doklady, vol. 22, pp. 118–120, 1980.

S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak, “Sequencing of parts and robot moves in a
robotic cell,” The International Journal of Flexible Manufacturing Systems, vol. 4, pp. 331–358, 1992.

G. Steiner and Z. Xue, “Scheduling multi-component parts in robotic cells,” Working Paper, School of Business,
McMaster University, Canada, 2002.

G. Steiner and Z. Xue, “Scheduling in reentrant robotic cells: Algorithms and complexity,” Journal of Scheduling,
vol. 8, pp. 25–48, 2005.

Z. Xue, Shop Scheduling in Manufacturing Systems: Algorithms and Complexity, Ph.D. Thesis, McMaster Uni-
versity, Canada, 2004.

