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Abstract. The Steiner tree problem asks for a minimum cost tree spanning a given set of terminals S ⊆ V in
a weighted graph G = (V, E, c), c : E → R+. In this paper we consider a generalization of the Steiner tree
problem, so called Polymatroid Steiner Problem, in which a polymatroid P = P(V ) is defined on V and the
Steiner tree is required to span at least one base of P (in particular, there may be a single base S ⊆ V ). This
formulation is motivated by the following application in sensor networks – given a set of sensors S = {s1, . . . , sk},
each sensor si can choose to monitor only a single target from a subset of targets Xi , find minimum cost tree
spanning a set of sensors capable of monitoring the set of all targets X = X1 ∪ . . . ∪ Xk . The Polymatroid
Steiner Problem generalizes many known Steiner tree problem formulations including the group and covering
Steiner tree problems. We show that this problem can be solved with the polylogarithmic approximation ratio by
a generalization of the combinatorial algorithm of Chekuri et al. (2002).

We also define the Polymatroid directed Steiner problem which asks for a minimum cost arborescence connecting
a given root to a base of a polymatroid P defined on the terminal set S. We show that this problem can be
approximately solved by algorithms generalizing methods of Charikar et al. (1999).
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1. Introduction

This paper is motivated by the following lifetime problem in energy-constrained sensor
networks. Let S be a set of (stationary) sensors which can be employed for monitoring a set
X of (possibly moving) targets. Each sensor si ∈ S can monitor at most one target chosen
from Xi ⊆ X , a subset of targets visible to si . All targets are supposed to be simultaneously
monitored by activated sensors which should continuously transmit collected data to the
base possibly using multi-hop connections through other sensors, i.e., the activated sensors
and the base should be connected with a Steiner tree. A schedule is a set of pairs (T, t),
where T a Steiner tree connecting sensors capable of monitoring all targets and t is time
during which T is used. A simple energy model assumes that all sensors transmit with a
single unit power and the Steiner tree is derived from the unit-disk graph. Then the energy
consumption of each sensor is proportional to the time t during which it is used.

∗A preliminary version of this paper appeared in ISAAC 2004
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Target-monitoring sensor network lifetime problem. Find a schedule of the maximum
total time span such that each sensor si ∈ S does not exceed given initial energy supply bi .

Previously, several versions of the communication ad-hoc network lifetime problems
as well as sensor network lifetime problem have been explored in Calinescu et al. (2003)
and Berman et al. (2004), respectively. A provably good approach to the lifetime problems
consists of the following steps:

(i) formulating the lifetime problem as a packing linear program (with exponentially many
variables - the feasible trees),

(ii) approximately solving the feasibility problem of the dual covering linear program linear
program,

(iii) applying the primal-dual algorithm (Garg and Konemann, 1998) for solving the primal
packing linear program with almost the same approximation factor as for the feasibility
problem of the dual covering linear program.

For details, we refer to Calinescu et al. (2003). Therefore, our focus here is on the
following problem which solves the feasibility problem of the dual to the target-monitoring
sensor network lifetime problem by putting appropriate costs on the edges of the graph (as
in (Berman et al., 2004)).

Target-monitoring sensor covering problem. Find minimum cost Steiner tree spanning
the base and a set of sensors capable of simultaneous monitoring of all targets.

Consider a bipartite graph with vertex set B = S ∪ X and edges connecting sensors
with visible targets. Then any set of sensors capable of simultaneous monitoring of
all targets is a set of S-endpoints of a matching completely covering X . Therefore,
all minimal feasible sets of sensors form a set of bases of a matroid or, in general, a
polymatroid. The following problem generalizes the Steiner tree problem in a very natural
way.

Polymatroid Steiner problem (PSP). Given a graph G = (V, E, c) with costs on edges
and a polymatroid P = P(V ) on vertices of G, find minimum cost tree T within G spanning
a base of P .

Equivalently, let r : 2V → {0, 1, . . .} be a function on the set of vertices of G (called the
rank function of the polymatroid P(V )) satisfying

– r (A ∩ B) + r (A ∪ B) ≤ r (A) + r (B), for all A, B ⊆ V (submodularity)
– r (∅) = 0
– if A ⊆ B then r (A) ≤ r (B) (non-decreasing).

Then PSP asks for a minimum cost tree T spanning a maximum rank subset
of V .

PSP generalizes various Steiner tree problem formulations. For example, setting the
rank function r (A) = |A ∩ S|, A ⊆ V where S ⊆ V is a given set of terminals, we
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obtain the classical Steiner tree problem which asks for a minimum cost tree spanning
terminals S. The group Steiner tree problem searches a tree spanning at least one vertex
from each of given groups (subsets of vertices) V1, . . . , Vk ⊆ V – it is also an instance of
PSP with the rank function r (A) = |{Vi |A ∩ Vi 	= ∅}|. The covering Steiner tree problem
(see (Konjevod and Ravi, 2000; Konjevod et al., 2002; Even et al., 2002)) generalizes the
group Steiner tree problem by requiring at least ki vertices from a group Vi to be spanned
– the corresponding rank function is r (A) = ∑k

i=1 min{ki , |A ∩ Vi |}. Finally, the target-
monitoring sensor covering problem is reduced to PSP by adding a single auxiliary target
matching the base and setting r (A) equal to the maximum number of targets that A can
match.

The complexity of PSP can be derived from the recent papers (Halperin et al., 2003;
Halperin and Krauthgamer, 2003). Halperin and Krauthgamer (Halperin and Krauthgamer,
2003) showed that for every fixed ε > 0, Group Steiner Tree problem admits no log2−ε n-
approximation, unless NP has quasi-polynomial Las Vegas algorithms.

When applying primal-dual algorithm of Garg and Konemann (1998) it is necessary to
solve weighted target-monitoring sensor covering problem, i.e., the version in which each
sensor has a certain weight and the cost of the solution is the sum of weights of chosen
sensors rather than just number of chosen sensors. PSP does not seem to generalize the
node-weighted version, but it can be reduced to the following:

Polymatroid directed Steiner problem (PDSP). Given a directed graph G = (V, E, c)
with costs on edges and a polymatroid P = P(V ) on vertices of G. Find minimum cost
arborescence T within G connecting a given root s ∈ V to all vertices of at least one base
of P .

The PDSP generalizes the Directed Steiner Tree Problem which can be obtained from
PDSP by setting rank of a subset to its size. The best known approximation algorithm, due
to Charikar et al. (1999), has running time O(ni k2i ) and approximation ratio i2(i − 1)k1/ i

for any fixed integer i > 1. Thus, in polynomial time, their approximation ratio is O(kε),
while in quasipolynomial time (O(nc lg n), for constant c) they achieve a polylogarithmic
approximation ratio of O(log 3k).

The simple energy model for the target-monitoring sensor network lifetime problem can
be enhanced by allowing sensors to choose the power of transmission. Then the energy
consumption of each sensor si is proportional to the cost of the hop connecting si to the
next sensor on the path to the base as well as time t during which T is used. This model
straightforwardly reduces the target-monitoring sensor network lifetime problem to PDSP.
It turns out (as in Calinescu et al. (2003)) that the version of PDSP used for solving the
feasibility problem of the dual of the lifetime program is equivalent to PDSP – the cost of
each edge e should be multiplied by the weight of the beginning of e.

In the next section we show how to adapt the algorithm of Charikar et al. (1999) to solve
PDSP with almost the same approximation factor. The Section 3 is devoted to generalization
of the algorithm of Chekuri et al. (2002) to solve PSP with polylogarithmic approximation
ratio.
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2. The polymatroid directed Steiner Tree problem

In this section we establish performance bounds of the generalization of the algorithm of
Charikar et al. (1999) to the Polymatroid Directed Steiner Tree problem.

First we introduce a version of Polymatroid Directed Steiner Trees which allows the
presentation of the algorithm. Without loss of generality, we assume that the directed graph
is complete and c(u, v) equals the minimum cost path from u to v. All the edges and trees
in this section are directed. Given a set of nodes X ⊆ V , we denote by rX the rank function
with X contracted; that is rX (Z ) = r (X ∪ Z ) − r (X ). The rank function of a polymatroid
is submodular implying that if X ⊆ Y ⊆ V , then for any Z ⊆ V , we have rX (Z ) ≥ rY (Z ).
Let PDST(k, v, X ) denote the problem of finding the minimum-cost tree T rooted at v with
rX (V (T )) ≥ k, where V (T ) is the vertex set of the tree T . Note that the new version is in
fact equivalent with the standard version as rX is another submodular rank function. One
can think of rX as the residual rank function.

We ensure that all the nodes v with r (v) > 0 do not have outgoing edges by “duplicating”
v as follows: if v has outgoing edges and positive rank, we introduce another node v′ with
r (v′) = 0, replace every edge incident to v by a corresponding edge incident to v′, and
introduce the edge (v′, v) of cost 0. This allows us to write r (T ) := r (V (T )) = r (L(T ))
for any directed tree T with vertex set V (T ) and leafs L(T ) assuming T ′s root has rank 0
(as will be the case for all our trees: even the original root is duplicated if it has positive
rank).

Let c(T ) be the cost of the directed tree T (the sum of the costs of the edges of T ). Then
we define the density of the tree T with respect to vertex set X as dX (T ) = c(T )/rX (T ).

An l-level tree is a tree where no leaf is more than l edges away from the root. Helvig
et al. (2001) give:

Lemma 1. For all l ≥ 1 and any tree T ⊆ G, there exists an l-level tree T ′ ⊆ G with
L(T ′) = L(T ) and c(T ′) ≤ l · |L(T )| 1

l c(T ).

An earlier claim from Zelikovsky (1997) that c(T ′) ≤ |L(T )| 1
l , used in Charikar et al.

(1999), has a gap in the proof.

2.1. The algorithm

We describe the Charikar et. al. algorithm Charikar et al. (1999), adapted for our more
general problem. The recursive algorithm Ai (k, v, X ) appears in Figure 1. The parameters
passed down are the desired rank k, the desired root v, the maximum height i , and a pointer
to a vector X describing the vertices already in the tree. The algorithm returns a pointer to
an i-level tree T = Ti (k, v, X ) rooted at v satisfying rX (T ) ≥ k, or ∅ if no such tree exists.
The base case is i = 0 (as opposed to i = 1 in Charikar et al. (1999)), as a trivial reduction
from Set Cover shows that it is NP-Hard to compute a minimum weight star (a directed
tree with one level) of given rank in the polymatroid setting. When i = 1, the recursive
algorithm copies the vector X and uses the copy during its execution, while when i = 1 the
vector X is not modified.
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Figure 1. Algorithm Ai (k, v, X ).

Note the following invariant of the algorithm: rX (X j ) = k−k j . Indeed, rX (X1) = r (X )−
r (X ) = 0 = k −k1, and rX (X j+1) = r (X j+1)−r (X ) = r (X j+1)−r (X j )+r (X j )−r (X ) =
rX j (TBEST( j)) + rX (X j ) = (k j − k j+1) + (k − k j ) = k − k j+1. In particular, we have
rX (Ti (k, v, X )) ≥ k, so the returned solution is valid.

Let T (i)
OPT(k, v, X ) be an optimum i-level tree solving PDST(k, v, X ). The lemma below

is the counterpart of Lemma 3 of Charikar et al. (1999), and is proved by the same method.
It is interesting to see where submodularity plays a crucial role in the proof.

Lemma 2. For all i ≥ 1, each tree TBEST( j) chosen by algorithm Ai (k, v, X ) satisfies

dX j (TBEST( j)) ≤ i · dX j

(
T (i)

OPT(k j , v, X j )
)
.

Proof: The proof is by induction on i , with the base case i = 1 being immediate since
A0(k ′, v, X j ) is called for all k ′ ≤ k j and v ∈ V and A0 always returns the optimum.

Assume now the statement of the lemma holds for all k, v, X, and i − 1. T (i)
OPT(k j , v, X j )

consists of several edges (v, u p) and subtrees Tp rooted at u p, such that rX j (∪pTp) ≥
k j . Submodularity implies that

∑
p rX j (Tp) ≥ rX j (∪pTp), and therefore by an averaging

argument and renumbering, we have

c(v, u1) + c(T1)

rX j (T1)
≤ dX j

(
T (i)

OPT(k j , v, X j )
)

(1)

Consider the execution of the algorithm Ai−1(k j , u1, X j ). Trees R1, R2, . . . are selected in
this order, and let Q p = ∪p

q=1 Rq , with Q0 = ∅ for convenience. Now, when Ai−1(k ′, u1, X j )
is called for k ′ = rX j (Q p), then Q p ∪ {(v, u1)} is returned and is a candidate for TBEST( j).
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Our goal is to wisely choose such p and show that Q p ∪{(v, u1)} has an appropriate density:

c(v, u1) + c(Q p)

rX j (Q p)
≤ i

c(v, u1) + c(T1)

rX j (T1)
(2)

which together with Eq. (1) would imply the theorem. We pick p to be the smallest integer
such that rX j (Q p) ≥ rX j (T1)/ i , which implies

c(v, u1)

rX j (Q p)
≤ i

c(v, u1)

rX j (T1)
(3)

It remains to prove that

c(Q p)

rX j (Q p)
≤ i

c(T1)

rX j (T1)
(4)

as this equation together with Eq. (3) implies Eq. (2).
By the induction hypothesis, we have for all q ≤ p

c(Rq )

rQq−1∪X j (Rq )
≤ (i − 1)

c(T1)

rQq−1∪X j (T1)
(5)

since Rq is TBEST(q) when executing Ai−1(rX j (T1), u1, X j ). We picked p such that
rX j (Q p−1) < 1

i rX j (T1), and therefore rX j ∪Q p−1 (T1) = r (X j ∪ Q p−1 ∪T1)−r (X j ∪ Q p−1) ≥
r (X j ∪ T1) − r (X j ∪ Q p−1) = (r (X j ∪ T1) − r (X j )) − (r (X j ∪ Q p−1) − r (X j )) =
rX j (T1) − rX j (Q p−1) ≥ i−1

i rX j (T1).
Submodularity of the rank function implies that for all q ≤ p,

rX j ∪Qq−1 (T1) ≥ rX j ∪Q p−1 (T1) ≥ i − 1

i
rX j (T1) (6)

and, therefore,
p∑

q=1

c(Rq ) ≤
p∑

q=1

rQq−1∪X j (Rq )(i − 1)
c(T1)

rQq−1∪X j (T1)

≤ i
c(T1)

rX j (T1)

p∑

q=1

rQq−1∪X j (Rq ) (7)

But

rX j (Q p) = r (X j ∪ Q p) − r (X j )

= r (X j ∪ Q p) − r (X j ∪ Q p−1) + r (X j ∪ Q p−1) − · · · − r (X j ∪ Q0)

=
p∑

q=1

rX j ∪Qq−1 (Rq )

Thus Eq. (7) implies Eq. (4), finishing the proof of Lemma 2.
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Theorem 1. For k = rX (V ) and for every i > 1, v ∈ V and X ⊆ V, the algorithm
Ai (k, v, X ) provides an i3k1/ i approximation to PDST(k, v, X ) in time O(ni+1k2i+2q(n)),
where q(n) is the time an oracle returns rX (v) for an arbitrary X ⊆ V .

Proof: The proof follows closely Charikar et al. (1999). Note that for all j TOPT(k, v, X )
is a valid solution for PDST(k j , v, X j ) since

rX j (TOPT(k, v, X )) = r (X j ∪ TOPT(k, v, X )) − r (X j )

≥ r (X ∪ TOPT(k, v, X )) − r (X ) − (r (X j ) − r (X ))

≥ rX (TOPT) − rX (X j ) = k − (k − k j ) = k j ,

where we used the invariant of the procedure Ai (k, v, X ) and X ⊆ X j . Therefore
c(TOPT(k j , v, X j ) ≤ c(TOPT(k, v, X )) and we also have by Lemma 2 c(T (i)

OPT(k j , v, X j )) ≤
ik1/ i

j c(TOPT(k j , v, X j )). By Lemma 1, we have

dX j (TBEST( j)) ≤ i · dX j

(
T (i)

OPT(k j , v, X j )
)

≤ i · i · k1/ i
j · c(TOPT(k, v, X ))

k j
.

So we know that

c(TBEST( j))

rX j (TBEST( j))
≤ i2k1/ i

j

c(TOPT(k, v, X )

k j
.

Let f be the value of j at the end of Ai (k, v, X ). Using the invariant and k = rX (V ) we
must have k f = k − rX (X f ) ≥ 0 since k f < 1 (which signals the exit from the while loop
at line 3), we conclude k f = 0. The algorithm gives that for all j = 1, 2, . . . , f − 1 we
have rX j (TBEST( j)) = k j − k j+1, and we obtain

c(TBEST( j)) ≤ i2c(TOPT(k, v, X ))(k j − k j+1)
k1/ i

j

k j

Summing over j (cf. Lemma 1 of Charikar et al. (1999)) and using k1 = k and k f = 0 and
the fact that the function f (x) = x1/ i−1 is non-increasing, we obtain

c(Ti (k, v, X )) ≤ i2c(TOPT(k, v, X ))
∑

j

(k j+1 − k j )
k1/ i

j

k j

≤ i2c(TOPT(k, v, X )
∫ k

0
x1/ i−1dx

= i3k1/ i c(TOPT(k, v, X ))

The procedure Ai invokes Ai−1 at most nk2 times, and the bound on the running time
follows.
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If the input is a star (directed tree with one level), the algorithm becomes the Greedy
algorithm for the Submodular Set Covering problem of (Wolsey, 1982). Simplifying and
following the proof of Theorem 1 one gets.

Corollary 1. The approximation ratio of the Greedy Algorithm applied to the Submodular
Set Covering problem is at most 1 + ln k.

Wolsey (1982) investigated this problem and has shown that the Greedy algorithm has in
fact an approximation ratio of Hq , where q = maxv r (v). Wolsey’s ratio is no worse than
the one from the corollary, and is sometimes better.

3. The polymatroid Steiner tree problem

In this section we give the solution of the (undirected) Polymatroid Steiner tree Problem.
The first choice for solving this problem is to generalize the linear-program based algo-
rithms of Garg et al. (2000), Konjevod et al. (2002), and Zosin and Khuller (2002). The
corresponding linear programs have polynomial-time separation oracle. Unfortunately, it is
truly cumbersome to apply rounding to the linear programs of PSP. Instead, our algorithm
for PSP relies on the combinatorial approximation algorithm for Group Steiner Tree of
Chekuri et al. (2002).

The Chekuri et al. algorithm is obtained by modifying the Charikar et al. (1999) algorithm
and is applied after the graph metric has been replaced by a tree metric (Bartal, 1996,
1998; Charikar et al., 1999; Fakcharoenpho et al., 2003), losing a factor of O(log n) in
approximation ratio. Thus we also assume the input is a rooted tree.

Chekuri et al. (2002) preprocess the tree to decrease the depth and degree. This prepro-
cessing approximately preserves the cost of any solution, so we can apply it to Polymatroid
Steiner Tree as well. Precisely, every set of leafs L ⊆ L(T ) induces a subtree Tl consisting
of the union of all paths from the root to the leafs in L . If A and B are two trees with the
same root and the same set of leafs, the tree B is a α-faithful representation of the tree A if

∀L ⊆ L(A) : c(AL ) ≤ c(BL ) ≤ αc(AL ).

The preprocessing is stated in the following theorem of Chekuri et al. (2002).

Theorem 2. Given a tree T with n leafs and integer parameters α and β > 2, there is a
linear time algorithm to transform T into a O(α)-faithful tree T ′ with height O(logα n +
logβ/2 n) and maximum degree O(β).

Thus, by losing a factor of O(α log n) (log n comes from embedding the original metric
in a tree metric), we can assume that the instance for Polymatroid Steiner Tree is a tree with
height O(logα n + logβ/2 n) and maximum degree O(β).

For the reader familiar with the Chekuri et al. (2002) paper below you’ll find the corre-
spondence between the notions used by this previous paper and our notions. Their theorems
and proofs “translate” to PST, some of them directly.
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– w(T ) —- c(T )
– z′ —- k
– r ′ —- v

– Tr ′ (excluding the leafs already reached) —- X (the leafs already reached)
– Taug —- TBEST( j)
– zres —- k j

– γ (T ) —- dX (T )
– cover —- ∪ j

i=1TBEST( j)
– m(T ) —-rX j (T )
– m(cover ) —- rX X j

– remove groups covered by Taug from T res —- X j+1 ← X j ∪ L(TBEST( j))
– coverh —- jh
– Group-Steiner∗(T res

r ′ , zres) —- TOPT(k j , v, X j )

The Modified-Group-Steiner algorithm of Chekuri et al. (2002), as adapted for Polyma-
troid Steiner Tree for trees is described in Figure 2. The recursive procedure M(k, v, X )
uses an integer parameter λ as the basis for the geometric search. We use Tv to denote the
subtree rooted at v and Cv the set of children of v. h(T ′) denotes the height of a subtree
T ′.

In the practical implementations, one can continue the while loop from Step 3 instead of
stopping in Step 3.4, returning the lowest density tree from∪ j−1

q=1TBEST(q) and∪ jh−1
q=1 TBEST(q),

where jh is the value of j at the first moment rX (X j ) ≥ k/(h(Tv) + 1).
The proof of the following lemma follows closely the proof of Lemma 3.3 of Chekuri

et al. (2002), except that in the base case (leafs) an oracle call must be made, which we
assume takes time q(n), an bookkeeping is slightly more difficult. We include the proof for
completeness.

Figure 2. Algorithm M(k, v, X ).
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Lemma 3. Let � be the maximum degree of the tree and b = �(1 + 1/λ)(1 + λ). The
running time of M(k, v, X ) is O((n +q(n))µh(Tv )) where µ = b ·h(Tv) · log k ·� · log1+λ b.

Proof: For a given k j , the number of recursive calls done in line 3.2.1 is � log1+λ b.
A successful call (that is, not returning ∅) has rx j (T

′) ≥ k j

b
1

h(Tv ) and therefore k j+1 ≤
k j − k j

b
1

h(Tv ) = k j (1 − 1
bh(Tv ) ) ≤ k j e

− 1
bh(Tv ) . As soon as k j < 1 the procedure stops, and

therefore the number of times the while loop in line 3 is executed is at most bh(Tv) log k.
Thus the total number of recursive calls done by M(k, v, X ) is µ.

The time spent by M(k, v, X ) is at most (n + q(n)) times the number of recursive calls.
With i = h(Tv), we obtain the recurrence for the running time of M(k, v, X ) t(i) ≤
µ(t(i − 1) + n + q(n)), with the base case t(0) = n + q(n). Solving the recurrence gives
t(i) ≤ (n + q(n))(µi + ∑i

q=1 µq ) and for all µ ≥ 2 we get t(i) = O((n + q(n))µi ).

The main lemma needed for establishing the approximation ratio is a the equivalent of
Lemma 3.4 of Chekuri et al. (2002).

Lemma 4.

dX j (TBEST( j)) ≤ (1 + λ)2h(Tv )h(Tv)dX j (TOPT(k j , v, X j ))

Proof: The proof follows closely (Chekuri et al., 2002). The base case for us requires
some extra arguments. It is also interesting to see where the submodularity of the rank
function is used.

We use γ ∗ = dX j (TOPT(k j , v, X j )). The proof is by induction on h(Tv), the height of the
subtree rooted at v. Both the base case h(Tv) = 1 and the general case need the following
argument.

Let u1, u2, . . . , ud be the children ofv in TOPT(k j , v, X j ), and Ti , 1 ≤ i ≤ d, be the subtree
of TOPT(k j , v, X j ) rooted at ui . Thus rX j (∪d

i=1Ti ) ≥ k j . We divide the set 1, 2, . . . d into the
set B giving “big” trees: those i with rX j (Ti ) ≥ k j

deg(v)(1+1/λ) , and the set S giving “small”
trees: those i with rX j (Ti ) <

k j

deg(v)(1+1/λ) . Then rX j (∪i∈STi ) ≤ ∑
i∈S rX j (Ti ) <

k j

1+1/λ
and,

therefore

∑

i∈B

rX j (Ti ) ≥ rX j (∪i∈B Ti )

≥ r (∪i∈B Ti ∪ X j ) − r (X j )

= r (∪i∈B Ti ∪ (∪i∈STi ) ∪ x j ) − r (X j )

−(r (∪i∈B Ti ∪ (∪i∈STi ) ∪ x j ) − r (∪i∈B Ti ∪ X j ))

= rX j (∪d
i=1Ti ) − r∪i∈B Ti ∪X j (∪i∈STi )

≥ k j − rX j (∪i∈STi )

≥ k j − k j

1 + 1/λ)

= k j

1 + λ
,
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where we used rX j (∪i∈STi ) ≥ r∪i∈B Ti ∪X j (∪i∈STi ), which follows from submodularity. By
an averaging argument, there is a big tree (which we renumber T1) such that

c(v, u1) + c(T1)

rX j (T1)
≤

∑
i∈B c(v, ui ) + c(Ti )

∑
i∈B rX j (Ti )

≤ (1 + λ)
c(TOPT(k j , v, X j ))

k j

= (1 + λ)γ ∗. (8)

Let z be the power of (1 + λ) such that z ≤ rX j (T1) < (1 + λ)z and note that z is in the
range of powers of (1 +λ) considered in Line 3.2 of the algorithm. Therefore M(z, u1, X j )
is called.

In the base case, u1 is a leaf, and therefore a candidate for TBEST( j) is the tree T ′ with
only the edge (v, u1), having density dX j (T

′) = c(v,u1)
rX j (T1) ≤ (1 + λ)γ ∗. Thus the base case of

induction holds.
In the general case, let R1, R2, . . . , Rp be the trees picked as TBEST during the execution

of M(z, u1, X j ). Let Qq = ∪q
i=1 Ri (with Q0 = ∅ for convenience) and let h1 = h(Tu1 ).

Induction gives for i ∈ {1, 2, . . . , p}

c(Ri )

rX j ∪Qi−1 (Ri )
≤ (1 + λ)2h1 h1dX j ∪Qi−1 (TOPT(z − rX j (Qi−1), u1, X j ∪ Qi−1))

≤ (1 + λ)2h1 h1
c(T1)

rX j ∪Qi−1 (T1)
, (9)

where the first inequality uses rX j (Qi−1) = ∑i−1
q=1 rX j ∪Qq−1 (Rq ) and the second inequality

follows from the fact that rX j ∪Qi−1 (T1) ≥ z−rX j (Qi−1) (which follows from rX j (T1∪Qi−1 ≥
rX j (T1) ≥ z), and, therefore, T1 is a candidate for TOPT(z, u1, X j ∪ Qi−1).

By the return condition of the algorithm, rX j (Qi−1) < 1
h1+1 z for all i ≤ p, and therefore

rX j ∪Qi−1 (T1) ≥ rX j (T1) − rX j (Qi−1)

≥ z

(

1 − 1

h + 1

)

= h1

h1 + 1
z.

Together with Eq. (9), we obtain that, for all i ≤ p,

c(Ri )

rX j ∪Qi−1 (Ri )
≤ (1 + λ)2h1 (h1 + 1)

c(T1)

z

≤ (1 + λ)2h1+1(h1 + 1)
c(T1)

rX j (T1)
, (10)
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since z was chosen such that z ≤ rX j (T1) < (1 + λ)z. Thus,

p∑

q=1

c(Rq ) ≤
p∑

q=1

rX j ∪Qq−1 (Rq )(1 + λ)2h1+1(h1 + 1)
c(T1)

rX j (T1)
. (11)

But

rX j (Q p) = r (X j ∪ Q p) − r (X j )

= r (X j ∪ Q p) − r (X j ∪ Q p−1) + r (X j ∪ Q p−1) − · · · − r (X j ∪ Q0)

=
p∑

q=1

rX j ∪Qq−1 (Rq ),

and therefore,

∑p
q=1 c(Rq )

rX j (Q p)
≤ (1 + λ)2h1+1(h1 + 1)

c(T1)

rX j (T1)
. (12)

Note that p was picked such that rX j (Q p) ≥ 1
h1+1 z ≥ 1

(h1+1)(1+λ)rX j (T1) and therefore

c(v, u1)

rX j (Q p)
≤ (h1 + 1)(1 + λ)

c(v, u1)

rX j (T1)
. (13)

Combining the previous equation with Eq. (12) we obtain

c(u, v) + ∑p
q=1 c(Rq )

rX j (Q p)
≤ (1 + λ)2h1+1(h1 + 1)

c(v, u1) + c(T1)

rX j (T1)
(14)

Using Eq. (8) and the fact that h(Tv) ≥ h(Tu1 ) + 1 = h1 + 1, we obtain

c(u, v) + ∑p
q=1 c(Rq )

rX j (Q p)
≤ (1 + λ)2h(Tv )h(Tv)γ ∗ (15)

Thus, the tree T ′ returned by M(z, u1, X j ), which is a candidate for TBEST( j) in the execution
of M(k, v, X ), satisfies dx j (T

′) ≤ (1 + λ)2h(Tv )h(Tv)γ ∗.

Chekuri et al. (2002) choose (and we do the same) α = (log n)ε , β = log n, 1/λ = log n).
Assuming the oracle computation is polynomial time, plugging this values in Lemma 3
yields a polynomial-time algorithm.

Using exactly the method from Theorem 3.5 and Corollary 3.6 of Chekuri et al. (2002)
we prove:

Theorem 3. There is a combinatorial polynomial-time O( 1
ε

· 1
log log n · (log n)1+ε log k)-

approximation algorithm for Polymatroid Steiner Tree on trees with n nodes, where k is
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the desired rank. For general undirected graphs, there is a combinatorial polynomial-time
O( 1

ε
· 1

log log n · (log n)2+ε log k)-approximation algorithm

Proof: The running time follows from the discussion above. Also, note that the height of
the tree is O( 1

ε

log n
log log n ) and then computation shows that Lemma 3 gives:

dX j (TBEST( j)) ≤ O(
1

ε

log n

log log n
)dX j (TOPT(k j , v, X j )).

Standard set-cover analysis (as in Chekuri et al. (2002) or Zosin and Khuller (2002)) gives
then a O( 1

ε

log n
log log n log k) approximation on the trees of reduced height and degree. Another at

most O((log n)ε factor is lost due to preprocessing of the tree, based on Theorem 3, obtaining
the O( 1

ε
· 1

log log n · (log n)1+ε log k)-approximation algorithm for Polymatroid Steiner Tree
on trees. To obtain the approximation ratio for general undirected graphs, use the algorithm
of Fakcharoenpho et al. (2003) to replace a graph metric by the tree metric.

4. Conclusion

Motivated by applications in wireless sensor networks (when sensors can monitor only a
single target), we have introduced the Polymatroid (Directed and Undirected) Steiner Tree
Problems (PSP). These problems asks for a (directed) Steiner tree spanning a subset of
terminals of sufficiently large rank. The undirected version of PSP generalizes all known
versions of the Group Steiner Tree Problem and is shown to be solved by a generalization
of the algorithm from Chekuri et al. (2002) with polylogarithmic approximation ratio. The
directed version of PSP is a generalization of the Directed Steiner Tree Problem as well as
Polymatroid Set Cover Problem. We show that this problem can be approximately solved
by methods generalizing Charikar et al. (1999).
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