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experiencing air hunger [3], a stressful emotional state that 
may lead to long term psychologic sequela [4].

Quantification of patient effort during ventilatory sup-
port could help clinicians optimize ventilator settings and 
calibrate sedative administration. With that goal in mind, 
the current research proposes a non-invasive method to esti-
mate the portion of airway pressure (Paw) attributed to mus-
cular effort (Pmus) during insufflation automatically.

1.1 Model development

The single compartment model of the respiratory system [5, 
6] during positive pressure ventilation with negligible Pmus, 
may be expressed as [7]:

Ppassive (t) =
∆V (t)

Crs
+ RrsFaw (t) + PEEP a  (1)

1 Introduction

The process of mechanically ventilating the respiratory 
system, that includes the lungs and thoracic cage, is often 
influenced by a patient’s level of consciousness. For heav-
ily sedated or paralyzed patients, insufflation is entirely pas-
sive. Yet, conscious patients may exhibit an active response, 
such as trying to exhale during insufflation risking injuri-
ous lung strain [1, 2], or developing forceful inhalations if 
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where Ppassive(t) is the airway pressure required to inflate the 
respiratory system devoid of patient assistance; ΔV(t) rep-
resents increases in lung volume from functional residual 
capacity; Faw(t) is airway flow; and PEEPa is the applied 
positive end-expiratory pressure. Crs and Rrs denote the 
respiratory system’s compliance and inspiratory resistance, 
respectively.

In the presence of respiratory muscle activity, Eq. 1 
becomes,

Paw (t) =
[
∆V (t)

Crs
+ RrsFaw (t) + PEEP a

]
+ Pmus (t) (2)

Substituting from Eq. 1 and rearranging,

Pmus (t) = Paw (t) − Ppassive (t) (3)

The Pmus(t) function, describing changes in Pmus during 
insufflation, is calculated using Eq. 3 with sequential Paw(t) 
measurements and Ppassive(t) values calculated from Eq. 1. 
According to Eq. 3, Pmus(t) is negative for Paw (t) < Ppassive(t), 
indicating inspiratory muscle effort, and positive for Paw 
(t) > Ppassive(t), signifying expiratory muscle effort.

The calculation of Ppassive(t) requires prior knowledge 
of Crs and Rrs, whose values are also derived from Eq. 1 
using data from breaths with no muscle effort (Pmus(t) = 0). 
Although Eq. 1 by itself is indeterminate, a numerical solu-
tion has been developed [8]. This involves repeatedly solv-
ing Eq. 1 by applying a broad spectrum of plausible Crs and 
Rrs values to each set of measurements (ΔV(k), Faw(k) and 
PEEPa) made during passive insufflation. The outcome is a 
Crs x Rrs matrix that encompasses all possible solutions of 
Eq. 1 for the given measurements, within the selected range 
of Crs and Rrs values. A (Crs-Rrs)k function is next generated 
by identifying the matrix elements matching the measured 
Paw(k).

Replicating the above process for all n measurements 
made during insufflation generates a family of (Crs-Rrs)n 
functions on the Crs-Rrs plane. Since the model assumes Crs 
and Rrs to be constant during insufflation, these (Crs-Rrs)n 
functions intersect at their true values, This methodology 
has been rigorously tested for stability and validated with 
clinical data [8].

Although assumed constant during the insufflation, the 
algorithm also recognizes that Crs and Rrs may change 
longitudinally due to treatment or clinical factors. This is 
addressed by treating Crs and Rrs as the mean of fixed-length 
vectors, operating like quasi-circular buffers. In other words, 
as monitoring begins, Crs and Rrs values from passive insuf-
flations are added sequentially to respective vectors. Once 
the vectors accumulate 180 elements, their averages are 
taken as initial Crs and Rrs for that patient. Crs and Rrs values 

derived from subsequent breaths meeting Pmus(t) = 0 criteria 
are used to dynamically update these vectors with a First-
In-First-Out (FIFO) method, ensuring their sizes remain 
constant. The choice of 180 elements, equivalent to 10 to 
15 minutes of monitoring time, aims to strike a balance 
between gathering enough passive breath data for accurate 
calculation and the time required to produce initial Crs and 
Rrs values.

1.2 Model validation

It is possible to assess the validity of predicted Pmus(t) by 
its consistency with anticipated physiological responses. 
Specifically, in patients ventilated with volume-control 
(VC) mode, where the tidal volume (VT) is preset, Pmus(t) 
is expected to associate with fluctuations in Paw(t). Con-
versely, for pressure-control (PC) mode, that provides a 
constant Paw(t) during the entire insufflation, Pmus(t) should 
more closely correlate with alterations in VT. The soundness 
of the Pmus(t) estimate is intrinsically linked to the robust-
ness of its separate correlations with Paw(t) and VT, with a 
strong coefficient of determination R2 signifying an accu-
rate computation.

2 Methods

The algorithm was tested using Faw and Paw signals stored 
in a database of 250 patients treated with invasive ventila-
tion at the Intensive Care Unit of The George Washington 
University Hospital. These patients had been enrolled in 
multiple studies approved by the Institutional Review Board 
(Nos. 101228, 110910, 111235) conducted between 2011 
and 2015 in accordance with the 1964 Helsinki Declaration. 
The patients, or their appointed surrogates, gave informed 
consent for these studies, and the IRB allowed use of the 
anonymized data for subsequent research.

Table 1 shows demographic and enrollment data for 
the patients in the database. There was a preponderance of 
medical diagnoses (67%), 58% were male, with the largest 
percentage of patients being of Black ethnicity (54.4%).

All patients were intubated via the nasotracheal or orotra-
cheal route and received ventilatory support using Servo_i 
or Servo_s ventilators (Getinge, Solna, Sweden) with vari-
ous modes of ventilation. Treatment decisions were inde-
pendent of the study. Enrollment occurred within 24 h of 
intubation, with patients monitored for 3 [2, 5] (median 
[IQR]) days.

Faw and Paw signals were acquired from the ventila-
tor data port (Computer Interface Emulator CIE, Getinge, 
Solna, Sweden) at 31.25 Hz and stored as sequential time-
windows, termed epochs, spanning 131.1 s and containing 
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4096 samples of each Paw and Faw signal. Commencing with 
records starting from 2011, data from each patient were ana-
lyzed sequentially from the time of enrollment to the cessa-
tion of monitoring, with software developed according to 
the algorithm of Fig. 1 written in Python 3.11 programming 
language. The algorithm simulates the real-time patient 
monitoring process used in clinical settings. Excluded from 
analysis were epochs on bi-level ventilation and Airway 
Pressure Release Ventilation (APRV).

Step 1: Data analysis begins by identifying epochs with 
a respiratory rate variability index [9] (RRVI) < 50%, a 
threshold observed during the N2 and N3 sleep stages [10]. 
Given their low RRVI, these epochs are considered to occur 
during times of minimal respiratory muscle activity and 
chosen for subsequent analysis.

Step 2: For each selected epoch, calculate Crs and Rrs 
for every breath that meets the criteria for passive insuffla-
tion: (1) Ventilator triggered: (PEEPa – minimal Paw) < 0.3 
cmH2O; (2) Full volume breaths: VT ≥ 250 mL with insuf-
flation time (Ti) > 0.8 s; (3) Absence of PEEPi: end exhala-
tion (EE) Faw < 3 L·min− 1 and breath’s initial Paw(t0) - prior 
breath’s EE Paw < 2 cmH2O [11, 12], (4) No leaks in the 
circuit: inspired – expired VT < |30 mL|; and (5) Avoid-
ance of lung overdistention: inspired VT < 740 mL [13]. 
Store calculated Crs and Rrs values sequentially in respective 

vectors. Once the vectors are filled with 180 elements, use 
their averages as initial Crs and Rrs for the patient.

Step 3: Determine Pmus(t) for each breath in subsequent 
epochs. Use the calculated Crs and Rrs to compute Ppassive(k) 
from Eq. 1 and Pmus(k) from Eq. 3 for all Paw(k), Faw(k), 
ΔV(k), and PEEPa measurements obtained at sequential 
times k during the insufflation. To insure calculations take 
place in the region of constant Crs, defined as the analysis 
time, Pmus pressure-time product (PmusPTP) is calculated by 
numerical integration of the Pmus(t) function (trapezoidal 
method) from the time ΔV(t) ≥ 150 mL through 90% of the 
insufflation’s duration. In addition to the primary calcula-
tions, other derived metrics are: the maximum and mini-
mum Pmus, corresponding to the peak positive and negative 
values of Pmus (Pmuspeak), the pressure-time product of air-
way pressure (PawPTP) over the analysis period, the peak 
value of airway pressure (Pawpeak), and tidal volume (VT), 
defined as the largest volume change (ΔV(t)) achieved dur-
ing insufflation.

Initial Crs and Rrs values are dynamically adjusted by 
the algorithm to reflect changes from disease progression 
or treatment. Epochs with RRVI < 50% are examined for 
breaths fulfilling the Pmus = 0 criteria from Step 2. Crs and 
Rrs determined from these breaths are added to the ini-
tial vectors (FIFO), keeping a steady tally of 180 breaths. 
This method allows Crs and Rrs to adapt to evolving clini-
cal conditions, while minimizing the effects of short-term 
variations.

2.1 Correlation analysis

Upon analyzing the data from all 250 patients using the 
Fig. 1 algorithm, epochs were selected for correlation analy-
sis based on specific criteria: (1) epochs ventilated on either 
PC or VC mode; (2) there was no indication of PEEPi, as 
determined by the established criteria in Step 2, and assessed 
as an average across all breaths within the epoch; and (3) the 
epoch’s data had the capacity for robust linear regression 
calculation, Paw (maximum - minimum) < 4 cmH2O for VC 
mode or a VT range < 100 mL for PC mode.

2.2 Statistics

Occasional anomalies in data acquisition giving rise to one 
or two univariate outliers per epoch were corrected by the 
z-score method [14] with z = 3. The coefficient of determi-
nation R² was calculated using Pearson’s linear regression 
for correlations of Pmus PTP with Paw PTP, and Pmus PTP 
with VT. Normality of the R² distributions was evaluated 
with the Kolmogorov-Smirnov test. Depending on the nor-
mality of the data, independent sample differences were 
assessed using Mann–Whitney test or Student’s t-test, both 

Table 1 Demographics and enrollment data for the 250 patient data-
base
Age (Years) 60 (18)
ICU Admission type:
Medical 67%
Post-surgical 25%
Trauma 8%
Gender
Male 58%
Female 42%
Ethnicity (% of total):
Asian 2.4%
Black 54.4%
Latino 4.8%
Multiracial 1.6%
White 36.8%
Enrollment data – mean (SD):
SOFA 6 (3)
SAPS II 42 (14)
BMI (kg·m-2) 28 (8)
PEEP (mmH2O) 4.8 (3.7)
FIO2 (%) 51 (18)
pH 7.37 (0.10)
PO2 (mmHg) 149 (73)
PCO2 (mmHg) 39 (10)
SOFA = Sequential Organ Failure Assessment; SAPS II = Simplified 
Acute Physiological Score II; BMI = Body Mass Index; PEEP = Posi-
tive End Expiratory Pressure; FIO2 = Fractional Inspired O2
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Fig. 1 Algorithm used to analyze data from 250 patients in chronologic 
order from 2011 to 2015. Stage 1: Search the database for epochs with 
respiratory rate variability (RRVI) < 50%, considered to occur when 
Pmus = 0. Stage 2: Identify all breaths in the selected epochs meeting a 
strict criteria for absent Pmus and PEEPi. Apply the numerical solution 
of the equation of motion to calculate breath specific Crs and Rrs and 

fill respective vectors sequentially to a length of 180 elements. Stage 3: 
Use the mean of these vectors as estimates for Crs and Rrs to calculate 
Ppassive from Eq. 1 and Pmus from Eq. 3. Account for longitudinal varia-
tions in Crs and Rrs by calculating their values in subsequent epochs 
with RRVI < 50% and incorporate them in the respective vectors FIFO
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showing minor fluctuations in Pawpeak. The epoch is typi-
cal of a sedated individual, with most breaths triggered by 
the ventilator. The lower panel shows calculated PmusPTP as 
discrete points corresponding to the breaths above. PmusPTP 
values are positive for all insufflations, indicating the occur-
rence of mild expiratory efforts not readily apparent from 
airway signal examination.

Figure 3 shows a subsequent epoch from the same patient, 
now on PC mode with FIO2 = 60%, RR = 12 bpm, Pawpeak 
= 22 cmH2O, and PEEPa = 5 cmH2O. All breaths are venti-
lator triggered with low RRVI (24%) and VT values ranging 
from 620 to 740 mL. Visual examination of the airway sig-
nals provides little insight into respiratory muscle activity, 
but the lower panel shows negative PmusPTP values ranging 
from − 1.8 to 0.3 cmH2O·s. The source of these inspiratory 
efforts is not apparent from the data, but could indicate air 
hunger or the presence of reverse triggering [15].

Figure 4 depicts the relationship between PmusPTP with 
PawPTP and VT for the data of Figs. 2 and 3. With the patient 
on VC ventilation, there is a strong proportional relationship 
between PmusPTP and PawPTP (R² = 0.85) and none with 
VT (R² = 0.00). Conversely, on PC mode there is negligible 
correlation between PmusPTP and PawPTP (R² = 0.10) and 
a strong inverse correlation between PmusPTP and VT (R² 
= 0.95)

corrected for multiple testing by Bonferroni’s method. Data 
are presented as mean (SD), unless noted otherwise. Two-
sided p values are reported, with significance set at p < 0.05.

2.3 Hypothesis testing

Method validation relied on establishing a strong correla-
tion (R2 > 0.80) between PmusPTP and PawPTP in VC mode, 
and between PmusPTP and VT in PC mode. Conversely, the 
hypothesis predicts a weak or non-existent correlation in the 
opposite scenarios.

3 Results

3.1 Individual epochs examples

The following examples highlight the performance of the 
algorithm when applied to patient data under two different 
modes of ventilation, PC and VC:

The epoch shown in Fig. 2 was obtained from a 70-year-
old woman with acute heart failure. The patient was on 
constant flow, VC ventilation with fractional inspired O2 
(FIO2) of 80%, mean VT of 450 mL, respiratory rate (RR) of 
16 bpm, and PEEPa of 10 cmH2O.

Faw and Paw signals (upper and middle panels, respectively) 
are uniform in timing (RRVI = 30%) and configuration, 

Fig. 2 Epoch lasting 131.1 s acquired from a patient on VC ventilation. The upper and middle panels show Faw and Paw signals, respectively. The 
bottom panel depicts calculated PmusPTP as discrete points, each datum corresponding to the breath above
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Fig. 4 Relationships of PmusPTP vs. PawPTP and PmusPTP vs. VT for the 
examples shown in Figs. 2 and 3. With VC ventilation there is a strong 
correlation for PmusPTP vs. PawPTP (R2 = 0.85) while being absent for 

PmusPTP vs. VT (R2 = 0.00). Conversely, PC ventilation is character-
ized by minimal correlation between PmusPTP and PawPTP (R2 = 0.10) 
and a robust inverse correlation between PmusPTP and VT (R2 = 0.95).

 

Fig. 3 Epoch lasting 131.1 s acquired from a patient on PC ventilation. The upper and middle panels show Faw and Paw signals, respectively. The 
bottom panel depicts calculated PmusPTP as discrete points, each datum corresponding to the breath above
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breaths, ensuring enough breaths remained for robust cor-
relation analyses.

Table 3 shows ventilation parameters stratified by venti-
lation mode across the analyzed epochs. The greater ventila-
tory assistance noted with PC mode, in terms of FIO2, Paw, 
PEEPa, VT and RR, hint at greater respiratory compromise 
when compared to epochs on VC mode.

Table 4 presents the percentage of inspiratory and expi-
ratory efforts per epoch, the average Pmus and PmusPTP per 
breath, and the sum of PmusPTP values per epoch, stratified 
by ventilation modality and Pmus directionality (inspiratory 
or expiratory) within an epoch. Both modes displayed a 
mix of inspiratory and expiratory efforts, although expira-
tory efforts were more vigorous, both in magnitude and fre-
quency, in PC mode (p < 0.001).

Table 5 lists R² values for the correlation of PmusPTP 
with PawPTP and VT across the analyzed epochs. In VC 
mode, PmusPTP demonstrates a strong positive correlation 
with PawPTP (PawPTP = 1.7 PmusPTP + 19.4; R² = 0.91; 
n = 17,648 epochs), while such relationship is absent for VT 
(R² = 0.03). Conversely, this pattern reverses in PC mode, 
resulting in a robust inverse association between PmusPTP 
and VT (VT = -43.6 PmusPTP + 615; R² = 0.88; 33,620 
epochs) and a negligible one with PawPTP (R² = 0.06).

3.2 Overall data analysis

In the analysis of the entire 250 patient dataset, the algo-
rithm failed to determine initial Crs and Rrs in 25 patients, 
as they lacked sufficient breaths meeting criteria for Pmus 
= 0. This was due to agitation following enrollment in the 
study in some patients and short monitoring time in others, 
either the result of technical difficulties or early ventilator 
weaning.

Application of the algorithm to the remaining 225 
patients identified 551,642 epochs in which the algorithm 
could determine Pmus(t) for individual breaths. From this 
cohort, 51,268 epochs were chosen for correlation analy-
sis since they occurred exclusively on VC or PC ventilation 
modes. Table 2 displays the number of patients who were 
included based on having at least one epoch in the analyzed 
ventilation mode. Since most patients received treatment 
with more than one ventilation modality, it is possible for 
the same patient to have been included in both groups of 
Table 2. There were twice as many epochs on PC mode as 
compared to VC mode. Outliers were < 5% of the epoch’s 

Table 2 Number of Analyzed Epochs and Breaths Across Ventilation 
Modes
Mode VC PC Total
Patients 57 67
Analyzed epochs 17,648 33,620 51,268
% of Total 34% 66%
Analyzed breaths 623,538 1,453,886 2,077,424
% of Total 30% 70%
Outliers per epoch 1.6 2.1
Analyzed breaths per epoch 34 41
VC = Volume Control; PC = Pressure Control; Patients = Number of 
patients in the database having at least one analyzed epoch in the 
designated ventilation mode

Table 3 Measured Ventilation Parameters for the Analyzed Epochs
Mode VC PC
FIO2 (%) 41 (10) 48 (16) *
PEEP (cmH2O) 5.5 (0.9) 6.6 (1.9) *
Peak Paw (cmH2O) 29 (7) 32 (6) *
RR (bpm) 17 (4.3) 21 (6.1) *
VT (mL) 512 (84) 566 (148) *
VT/PBW (ml·kg− 1) 8.2 (1.2) 9.2 (2.6) *
Static Crs mL·cmH2O− 1 46 (15) 45 (26)
Inspired Rrs cmH2O·s· L− 1 15 (7) 8 (7) *
VC = Volume Control; PC = Pressure Control; FIO2 = Fraction 
Inspired O2 concentration (%); PEEP = Positive end expiratory pres-
sure; Paw = Airway pressure; RR = Respiratory rate; VT = Tidal vol-
ume; PBW = Predicted body weight. Compliance (Crs) and resistance 
(Rrs) refer to the respiratory system, including the lungs and chest 
wall
Figures are shown as mean (SD). * p < 0.001 two-sided t test with 
Bonferroni’s correction

Table 4 Pmus Related Variables Across Ventilation Modes
Directionality VC PC

% of Total Efforts Inspiratory 36 (32) 31 (33)
Expiratory 64 (32) 69 (33)

Pmus per breath (cmH2O) Inspiratory 1.2 (1.7) 0.7 
(2.3)

Expiratory 5.0 (4.6) 6.4 
(4.4) *

PmusPTP per breath 
(cmH2O·s)

Inspiratory 1.0 (1.7) 1.1 
(2.0)

Expiratory 1.4 (1.4) 2.3 
(2.4) *

PmusPTP per minute 
(cmH2O·s·min− 1) §

Inspiratory 17 (26) 26 (62) 
*

Expiratory 39 (54) 89 
(112) *

VC = Volume Control; PC = Pressure Control
Pmus = Peak inspiratory or expiratory pressure attributed to respira-
tory muscle effort
Inspiratory and expiratory refer to the direction of Pmus

PmusPTP = Pmus pressure time product
per breath = Average value of all inspiratory or all expiratory values 
in an epoch
§ Calculated as the sum of PmusPTP (either expiratory or inspiratory) 
in an epoch divided by the length an epoch in minutes (2.184 min)
Figures shown as mean (SD); * p < 0.001 comparing PC to VC; two-
sided t test with Bonferroni’s correction
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may be significant considering the potential for lung injury 
due to elevated alveolar pressure during expiratory efforts. 
On the other hand, inspiratory efforts are often indicative of 
air hunger, a distressing condition with long-term psycho-
logical sequelae.

4.1 Confounders and limitations

A potential confounder is the possibility that epochs with 
significant PEEPi may have been unintentionally incorpo-
rated into the analysis. Failing to address intrinsic PEEPi 
can lead to an overestimation of expiratory Pmus and a corre-
sponding underestimation of inspiratory Pmus. Although the 
automated data analysis precluded visual identification of 
epochs with substantial PEEPi, efforts were made to prevent 
this occurrence by excluding epochs meeting established 
criteria for this condition. Further, the database contained 
a limited subset of patients with the diagnosis of asthma or 
chronic obstructive pulmonary disease (COPD) (8.3%) that 
were predisposed to the development of PEEPi.

Another possible confounder is the presence of outli-
ers related to anomalies in data acquisition or to double-
triggered breaths. Outliers were systematically excluded by 
applying the z-score method to all PawPTP, VT and PmusPTP 
datasets This approach resulted in the omission of one or two 
outliers per epoch, while ensuring > 30 breaths remained for 
regression analysis (Table 2).

Since Pmus(t) was derived directly from Paw(t) (Eq. 3) 
and indirectly from VT (Eq. 1), the possibility must be con-
sidered that mathematic coupling of shared variables [19] 
might have resulted in the robust correlations noted between 
Pmus PTP and Paw PTP or with VT. However, mathematic 
coupling is unlikely, given the complete lack of association 
between these variables when tested in the opposite modes.

Clinical application of the method is limited by the need 
for specialized data acquisition equipment. This concern is 
mitigated by the incorporation in modern ventilators of sig-
nal sampling algorithms whose output is readily accessed 
through a data port. Nonetheless, the sheer number of cal-
culations needed to produce even a single breath’s Pmus(t) 
function, makes the use of a digital computer mandatory in 
the clinical application of the method.

Until additional studies are conducted, the performance 
of the method using airway signals generated by specialized 
ventilatory support techniques, such as bi-level ventilation 
and Airway Pressure Release Ventilation (APRV), remains 
uncertain.

4 Discussion

A method is proposed to estimate Pmus(t), a function describ-
ing respiratory muscle effort during individual insufflations, 
based on the numerical solution of a single-compartment 
model of the respiratory system. The method is non-inva-
sive and may be used to continuously monitor patients on 
ventilatory support automatically by connecting a micropro-
cessor to the data port of a mechanical ventilator.

A significant strength of the study is the extensive data-
set used, comprising thousands of epochs collected con-
tinuously over several days from 250 patients mechanically 
ventilated using diverse ventilation modes. Specialized 
software assessed over two million individual breaths, 
consequently, the influence of sample size bias, random 
measurement variations, or the inclusion in the analysis of 
epochs with significant PEEPi levels is considered minimal.

Quantifying Pmus(t) is inherently difficult due to the 
absence of a direct method of measurement method. The 
present “gold standard” [16] involves the difference between 
esophageal pressure, measured with a fluid-filled catheter, 
and chest wall recoil pressure under passive conditions. 
However, this method is complex, as it relies on uncertain 
factors like chest wall elastance and a specific chest wall 
recoil pressure point [17]. Additionally, the variability in 
chest wall mechanics and the challenge in accurately distin-
guishing respiratory phases add to the difficulties in obtain-
ing precise measurements of Pmus(t).

Given the challenges in directly measuring Pmus(t), it is 
not unreasonable to assess the validity of its estimate indi-
rectly by evaluating its consistency with expected physi-
ological responses. The high R² values obtained from the 
correlations PmusPTP vs. PawPTP in VC mode, and PmusPTP 
vs. VT in PC mode, across more than 50,000 epochs, indi-
cate a strong predictability between these variables and 
provides robust evidence supporting the accuracy of the 
predicted Pmus(t).

The results of the study highlight the bidirectionality of 
Pmus during insufflation. Expiratory Pmus values were pre-
dicted in more than two-thirds of insufflations in either VC 
or PC modes. This finding, previously noted by others [18], 

Table 5 R2 for the Correlation of PmusPTP with PawPTP and VT
Mode VC PC
Number of Epochs 17,648 33,620
PmusPTP vs. PawPTP 0.91 [0.76, 0.96] * 0.06 [0.01, 0.18] *
PmusPTP vs. VT 0.03 [0.01, 0.09] 0.88 [0.74, 0.94]
VC = Volume Control; PC = Pressure Control; Pmus = Share of airway 
pressure attributed to respiratory muscle effort; PmusPTP = Pmus pres-
sure time product; Paw = Airway pressure; PawPTP = Paw pressure-
time product; VT = Tidal volume. Figures shown as median [IQR];
* p < 0.001 comparing R2 for PmusPTP vs. PawPTP to PmusPTP vs. VT 
by Mann-Whitney with Bonferroni’s correction
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Glossary

Crs Respiratory system static compliance
ΔV(t)  Lung volume change during insufflation
Faw Airway flow
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PEEPi Intrinsic PEEP present at end expiration
PC Pressure control ventilation mode
PS Pressure support ventilation mode
Paw airway pressure
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PawPTP Paw pressure time product
Pmus Respiratory muscles pressure
Peak_Pmus Peak respiratory muscles pressure
PmusPTP Pmus pressure time product
Ppassive Paw required for passively inflation of the 

respiratory system
rs Respiratory system
Rrs Respiratory system inspiratory airway 

resistance
RRVI respiratory rate variability index
VC Volume control ventilation mode
VT Tidal volume
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