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Abstract
The monitoring of respiratory parameters is important across many areas of care within the hospital. Here we report on 
the performance of a depth-sensing camera system for the continuous non-contact monitoring of Respiratory Rate (RR) 
and Tidal Volume (TV), where these parameters were compared to a ventilator reference. Depth sensing data streams were 
acquired and processed over a series of runs on a single volunteer comprising a range of respiratory rates and tidal volumes 
to generate depth-based respiratory rate (RRdepth) and tidal volume (TVdepth) estimates. The bias and root mean squared 
difference (RMSD) accuracy between RRdepth and the ventilator reference, RRvent, across the whole data set was found to 
be -0.02 breaths/min and 0.51 breaths/min respectively. The least squares fit regression equation was determined to be: 
RRdepth = 0.96 × RRvent + 0.57 breaths/min and the resulting Pearson correlation coefficient, R, was 0.98 (p < 0.001). Corre-
spondingly, the bias and root mean squared difference (RMSD) accuracy between TVdepth and the reference TVvent across the 
whole data set was found to be − 0.21 L and 0.23 L respectively. The least squares fit regression equation was determined to 
be: TVdepth = 0.79 × TVvent—0.01 L and the resulting Pearson correlation coefficient, R, was 0.92 (p < 0.001). In conclusion, 
a high degree of agreement was found between the depth-based respiration rate and its ventilator reference, indicating that 
RRdepth is a promising modality for the accurate non-contact respiratory rate monitoring in the clinical setting. In addition, a 
high degree of correlation between depth-based tidal volume and its ventilator reference was found, indicating that TVdepth 
may provide a useful monitor of tidal volume trending in practice. Future work should aim to further test these parameters 
in the clinical setting.
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1  Introduction

The measurement of respiratory function is important in 
the hospital setting as it relates to numerous disease states 
and may be indicative of ensuing issues. Changes in Res-
piratory Rate (RR) may correlate with major complications 
such as respiratory tract infections, respiratory depression 
associated with opioid consumption, anaesthesia and/or 
sedation, as well as respiratory failure [1–3]. In addition, 
many early warning scores (EWS), MEWS, NEWS, etc., 
incorporate respiratory rate (RR) within the scoring system 

[4]. Tidal Volume (TV) is less often measured in practice, 
as it requires a sealed mask or intubation for measurement 
purposes. However, along with its counterparts of RR, SpO2 
and PaCO2, it is recognized as a critical parameter in under-
standing pathophysiologic patterns of death which evolve 
due to sepsis, congestive heart failure, pulmonary embolism, 
hypoventilation, narcotic overdose, and sleep apnea [5]. 
Depth cameras are emerging as a tool that can provide a con-
tinuous measure of both respiratory rate and tidal volume. 
They do so by first deriving a respiratory volume (RV) signal 
from the respiratory motions of the patient from which these 
parameters can be extracted. The non-contact monitoring 
of RR and TV would prove valuable in the monitoring of 
viral pandemics, including novel coronavirus (COVID-19) 
patients, as well as those with other viral respiratory tract 
diseases, where minimum contact with the patient is desired 
and a robust measurement is essential [6, 7].
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Many studies have focused on the measurement of res-
piratory rate from the depth camera. Martinez & Stiefel-
hagen [8] assessed 67 healthy patients in a sleep lab where 
the subjects were allowed to use at will: blankets of various 
thicknesses, various sizes and amounts of pillows, books, 
newspaper and magazines, etc. during the recording. They 
found that they could determine RR within 1 breath/min 
88.7% of the time. Another sleep study by Yu et al. [9, 10] 
concerned a participant monitored over 10 nights, result-
ing in a total of 42 h of sleep data. The subject slept with 
a blanket for 5 days, and 5 days without a blanket. They 
achieved a 92% accuracy in their measurements. Our own 
group measured continuous RR during an acute hypoxic 
challenge during an oximeter breathe-down study [11]. 
The hypoxic challenge elicited a wide range of respiratory 
rates and patterns in the respiratory volume signal. A bias 
and RMSD of 0.04 and 0.66 breaths/min respectively were 
found against a capnograph reference RR signal. In addi-
tion, a high correlation (R = − 0.99) was found between 
two RR measurements. Seppanen et al. [12] measured the 
respiratory rate of eight volunteers who were instructed to 
follow a variety of breathing patterns while being moni-
tored. They used regions of interest (ROIs) which mim-
icked chest/abdomen bands used in sleep studies. They 
found small absolute errors of between 0.26 and 0.30% 
when comparing their measurement of RRdepth to that of a 
spirometer. Bernacchia et al. [13] found good agreement 
between the breath periods derived from a Kinect depth 
sensing system and a spirometer reference in a study of 
10 healthy young adult subjects asked to maintain ‘regu-
lar respiratory activity’. An RMSD of 9.7% RMSD was 
obtained for the breath periods between the two devices. 
Centonze et al. [14] used a Kinect system to continuously 
monitor a single patient over 8 h. An average error in fre-
quency was calculated to be 0.87% when compared to a 
polysomnographic record. Al-Naji et al. [15] found excel-
lent agreement between depth-sensing RR and a piezo-belt 
reference in a study of five children (ages 1 to 5 years). 
Bland–Altman analysis revealed limits of agreement rang-
ing from [− 0.91 to + 1.0] to [− 1.3 to 2.3] breaths/min 
for scenarios with and without blankets respectively. High 
degrees of correlation (ranging from 0.97 to 0.99) were 
also found, where the small variation in correlation was 
due to background lighting levels and whether bed sheets 
were used. Cenci et al. [16] studied breath period (rather 
than RR) in three preterm infants, assessed in five 30 s 
intervals. They found excellent agreement (R = 0.95) with 
a reference derived from ECG impedance pneumography. 
Two children in the Pediatric Intensive Care Unit (PICU) 
(4 months and 1 year old) were studied by Rehouma et al. 
[17]. The patients were ventilated, and the ventilator RR 
was used as the reference over five 1-min data acquisition 

periods. They reported RMSDs of 0.77 and 0.68 breaths/
min for the two patients.

Although many studies have focused on the RV signal 
and its correlation with the respiratory waveform from a 
reference device, the measurement of tidal volume (peak-to-
trough breath measurement in spontaneous breathing) from 
the RV signal is less common in the literature. Aoki et al. 
[18] studied 4 healthy volunteers who were instructed to 
vary their respiratory flow over 180 s measurement epochs 
while being monitored in a sitting position by a Kinect depth 
camera. Correlation coefficients of 0.99 were obtained for 
subjects for the measured TV relative to a flow reference 
obtained using an expiration gas analyser. (Per-subject scat-
ter plots and corresponding Bland–Altman plots with limits 
of agreement drawn on were provided in the paper, although 
no statistical measures of error such as mean bias, RMSD, 
or limits of agreement were stated by the authors.) Oh et al. 
[19] studied 10 healthy adult volunteers comparing the depth 
tidal volume against a ventilator reference. They obtained a 
correlation coefficient and mean tidal volume error of 0.98 
and 8.1% respectively. This was achieved by combining 
both spatial and temporal information within their method. 
In addition to RR, Rehouma et al. [17] measured the tidal 
volume of two neonatal patients requiring ventilator sup-
port for breathing in the PICU using a Kinect™ V2 system. 
They obtained mean RMSDs of 5.4 and 6.4 ml between 
their depth-based method and the ventilator reference for 
the neonates aged 4 months and 1 year respectively. Other 
clinically relevant respiratory volume measures were derived 
by Soleimani et al. [20] in 40 Chronic Obstructive Pumonary 
Disease (COPD) patients using a Kinect™ V2 camera. For 
each patient at least 3 forced vital capacities (FVCs) and 3 
slow vital capacities (SVCs) were recorded and compared 
to spirometer measurements. Correlation coefficients of 
0.999 were found for both SVC and FVC. The mean/stand-
ard deviation of the differences was calculated to be 0.029 / 
0.049 and 0.009 / 0.039 L for SVC and FVC respectively. In 
another investigation by the same group, Sharp et al. [21], 
studied 100 patients from a general respiratory physiology 
laboratory with a variety of lung issues. They found that 
their method tracked estimated forced vital capacity (FVC) 
and vital capacity to within ± 1% but forced expiration vol-
ume (FEV) did not demonstrate acceptable limits of agree-
ment, with 61.9% of readings showing more than 150 ml 
difference.

The work reported here extends current research in this 
area through a study of both respiratory rate and tidal vol-
ume of a subject over a range of normal breathing activity 
on a single subject. Performance metrics associated with 
both accuracy and trending behaviours are assessed against 
high-quality reference RR and TVs obtained using a ventila-
tor flowmeter.
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2 � Methods

2.1 � Data acquisition and processing

The data was collected over a series of ten separate runs 
where the volunteer breathed on a ventilator (Puritan 
Bennet™ 980, Medtronic, Carlsbad, CA). This provided 
a highly accurate refence for respiratory rate and tidal vol-
ume. The subject was connected to the ventilator using 
a standard adult breathing circuit (Medtronic/DAR part 
number 301/6326), mechanical filter (Medtronic/DAR 
part number 351U5856), and a mouthpiece. The venti-
lator mode was set to SPONT (spontaneous ventilation) 
with a pressure support level of 5 cmH2O, PEEP (positive 
end expiratory pressure) of 5 cmH2O, and oxygen con-
centration setting of 21%. The inspiratory trigger setting 
for the ventilator was set at a level to prevent false trig-
gers. Respiratory rate and tidal volume are measured by 
the ventilator using flow sensors in both the inspiratory 
and expiratory gas pathways internal to the ventilator and 
are displayed under BTPS (body temperature and pressure 
saturated) conditions. A video camera was used to capture 
the ventilator measured values for respiratory rate and tidal 
volume from the ventilator display screen for later com-
parison. The volunteer undertook spontaneous breathing 
comprising respiratory rates in the range between 10 and 
20 breaths/min and tidal volumes comprising a range from 
shallow to deep breaths. It should be noted that the data 
presented here was acquired prior to the current COVID 
19 pandemic and our intention was to acquire data from 
additional volunteers. However, due to significant restric-
tions imposed on our work due to the pandemic, we were 
not able to perform this experiment on more volunteers. In 
light of this, and after internal discussion concerning the 
relevance and importance of the results, we took the deci-
sion to make the results publicly available. Testing was 
therefore conducted using a single normal healthy sub-
ject. The subject was 58 years of age, weighed 75 kg, and 
had no previous history of tobacco usage or other medical 
conditions that would affect respiratory lung mechanics. 
During the test runs the subject was instructed to pur-
posely vary his breathing pattern in order to simulate a 
range of tidal volumes. Ten runs were conducted over a 
range of periods, from 45 to 270 s in length, where each 
run period was dictated by the tolerance of the volunteer 
to the respiratory activity. Depth data was captured using 
a Kinect V2 camera (Microsoft Corporation, Redmond, 
WA, USA) connected to a laptop and at a frame rate of 
30 fps. The camera was mounted on a tripod and placed 
at approximately 1.5 m above the subject who laid in a 
supine position. The room was illuminated with standard 
ceiling mounted fluorescent lights. Other than starting and 

stopping the recording process, no other intervention or 
calibration was required over the study period.

A depth camera measures the distance to the surface 
of all objects within its field of view (FOV) and outputs 
a single matrix of distances (or depths) for each image 
frame. A respiratory volume (RV) signal was generated 
from the depth data image sequences by integrating the 
change in depths across a region of interest defined on the 
subject’s chest region over time (i.e. frame-by-frame). Fig-
ure 1 shows the subject in the depth image with the ROI 
shown defined on the torso during one of the experiments. 
ROIs may be generated in several ways. The simplest is 
to use the whole depth image. Alternatively, the user can 
define a box around the chest region. More sophisticated 
methods may be used to automate the ROI placement. 
The ROI generated in Fig. 1 uses a flood fill method. The 
RV signal was generated by integrating changes in depths 
across the area defined within the ROI over time. Figure 2 
shows an example of one of the RV signals generated dur-
ing the study where the identified peaks and troughs are 
indicated. These were determined using a peak detection 
algorithm. We calculated respiratory rate using the peak-
to-peak breath periods extracted from the RV signal and 
a tidal volume (TV) from the peak-to-trough changes in 
volume extracted from the RV signal. The algorithm for 
calculating RR and TV is shown schematically in the flow 
diagram of Fig. 3. Reference signals for respiratory rate 
and tidal volume were obtained from the ventilator. These 
were synchronized with the output from the depth-sensing 
algorithm and used in the performance analysis. Note that 
data was analysed when both RR and TV were available 
as RR took slightly longer to begin reporting due to its 
additional low pass filter smoothing (usually a few seconds 
later than tidal volume which was computed breath-to-
breath). This additional low pass filter is shown in Fig. 3. 
In this way we matched our results temporally.

Fig. 1   Depth image showing the subject with mouthpiece and ROI
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2.2 � Data Analysis

Bias and accuracy statistics were calculated to compare the 
depth data derived RR and TV with that of the reference 
(ventilator) system. These are, respectively, the mean differ-
ence (bias) and the root mean squared difference (RMSD) 
between the test and reference values. That is (using RR as 
an example):

and

The RMSD represents a combination of the system-
atic and random components of the differences between 
the corresponding readings from the two devices. 

(1)bias =

∑N

i=1

�

RRdepth(i) − RRvent(i)
�

N

(2)RMSDaccuracy =

�

∑N

i=1

�

RRdepth(i) − RRvent(i)
�2

N

Least-squares linear regression was performed to obtain 
the line of best fit between the video and reference param-
eters from which the gradient, intercept, and Pearson cor-
relation coefficient, R, was computed. A Bland–Altman 
analysis of the data was also performed using the method 
of Bland and Altman [22]. The corresponding limits of 
agreement were calculated using this methodology. Dis-
tributions of breathing rates are represented as normalized 
counts which sum to unity, in effect providing a discrete 
probability distribution of rates. The analysis of trending 
behaviour was carried out using a concordance plot where 
the difference between the two parameters, e.g. Δx and 
Δy, over a running time window are plotted against each 
other. A concordance value is then computed by calculat-
ing the percentage of points lying in the quadrants where 
both parameters have the same sign, (i.e. both positive 
or both negative), which indicates co-trending behaviour 
[24]. Matlab (R2018b) was used to process the data and 
perform the statistical analysis. An in-house developed 
C +  + application was used to capture the depth data.

Fig. 2   Respiratory volume 
signal from a typical run show-
ing respiratory modulations 
with detected peaks and troughs 
indicated

Fig. 3   Algorithm flow diagram
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3 � Results

Figure  4a contains the plot of RRdepth against RRvent 
pooled together for all ten experimental runs. A Pearson 
correlation coefficient of 0.98 (p < 0.001) was achieved 
and a line of best fit given by RRdepth = 0.96 × RRvent + 0.57 
breaths/min. The overall RMSD across the runs was 0.51 
breaths/min with a corresponding bias of -0.02 breaths/
min respectively. The associated Bland–Altman plot, illus-
trated in Fig. 4b, shows limits of agreement of − 1.02 to 
0.98 breaths/min. The near zero mean bias is also obvious 
in this plot.

Figure 4c contains the plot of TVdepth against TVvent 
for the same runs as Fig. 4a. A Pearson correlation coef-
ficient of 0.92 (p < 0.001) was achieved together with a 
line of best fit given by TVdepth = 0.79 × TVvent—0.01 L. 
The overall RMSD across the runs was 0.23 L with a cor-
responding bias of -0.21 L. The associated Bland–Altman 
plot, illustrated in Fig. 4d, shows limits of agreement of 
− 0.38 to − 0.05 L. This time a distinct bias of the data is 
obvious in the plot.

The spread of the RMSD and bias accuracy statistics on 
a per run basis for the ten experimental runs are presented 
as box plots in Fig. 5. The box plots of Fig. 5a show the 
spread of the individual mean biases and RMSDs for respira-
tory rate. These range from -1.67 to 0.13 (median = 0.22) 

Fig. 4   Scatterplots and Bland Altman plots of respiratory rates and tidal volumes. The colours of the data points in the scatter plots indicate 
separate runs
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and 0.10 to 1.76 (median = 0.31) breaths/min respectively. 
The box plots of Fig. 5b show the spread of the individ-
ual mean biases and RMSDs for the tidal volume for the 
ten experimental runs. These range from − 0.28 to − 0.06 

(median = − 0.21) and 0.08 to 0.28 (median = 0.23) litres 
respectively.

The distributions of the individual respiratory rates and 
tidal volumes across all subjects for the depth sensing and 

Fig. 5   Boxplots of distributions 
of RMSD and bias across all 10 
runs for a respiratory rate and b 
tidal volume

Fig. 6   Distribution plots of a respiratory rates and b tidal volumes. Left-hand plots: depth camera results. Right-hand plots: reference values



663Journal of Clinical Monitoring and Computing (2022) 36:657–665	

1 3

reference ventilator devices are shown in Fig. 6a and b 
respectively. It can be observed that the distributions for 
each parameter exhibit similar morphologies. The respira-
tory rates of Fig. 6a exhibit near identical distributions. 
However, a shift in the tidal volume data to lower values for 
the depth-based measurement relative to the reference can 
be observed in Fig. 6b.

4 � Discussion

The study demonstrated a high degree of agreement between 
the respiratory rate determined from the depth camera and 
the reference signal from a ventilator under test conditions, 
where an RMSD of 0.51 breaths/min was achieved which 
corresponded to tight limits of agreement of − 1.02 to 0.98 
breaths/min. This was consistent across each of the individ-
ual experimental runs. These results are very similar in value 
to others who have reported RMSD or limits of agreement, 
including those of Al-Naji et al. [15], Rehouma et al. [17], 
and an earlier experiment we conducted with healthy volun-
teers in a breathe-down study used in pulse oximetry [11]. 
Interestingly, a recent study by Breteler et al. [23] compared 
the respiratory rate from three wearable technologies and a 
mattress sensor in the clinical environment. They reported 
Bland–Altman limits of agreements of − 5.6 to 6.4 breaths/
min for the mattress sensor and − 6.6 to 6.3 breaths/min for 
the wearable sensor with the tightest limits of agreement, 
with most of the respiratory rates falling in the range of 10 
to 20 breaths/min. We believe that substantially tighter limits 
of agreements are required for such novel respiratory rate 
technologies to be useful in the clinical environment and 
that depth-based measurements may provide the opportu-
nity to accomplish this. The limits of agreement found for 
our study are indicative of a potentially more accurate RR 
monitoring technology which we believe is due to the ability 
to parse out large spatial regions of respiratory modulations, 
although further testing of depth-based methods in a clinical 
environment is required.

The depth-based tidal volume exhibited a high degree of 
correlation (R = 0.92). However, the resulting line of best 
fit, although distinct in nature, deviated markedly from the 
line of unity. However, the strong linear relationship that 
was observed indicates the potential for TVdepth to be a reli-
able trend monitor for tidal volume. To further investigate 
this, we constructed a concordance plot where the difference 
between the two parameters over a running time window 
(ΔTVdepth and ΔTVvent) are plotted against each other [24]. 
We can see from the resulting concordance plot (Fig. 7) that 
the majority of data lie in the top right hand and bottom 
left hand quadrants, indicative of a strong trending behav-
iour. A concordance value can be computed by counting the 
number of data points in these two quadrants relative to the 

total data count. The concordance was found to be 0.88 for 
these tidal volume data indicating a high degree of trending 
between the two signals. It may be possible to construct a 
mapping from TVdepth to the actual tidal volume through a 
correction factor, however, achieving this in practice may be 
non-trivial due to need to account for various patient pos-
tures, the boundary morphology of the ROI, the presence 
of blankets, etc.

The study had several limitations. Motion was restricted 
as the participant was lying supine and remained relatively 
immobile during the acquisition hence a relatively sim-
ple algorithm was required. However, in practice, noise 
handling would also have to be incorporated to cope with 
patient motion—including change of posture or position in 
bed, hand and limb movements—and interference within 
the field of view of the camera – including clinical staff 
and equipment movement and patient hand motion across 
the region of interest. The development of a more robust 
algorithm for clinical practice would require the collection 
and analysis of large amounts of patient data acquired from 
across the spectrum of patient care. In addition, only a single 
subject was used. We had planned to extend the study to 
include more volunteers, however, due to the current global 
pandemic it was not possible to open it up to more subjects. 
The study had several strengths: off-the-shelf depth sensing 
camera technology was used requiring no hardware changes; 
the system is also simple to set up and operate, requiring no 
calibration; and, the use of a ventilator provided highly accu-
rate reference values for respiration rate and tidal volume. 
In addition, we were able to capture respiratory rates over 

Fig. 7   Concordance plot of tidal volume. A time delay of 30  s was 
used to construct the plot
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a relatively wide range of ‘normal’ breathing activity of 10 
to 18 breaths per minute and included a wide range of tidal 
volumes from 0.1 to 1.5 L per breath.

We believe that this technology has major opportunities 
given the current drive for more remote and non-contact 
monitoring of the patient. This drive has been given particu-
lar impetus due to the current COVID-19 pandemic where 
technologies are being sought to minimize contact between 
the clinician and the patient. In addition to the monitoring 
of those pandemic disease states where respiratory func-
tion is a key indicator, we believe that the technology would 
be particularly useful in a range of other clinical settings, 
including: the post-anaesthesia care unit (PACU), where 
an early indication of respiratory depression through, for 
example, reductions in respiratory rate, tidal volume and/or 
opioid induced intermittent respiratory patterns would be 
useful; the neonatal intensive care unit (NICU), where there 
is a need to avoid excessive contact with the neonatal skin 
and where an indication of respiratory patterns, including 
apnea, could prove beneficial; for sleep monitoring, both 
in the sleep clinic and the home; for respiratory patients 
exhibiting a wide range of disease states, and in the general 
ward environment to provide a continuous measure of RR, 
which is a major vital sign.

The technology may be incorporated onto existing cam-
era systems for observing the patient. In addition, further 
physiological and patient contextual information may be 
available from the same modality including patient activity 
monitoring, apnea identification, determination of presence 
in bed and fall detection. The technology has a number of 
key strengths including its ease of use and its ability to work 
through patient clothing and bed sheets, and it also operates 
with the lights turned off. These characteristics set it apart 
from physiological monitoring using other camera modali-
ties which rely on the analysis of RGB image streams.

5 � Conclusion

The results demonstrate the potential for robust monitoring 
of respiratory rate and tidal volume trending using depth 
sensing camera equipment. Future work would aim to better 
understand the operating envelope of the technology through 
a series of benchtop and in-hospital tests involving a range 
of subjects with varying demographics and disease states 
to fully cover the operating range likely to be encountered 
in clinical practice. In addition, it is suggested that further 
investigation of the relationship between the depth-based 
respiratory volume measurement and the true tidal volume 
should be conducted.
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