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Abstract
Respiratory rate (RR) is one of the most sensitive markers of a deteriorating patient. Despite this, there is significant inter-
observer discrepancy when measured by clinical staff, and modalities used in clinical practice such as ECG bioimpedance 
are prone to error. This study utilized infrared thermography (IRT) to measure RR in a critically ill population in the Inten-
sive Care Unit. This study was carried out in a Single Hospital Centre. Respiratory rate in 27 extubated ICU patients was 
counted by two observers and compared to ECG Bioimpedance and IRT-derived RR at distances of 0.4–0.6 m and > 1 m 
respectively. IRT-derived RR using two separate computer vision algorithms outperformed ECG derived RR at distances of 
0.4–0.6 m. Using an Autocorrelation estimator, mean bias was − 0.667 breaths/min. Using a Fast Fourier Transform estima-
tor, mean bias was − 1.000 breaths/min. At distances greater than 1 m no statistically significant signal could be obtained. 
Over all frequencies, there was a significant relationship between the RR estimated using IRT and via manual counting, with 
Pearson correlation coefficients between 0.796 and 0.943 (p < 0.001). Correlation between counting and ECG-derived RR 
demonstrated significance only at > 19 bpm (r = 0.562, p = 0.029). Overall agreement between IRT-derived RR at distances 
of 0.4–0.6 m and gold standard counting was satisfactory, and outperformed ECG derived bioimpedance. Contactless IRT 
derived RR may be feasible as a routine monitoring modality in wards and subacute inpatient settings.
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1 � Introduction/background

Identifying patients at risk of deterioration in the inpatient 
setting as quickly as possible is important to minimize injury 
and promote faster recovery. It has been shown that earlier 
intervention results in better outcomes [1]. Equally, reduced 
monitoring has been demonstrated to result in in-hospital 
cardiac arrests, resulting in increased morbidity to patient 
[2].

Continuous monitoring of patients has been shown to rap-
idly identify deteriorating patients and improve outcomes 
through a more prompt response from a Medical Emergency 
(MET) or Rapid Response (RRT) teams, increased admis-
sion to the Intensive Care Unit, and reduced incidence of In-
Hospital Cardiac Arrest [3–5]. Invasive ICU level monitor-
ing, however, is significantly associated with alarms, alarm 
noise, and false alarms, all of which contribute to disturbed 
sleep and a poorer quality of recovery [6].

Improved patient monitoring on the wards or in non-tra-
ditional settings such as nursing home aims to replicate the 
augmented monitoring in high acuity inpatient areas such as 
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the Intensive Care Unit, the Emergency Resuscitation Bay, 
and the Post-Anaesthetic Care Unit (PACU) but reduce the 
impact and disruption to patient care to promote quitter 
and more peaceful recovery. Any future continuous non-
contact monitoring system must therefore have the ability to 
maintain privacy, be applicable across a number of different 
pathologies, and be readily deployable without causing a 
burden or additional workload in a busy inpatient unit.

Respiratory rate (RR) is a sensitive marker of patient 
deterioration and is generally either observed through man-
ual counting by bedside nursing staff, or via mechanical 
and electronic methods, most routinely by thoracic bioim-
pedance via ECG leads, or via capnography. While RR has 
been reported as the strongest individual predictor of adverse 
events [7], it is often the most neglected sign and also the 
most inaccurately recorded [8, 9].

Infrared thermography (IRT) records heat radiation 
along the infrared spectrum, as opposed to recording vis-
ible light seen in traditional video. It has been postulated as 
a modality for contactless monitoring of patients as early as 
1984 [10], with benefits ranging from the identification of 
phenomena not visible to the naked eye, including changes 
in temperature around orifices and on skin surfaces. It has 
the ability to maintain patient anonymity, allowing its use 
in healthcare settings. Its first clinical use was initially for 
fever screening at airports and hospital entrances during the 
SARS epidemic [11]. In addition to temperature monitoring, 
additional research into vital signs monitoring has focused 
on heart rate [12] and RR [13–15]. And while multiple stud-
ies have shown good correlation between gold standard RR 
and IRT derived RR [13, 14, 16–20], they were performed 
in ideal laboratory conditions with healthy volunteers. And 
while a single pilot study has been done on thermal video 
inpatient populations in the PACU showing the feasibility 
of monitoring patients in the hospital setting [21], these 
were undertaken in elective surgeries in an otherwise well 
population, where the range of observations did not extend 
into that where a patient might be classified as having res-
piratory compromise with no cases having a respiratory rate 
greater than 20, and only a single case with a respiratory 
rate less than 8 [9]. Secondly, this study used transthoracic 
impedance via ECG monitoring as a ground truth measure-
ment of respiratory rate, does not accurately record RR in 
all circumstances [22, 23]. Lastly, this paper demonstrated 
significantly poorer correlation at rates > 15/min, limiting 
usefulness with potentially deteriorating patients.

The goal of IRT in patient monitoring is the deploy-
ment of a system that could potentially identify unwell and 
deteriorating patients, who often present with extremes of 
respiratory rate, and where ECG bioimpedance or manual 
counting remain the only modalities available for measure-
ment. However, it is still unclear whether IRT would be 
able to capture a signal across a variety of pathologies in 

potentially deteriorating patients in a clinical setting to an 
equal or greater degree to the clinical standard.

This pilot study aimed to deploy existing algorithms on 
inpatients in a busy metropolitan ICU to:

(1)	 Assess the effectiveness of IRT as a modality to assess 
respiratory rate in patients compared to the gold stand-
ard of manual counting with specific interest on the 
optimal positioning of the camera and the type of algo-
rithm used.

(2)	 Compare its accuracy to the routine clinical standard 
(Thoracic Bioimpedance via ECG).

(3)	 Assess the degree of correlation of IRT across different 
respiratory frequencies including those that might be 
seen in a deteriorating patient.

2 � Materials and methods

This was a prospective observational single centre study in 
the intensive care unit of a major metropolitan hospital (Box 
Hill Hospital, Intensive Care Unit) completed between Feb-
ruary and June 2018. All subjects gave informed consent for 
before participating in the study. The study was conducted in 
accordance with the Declaration of Helsinki, and the proto-
col was approved by the Eastern Health Research and Ethics 
Committee (LRR 033/2017). Patients were included if they 
were at least 18 years old, extubated, haemodynamically sta-
ble and able to consent or be consented for by family. Due to 
the fact that the nostrils would not have been visible, rending 
analysis impossible, patients with full face non-invasive ven-
tilation masks were not included in this study. Any patient, 
however, receiving either high flow or regular nasal prong 
oxygen delivery, was included. Given the busy nature of 
the ICU and the desire to be as minimally intrusive to the 
usual daily workflow, patients were selected on the likeli-
hood that measurements would not interrupt ward rounds, 
nursing management, or consults from other clinical teams. 
Additionally, patients with impending discharges were not 
selected. Both medical and surgical patients were included 
in this study, and there was no selection on the basis of the 
primary disease or pathology.

Prior to the study, it was decided that a clinically sig-
nificant difference between observations would be 10% at a 
respiratory rate of 20 breaths/min. Power calculations were 
performed on this basis, with a standard deviation of 3, and 
a power of 80%. Based on these calculations, a minimum of 
18 patients were needed.

Thermographic footage was captured with an Optris PI 
450 infrared camera (Optris GmbH, Berlin) fitted with a 
standard O29 lens (29° × 22°, 18.7 mm focal length). This 
camera has an operating range in the long wave infrared 
spectrum (7.5–13 µm), a spatial resolution of 382 × 288 
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pixels, a temperature resolution of 0.04 °C, and a record-
ing frame rate of 80 Hz. These settings were used for the 
recording of all videos. The camera was connected to a 
laptop running proprietary software Optris PI Connect 
(Release 2.18.2236.0) which was used to visualise and save 
the videos. Camera self-calibration was suppressed during 
recording.

The camera was mounted on a tripod atop a rolling trolley 
to be brought by the patient bedside. Recordings were taken 
during the patient’s stay in the ICU, typically in between 
ward rounds when the recording was not expected to inter-
fere with normal ICU activity. Thermal videos of the face 
of the subject were taken at two different distances: (1) 
> 1 m from the face (far) from the end of the bed, and (2) 
0.4–0.6 m from the face (near). Based on previous stud-
ies, [16] the minimum time needed to perform analysis was 
30 s. To ensure adequate sampling, a minimum of 40 s was 
recorded, of which the first 30 s was used for analysis. The 
patients were free to move in their beds or chairs during 
recording, but were asked to refrain from talking. Patients 
remained clothed and covered throughout. During recording, 
the mode value of the respiratory rate using transthoracic 
impedance via the ECG electrodes was recorded from a Phil-
lips Intellivue MX800 bedside monitor (Koninklijke Philips 
N.V.), with the ECG electrodes being placed in the standard 
5 lead configuration. Although ECG monitoring has been 
previously used as the gold standard for respiratory rate 
monitoring, [21] this has found to be inaccurate and prone 
to bias [22]. Given ventilated patients were not included in 
this study, the gold standard was taken to be manual count-
ing of respiratory rate separately counted by two impartial 
observers counting chest rise and fall movements, with the 
mean value rounded to the nearest whole number.

Frame-by-frame temperature data were extracted from 
the raw thermal video files using a modified version of a 
C++ module provided in the Optris PI Connect Software 
Development Kit. The program was compiled with Micro-
soft Visual Studio 2015 (Version 14.0.25431.01 Update 3). 
The data were imported into MATLAB (Mathworks, Natick, 
MA, USA Release 2017b Version 9.3.0.713579) for respira-
tory rate estimation using custom- designed scripts.

2.1 � Description of image analysis

For each video, a rectangular region of interest (ROI) con-
taining the nares was selected in the first analysis frame of 
the video (Fig. 1). For the far videos, the size of this rectan-
gle was 21 × 11 pixels. For the near videos, it was 41 × 21 
pixels. 

Movement of this ROI over time was tracked using a 
Kanade-Lucas-Tomasi administered in MATLAB. The KLT 
feature tracker is a technique commonly used in computer 
vision to follow certain image features (edges, points, etc.) 

from one frame to the next. A time series was constructed 
using the mean temperature within this area. This raw signal 
was then detrended to remove creeping noise due to sup-
pression of calibration, smoothed with a moving average. A 
window size of 11, where the size is defined as the number 
of raw observations used to calculate the moving average 
value, was used, then, filtered with a 4th order Butterworth 
bandpass filter (passband 0.1–0.85 Hz, equivalent to 6–51 
breaths/min) (Fig. 1).

Respiratory rate was estimated from this processed signal 
by applying an estimator to a sliding window of 1200 frames 
with a step size of 80 frames (Fig. 1), resulting in a respira-
tory rate calculated every second based on the previous 15 s 
of breathing. Two rate estimators were used: (1) autocorrela-
tion and (2) Fast Fourier Transform (FFT). For autocorrela-
tion, respiratory rate was calculated using the lag to the first 
peak greater than zero. For FFT analysis, a Hanning window 
was applied and the resulting signal padded with zeroes (to 
allow spectral interpolation for a resolution of 0.25 breaths/
minute) prior to applying the FFT. In both cases, the fre-
quency band of interest was restricted to 0.1–0.85 Hz. The 
total signal length was limited to the first 2400 frames (30 s) 
for consistency, resulting in 16 estimates. The estimates were 
rounded to the nearest whole number, and the mode value 
was taken to be the thermographic respiratory rate esti-
mate from the same videos. An explanation of the technical 
aspects of both techniques has been described in more detail 
by Barbosa et al. [16].

2.2 � Statistical analysis

Agreement between two variables was estimated using 
both Pearson Correlation and the Bland–Altman method, 
in which bias was the mean difference between either: (1) 
thermography and chest movements, or (2) ECG and chest 
movements. The upper and lower limits of agreement were 
1.96 standard deviations of the differences above and below 
the mean difference. To assess whether the bias on the 
Bland–Altman plot was related to the magnitude of meas-
urements, linear regression was performed. Relationship 
between two variables was assessed using Pearson product-
moment correlation. Statistical significance was defined as 
p < 0.05. Data were imported into Stata (StataCorp 2013. 
Stata Statistical Software: Release 13. College Station, TX: 
StataCorp LP) for statistical analysis.

3 � Results

Patient characteristics are summarized in (Table 1). Dur-
ing the period of February to June 2018, a total of 543 
patients were admitted to the Intensive Care Unit. Of these 
348 met the basic inclusion criteria of being extubated and 
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able to consent during the hours of 0900–1700 when the 
study took place, though not all might have been available 
to participate in the study at the time of data collection. 
This was due to routine nursing management in the ICU/
ward rounds, the presence of a non-invasive ventilation 
mask that would have obscured the nostrils, the pres-
ence of families or other clinical teams seeing the patient, 
impending discharge from the unit, or having a only one 
IRT setup available for use at a time. In total, 27 patients 
admitted to ICU during the study period were enrolled. 

Three patients submitted a second set of observations on 
a subsequent day, and as a result a total of 30 datasets 
of thermal videos were collected. No patients dropped 
out following consenting and recording of images. The 
median age was 62.3 years (IQR 48.6–74.3). Eight patients 
received oxygen through standard nasal prongs. In a fur-
ther 8 cases, the patients had high flow nasal cannulae. 
Nasogastric tubes were present in 2 cases. The remaining 
12 patients did not have medical equipment in the nostrils 
at the time of recoding.

Fig. 1   Sample workflow of 
respiratory rate estimation using 
thermography
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A summary of the correlation between both computer 
vision algorithms and thoracic impedance vs manual count-
ing at both near and far distances can be seen in Figs. 2 and 
3.

3.1 � Comparison between ECG and chest movements

The Pearson correlation coefficient for ECG thoracic imped-
ance and manually counted chest movements (n = 23) was 
R = 0.683 (p < 0.001). Using the Bland–Altman method, 
mean bias was − 1.348 breaths/min. Limits of agreement 
were − 11.96 and 9.267 breaths/min (Fig. 2b). Visual inspec-
tion of the Bland–Altman plot suggested that the bias was 
not constant. Using the difference in RR as a dependent out-
come variable and the mean RR as an independent predic-
tor, a regression line with a slope of − 0.59 (p < 0.001) was 
determined (Fig. 4).

3.2 � Comparison between thermography and chest 
movements (near distance)

Using the autocorrelation estimator, the Pearson correla-
tion coefficient for thermography and chest movements at 
the near distance was R = 0.960 (p < 0.001). Mean bias was 
− 0.667 breaths/min (p = 0.082). Limits of agreement were 
4.631 to 3.298 breaths/min (Table 2). The Bland–Altman 
plot is shown in Fig. 2a. Using the FFT estimator, the cor-
relation coefficient was R = 0.935 (p < 0.001). Mean bias was 
− 1.000 breaths/min. Limits of agreement were − 5.910 and 
3.910 breaths/min (Table 2).

3.3 � Comparison between thermography and chest 
movements (far distance)

Using the autocorrelation estimator, the Pearson correlation 
coefficient for thermography and chest movements at the far 
distance was R = 0.508 (p = 0.004). Mean bias was − 0.133 
breaths/min. Limits of agreement were − 11.99 and 11.73 
breaths/min. Using the FFT estimator, the correlation coef-
ficient was R = 0.493 (p = 0.006). Mean bias was − 2.567 
breaths/mi. Limits of agreement were − 15.77 and 10.63 
breaths/min (Table 3).

3.4 � Correlation at different respiratory frequencies

Table 4 demonstrates the correlation between manually 
counted respiratory rate and ECG and IRT-derived rates at 
different respiratory frequencies typically associated with 
hypoventilation, normal respiration, and hyperventilation: 
< 12, 13–18, and > 19 breaths a minute. Over all frequen-
cies, there was a significant relationship between the RR 
estimated using IRT, and via manual counting with Pearson 
Correlation coefficients between 0.796 and 0.943. There was 
no appreciable difference in the performance of either algo-
rithm. The highest correlation occurred at rates > 19 bpm 
and at a distance between 0.4 and 0.6  m. (r = 0.938, 
p < 0.0001 using the FFT algorithm, r = 0.976, p < 0.00001 
using autocorrelation). At a distance > 1.0 m, there was 
no significant relationship between either algorithm and 
the ground truth at any respiratory frequency. Correlation 
between counting and ECG-derived RR demonstrated sig-
nificance only at > 19 bpm (r = 0.562, p = 0.029).

4 � Discussion

This study employed a method of contactless measure-
ment of respiratory rate that was previously only done in 
the experimental or well patient setting, and employed it on 
critically ill patients. We demonstrated that IRT-based meas-
urements can identify respiratory rates below 12 and above 
20, which are values that typically occur in deteriorating 
patients. Our findings suggest that IRT is not only feasible 
in a busy Intensive Care Unit, and provides greater accu-
racy and less bias than ECG based thoracic bioimpedance. 
We also demonstrate that these algorithms can be accurate 
despite the presence of devices in the nose such as nasogas-
tric tubes or oxygen cannulae.

It has been suggested that the algorithms perform poorly 
at higher rates of respiration where the pattern and character 
differ from normal [16]. By analysing the data across fre-
quencies and dividing these frequencies into cut-offs com-
monly applied to hypoventilation, normal ventilation, and 
hyperventilation, we have demonstrated that IRT performs 

Table 1   Patient demographic data

n 27

Median age (IQR) 62.3 (48.6–74.3)
Median weight (IQR) 85 (73–105)
Sex
 Male 18 (67%)
 Female 9 (33%)

Medical
 Cardiac 2 (7.4%)
 Respiratory 3 (11%)
 Gastrointestinal 4 (15%)
 Renal 2 (7.4%)
 Sepsis 5 (18.5%)

Post-operative
 Cardiothoracic 3 (11%)
 Abdominal 3 (11%)
 Vascular 1 (3.7%)
 General 1 (3.7%)
 Drug overdose 2 (7.4%)
 Other 1 (3.7%)
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equally well at all respiratory rates. ECG monitoring, on the 
other hand, tended to overestimate respiratory rate on the 
lower range and underestimate the rate on the higher range. 
Assessment on whether this bias is constant or changes with 
the magnitude of the measurements and is dose dependent 
was also performed via linear regression of the Bland–Alt-
man plots in a method suggested by Ho [24], which also 
suggests the bias is not only greater in ECG monitoring com-
pared with IRT, but also larger at extremes of respiratory 

rate in a dose-dependent fashion. Should this be the case 
and if ECG RR monitoring were to be used in isolation, 
both hypoventilating and hyperventilating patients would 
be wrongly classified as having a normal respiratory rate, 
potentially resulting in incorrectly identifying patients as 
clinically stable when they are in fact deteriorating.

While there was no substantive difference in the accuracy 
of RR measurements using two separate computer vision 
algorithms, there was a substantial difference in accuracy 

Fig. 2   Bland–Altman plot com-
paring IRT derived respiratory 
rate and manually counted chest 
movements at the near distance. 
a Autocorrelation (AC) at 
0.4–0.6 m. b Fast Fourier Trans-
form (FFT) at 0.4–0.6 m
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at larger distances. The camera only maintained accuracy 
at a distance of 40–60 cm, which would not be practical 
in day to day use. The region of interest in the close dis-
tance was 41 × 21 pixels, and approximately half this in the 
far distance. While Hochhausen et al [21] demonstrated 
accurate measurement at the end of the bed at a distance 
of greater than 60 cm, they employed a camera with a res-
olution of 1024 × 768 pixels. The overall pixel density in 

this circumstance, although not clearly listed, would likely 
approximate the 41 × 21 pixels used in our study. With 
the algorithms we employed, this pixel density likely rep-
resents the minimum resolution required for accurate RR 
monitoring.

While IRT in this study was performed in a busy ICU 
with patients with critical illness across several different 
pathologies, there were several features that could potentially 

Fig. 3   Bland–Altman plot com-
paring IRT derived respiratory 
rate and manually counted chest 
movements at the far distance a 
AC at > 1.0 m. b FFT at > 1.0 m
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limit its effectiveness in day to day use. Patients knew they 
were being recorded for the purposes of respiratory rate 
monitoring, and as a result may have unintentionally made 
their respirations more obvious than they might have if they 
were not being monitoring. Any future study would have 
to optimize the placement of the camera to allow continu-
ous monitoring so that patients are not aware of their being 
monitored. It is, however, unclear whether placing a camera 
at a higher angle would result in a poorer view of tempera-
ture changes around the nose, or if the larger distance would 
preclude any meaningful measurement.

As with previous studies [21], the ROI was selected 
manually, with data interpretation and analysis being per-
formed after the video had been recorded. To perform RR 
calculations automatically would likely involve automated 
body part tracking algorithms, common in RGB cameras 
[21] but poorly characterized with IR-based cameras. This 
feasibility study was also performed on only a small num-
ber of patients. A larger scale study would need to be per-
formed in order to validate these results.

Fig. 4   Bland–Altman plot com-
paring ECG thoracic bioimped-
ance derived RR and manually 
counted chest movements

Table 2   Correlation and 
difference against mean, 
dose-dependent bias, and 
Pearson correlation for infrared 
thermography (IRT) and ECG 
derived RR (ECG) compared 
to chest movements (CM) at 
0.4–0.6 m

Method 1 Method 2 n Bland–Altman analysis Pearson cor-
relation

Bias SD LoA Dose-dependent bias

Slope r p r p

IRT (AC) CM 30 − 0.667 2.023 − 7.929 − 0.003 0 0.953 0.96 < 0.001
IRT (FFT) CM 30 − 1 2.505 − 9.82 − 0.09 0.239 0.202 0.935 < 0.001
ECG CM 23 − 1.348 5.416 − 21.227 − 0.59 0.626 < 0.001 0.683 < 0.001

Table 3   Correlation and 
difference against mean, 
dose-dependent bias, and 
Pearson correlation for infrared 
thermography (IRT) and ECG 
derived RR (ECG) compared 
to chest movements (CM) at 
> 1.0 m

Method 1 Method 2 n Bland–Altman analysis Pearson cor-
relation

Bias SD LoA Dose-dependent bias

Slope r p r p

IRT (AC) CM 30 − 0.133 6.05 − 23.72 0.136 0.149 0.423 0.508 0.004
IRT (FFT) CM 30 − 2.567 6.735 − 26.4 − 0.006 0.007 0.972 0.493 0.006
ECG CM 23 − 3.13 5.396 − 21.156 − 0.4 0.455 0.01 0.611 0.002
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5 � Conclusions/future directions

The results of this study show promise in IRT being able to 
accurate measure the respiratory rate of patients contact-
lessly and unobtrusively. Given the ECG method of meas-
uring respiratory rate has been shown to be inaccurate in 
keeping with previous literature, and that routine bedside 
counting can also be inaccurate [22], IRT may provide a 
better way of monitoring respiratory rate in circumstances 
where capnography is not available. Future studies could 
incorporate greater extremes in body habitus and the pres-
ence of pathologies including sleep apnoea, and include 
more sensing modalities including capnography. Addition-
ally, employing higher resolution cameras with facial and 
body part recognition algorithms that include chest move-
ments and temperature oscillations around the mouth, could 
potentially study multiple patients with a single device. They 
might also establish other features of the respiratory rate 
not currently available with conventional measurement 
techniques, including the character of the respiratory rate or 
potentially even an approximation of tidal volume.
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