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Abstract
Purpose  We evaluated the feasibility and robustness of three methods for propofol-to-bispectral index (BIS) post-operative 
intensive care sedation, a manually-adapted target controlled infusion protocol (HUMAN), a computer-controlled predictive 
control strategy (EPSAC) and a computer-controlled Bayesian rule-based optimized control strategy (BAYES).
Methods  Thirty-six patients undergoing short lasting sedation following cardiac surgery were included to receive propofol 
to maintain a BIS between 40 and 60. Robustness of control for all groups was analysed using prediction error and spectro-
graphic analysis.
Results  Although similar time courses of measured BIS were obtained in all groups, a higher median propofol effect-site 
concentration (CePROP) was required in the HUMAN group compared to the BAYES and EPSAC groups. The time course 
analysis of the remifentanil effect-site concentration (CeREMI) revealed a significant increase in CeREMI in the EPSAC 
group compared to BAYES and HUMAN during the case. Although similar bias and divergence in control was found in 
all groups, larger control inaccuracy was observed in HUMAN versus EPSAC and BAYES. Spectrographic analysis of the 
system behavior shows that BAYES covers the largest spectrum of frequencies, followed by EPSAC and HUMAN.
Conclusions  Both computer-based control systems are feasible to be used during ICU sedation with overall tighter control 
than HUMAN and even with lower required CePROP. EPSAC control required higher CeREMI than BAYES or HUMAN 
to maintain stable control.
Clinical trial number: NCT00735631.
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1  Introduction

Short lasting sedation following cardiac surgery has 
become an integral part of post-operative intensive care 
[1–4]. Clinical experience has revealed that standard dos-
ing guidelines often results in an inaccurate level of seda-
tion due to a wide range of inter-patient pharmacological 
variability. A thorough patient-individualized approach is 
required and independent depth of anesthesia (DOA) sys-
tems based on the processed EEG such as the Bispectral 
Index (BIS®, Medtronic, Dublin, Ireland) might assist in 
optimizing sedation at the intensive care unit (ICU) [5–7].

Clinicians select initial drug regimen on the basis of 
a variety of considerations and adjust where needed. In 
control engineering terminology, this series of action con-
stitutes a closed-loop control system. Human-controlled 
closed-loop is characterized by irregular control actions 
which are intermittent in time. To solve this, computer-
controlled closed-loop applications have been developed to 
control drug administration during intra-operative anesthe-
sia. And several single input single output (SISO) control 
algorithms have been tested [8, 9]. The earliest anesthesia 
controllers use three-term controllers such as proportional 
integral derivative (PID) [10].The more recent employs 
sophisticated modelling [6, 11–13]. Although PID control-
lers are popular tools from control engineering areas [14, 
15], they do not capture the true activity in the clinic. PID 
controllers cannot anticipate to the response of the patient, 
so stability might become a problem [16]. Strategies, such 
as fuzzy [17, 18], adaptive [19], predictive [20–22] and 
Bayesian based closed-loop [23–26] control algorithms 
have been suggested.

It has been shown that significant time delays are 
induced from signal processing algorithms and these 
become important for the stability of the closed loop [27]. 
Some uncertainties may come from the patient model as 
well, and adaptations have been suggested [28]. The vari-
ability may introduce variations as high as threefold [29].

Closed-loop delivery of propofol during intra-operative 
anesthesia is found to be superior to manually controlled 
delivery [9], however, closed-loop sedation using BIS-
guided propofol administration in the ICU is not well-
studied. Only one feasibility study using a PID-based con-
trol strategy showed that closed-loop delivery of propofol 
to control BIS for postoperative sedation is feasible and 
efficient after cardiac surgery [30]. No studies are available 
comparing various automated drug delivery systems using 
different control algorithms.

The aim of this observational, open-label pilot study 
was to observe the feasibility and robustness of various 
approaches for single-input-single-output closed-loop con-
trol of BIS-guided postoperative propofol sedation at the 

ICU. The primary outcome measures were the performance 
of the control system to maintain a specific BIS target and 
the required propofol and remifentanil predicted effect-
site concentrations, defined as CePROP and CeREMI, and 
dosages to do so. The secondary outcome measure was 
the hemodynamic stability of the patient. Three closed-
loop control settings were tested, i.e. the predictive control 
(“EPSAC”), the Bayesian-based control (“BAYES”), and 
the routine clinical infusion (“HUMAN”).

2 � Methods

2.1 � Clinical protocol

This study is an observational, open-label pilot study using 
one computer system (RUGLOOP II, Demed, Temse Bel-
gium) with multiple settings, being Bayesian, EPSAC and 
human closed-loop control. No blinded randomization was 
done. The inclusion was done in a blocked way, using con-
secutive patients entering the ICU.

After receiving Ethics’ Committee approval (Univer-
sity Hospital, Ghent, Belgium), patients’ informed consent 
and registration at ClinicalTrials.gov (NCT00735631), 
patients entering the ICU following off-pump coronary 
artery bypass surgery (OPCAB) older than 18 years were 
included between June 2008 and September 2009. Exclusion 
criteria were patients with severe renal failure defined by 
the RIFLE Classification levels risk, failure and end-stage 
kidney failure, severe hepatic failure defined by a bilirubin 
level of ≥ 3 mg/dl and/or a prothrombin level of < 50%, low 
ejection fraction defined as < 40%, age < 18 years, postop-
erative bleeding exceeding 2 ml/kg/hr within the first 2 h 
postoperatively and exceeding 1 ml/kg/hr in the following 
hours, history of cerebrovascular accident, history of COPD, 
age > 75 years, postoperative cardiac index < 2.5 for more 
than 2 h, SvO2 < 60% for more than 2 h, hypotension with a 
MAP < 60 mmHg for more than 2 h, sedation agents other 
than remifentanil and propofol during surgery or remifenta-
nil dose exceeding 0.5 µg/kg/min at arrival at the ICU.

All patients have been routinely monitored. Patients 
had been admitted to the ICU while sedated. At the ICU, 
patients were sedated with propofol using one of the three 
SISO closed-loop systems. For supplemental analgesia con-
trol, remifentanil target-controlled infusion (TCI) was given. 
CePROP and CeREMI were calculated using the Schnider 
and Minto pharmacokinetic models, respectively [31–34].

The SISO systems guided the sedation maintaining BIS 
targets between 40 and 60 aiming to be as close as pos-
sible around 50. Additionally, all vital signs were recorded 
by RUGLOOP II data collecting software (Demed, Temse, 
Belgium).
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2.2 � Patient models for prediction

In order to control the depth of sedation, a model which 
captures the dynamical response of the patient is required. 
The selection of the model variables is crucial. The most 
commonly used drugs are propofol and remifentanil.

Propofol is a hypnotic agent, well described and studied 
[31, 32] and used as a sedative agent in ICU. Remifentanil is 
an opioid with a unique pharmacologic profile, characterized 
by its high metabolic clearance [33, 34], used as a strong 
analgesic. When administered together, these two drugs 
interact synergistically. These two drugs are the inputs of 
the model and the output is the BIS, a signal derived from 
the electroencephalogram (EEG), used as the measure of 
the hypnotic component of anesthesia. Multivariate statis-
tics were used to combine the different features into a single 
indicator value. BIS values lie in the range from 0 to 100: 
100 being awake and 60 to 40 indicate light and moderate 
hypnotic state, respectively [35].

In SISO regulatory loops of propofol, the concentra-
tion–response relation, i.e. the pharmacodynamic (PD) 
model, can be described by:

where γ is the slope of the PD model; Emax is the maximum 
possible drug effect, with the predicted effect-site concen-
tration Ce(t). Since the parameters of (1) are unknown and 
different for each patient, nominal values have been used for 
the simulations. The nominal PD values were C50 = 2.5 µg/
ml and γ = 3.01. Emax and E0 have been considered equal to 
the value of 100.

The BAYES closed loop system adapts the parameters 
of (1) continuously to the real BIS values and infused 
propofol rate profiles, which makes the BAYES controller 
patient-specific. The EPSAC controller uses these nominal 
values, requiring an increased robustness to patient model 
uncertainties.

2.3 � Control systems

The SISO control systems were embedded into the 
RUGLOOP II computer system, which stores all vital signs 
data collected from the various monitors using RS 232 
interfaces and contains the required TCI software to steer 
two infusion pumps (Carefusion, Asena GH, Basingstoke, 
UK). The technology of TCI has been published elsewhere 
[36]. In a TCI system, a desired (“target”) drug concentra-
tion is set, and adjusted based on clinical observation of 
the response of the patient. In this study, the required target 
CeREMI can be set at the computer screen when using the 

(1)BIS(t) = E0 − Emax
Ce(t)

�

Ce(t)
�
+ C

�

50

“human” SISO controller or are set by the closed-loop sys-
tem when using the Bayesian or EPSAC closed-loop system.

For the Bayesian SISO controller (called BAYES), an 
automated system was used that had previously undergone 
testing and validation during peri-operative anesthesia. A 
full description is described in our previous work [23]. In 
brief, this controller is based on a PD model represented 
by a patient-individualized sigmoid Emax model, describ-
ing the relationship between BIS and CePROP. The sigmoid 
Emax model can be described by: (1) E0: the BIS value at no 
drug effect; (2) the change in BIS between no drug effect 
and maximum drug effect is defined as Emax;3 (EC50: the 
CePROP at 50% of effect; (4) γ: the steepness of drug effect 
around 50%. The controller estimates the target CePROP 
that minimizes the error between measured and target value 
for the controlled variable (BIS) by shifting the sigmoid Emax 
model along the CePROP axis. We improved the model esti-
mator by implementing a Bayesian technique to continu-
ously calculate a patient-individualized sigmoid Emax com-
bining an initial population mean model with the observed 
responses. The Bayesian objective function is:

whereby VAR denotes the variance, BISsample is the observed 
value and BISestimated is the estimated value based on the 
model to be fitted. EC50 and γ are the non-fixed terms of the 
sigmoid Emax model, “Population” is the original popu-
lation reference model parameter (= a priori information), 
and “Estimated” is the estimated value of parameter for the 
individual. Sample TO is a forgetting factor representing 
the samples taken into account for the modelling on a time-
limited base, and D is the systems delay to be estimated 
[24, 26].

For the model based predictive SISO controller (called 
EPSAC—extended prediction self adaptive control) an 
algorithm, which had undergone simulator testing, has been 
deployed in the RUGLOOP II framework [20]. This predic-
tive control algorithm has been described previously [19, 
21, 37]. It predicts the future BIS response based on past 
propofol input rates and past measured BIS values. At every 
sampled instant t the controller calculates the optimal dose 
for Propofol over a predefined number of moments in the 
future (defined by N2 variable), and computes a number of 
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control moves to achieve/to maintain the desired BIS target 
(defined by Nu variable). Figure 1 represents the concept.

The prediction of future responses in BIS implies mini-
mizing a quadratic cost function representing the error 
between the target BIS value and the predicted BIS value 
(denoted BIS sample) at every instant time t, possibly with 
an additional term penalizing the control effort denoted by 
variable u:

where the notation (t + k|t) denotes predicted values over k 
samples in the future postulated at time instant t, N2 is the 
prediction horizon in samples, N1…N2 is the coincidence 
horizon in samples (with default value of N1 = system time 
delay + 1 sample for causality) and α a weighting parameter 
for control effort u which denotes the optimized values of 
propofol infusion rates.

The EPSAC controller design parameters are fixed for 
all patients and chosen as: Nu = 1, N1 = 1 and N2 = 10. Based 
on our vast expertise in applying EPSAC, Nu = 1 is the most 
simple choice from practical engineering point of view, giv-
ing satisfactory performance for stable processes. In the cost 
function (3), the weighting parameter on the control effort 
term was not used (i.e. α = 0).

For the “human” SISO controller (called HUMAN) the 
clinician titrated the propofol using an effect-compartmental 
controlled TCI system to target a BIS between 40 and 60 
based on his/her clinical expertise. CeREMI was guided 
in order to maintain a mean arterial blood pressure (MAP) 

(3)

N2
∑

k=N1

(

BIStarget(t + k|t) − BISsample(t + k|t)
)2

+ �

N2−1
∑

k=0

(u(t + k|t))2

between 65 and 85 mmHg and to maintain an adequate heart 
rhythm, depending on the patient’s medical history.

In order to guarantee safety, additional algorithms are 
incorporated into the closed-loop system in all applied SISO 
systems. For example, the maximum allowed CePROP is set 
at 15 µg/ml. When the incoming BIS values are corrupted 
by noise making closed-loop control unavailable, the BIS 
signal quality index (SQI) below 50% is used to automati-
cally “open” the loop, continuing the propofol infusion at the 
most recent CePROP and the nurse is alarmed. Closed-loop 
control remains active and the system will “close” the loop 
again when accurate BIS levels are available again. Hereby, 
“control time” is defined as the percentage of the case time 
the closed-loop control is active. In case of output oscilla-
tions in computer-based titration from the automated SISO 
systems, an auditive alarm sounded and the nurse could take 
over control of the drug administration in case of emergency, 
which was then accounted for as a system failure.

2.4 � Performance evaluation indicators 
and statistics

To assess the detailed differences between the controllers 
over time, the difference between the mean BIS, CePROP 
and CeREMI, hemodynamic and respiratory values [heart 
rate (HR), MAP, oxygen saturation (Sp02) and end-tidal CO2 
(EtCO2)] were plotted against time [38]. Hereby, the mean 
value is the population mean at every time point. The closer 
the differences between the means were to zero the less dif-
ference there was between the means of the variable values 
of the two controllers. The 95% confidence intervals (CI) for 
the differences between the mean values were calculated at 
each 30 s time point. When zero is included in the 95% CI, 
there is no statistically significant difference.

BIS was defined as the controlled variable. The percent-
age of the total observed time over which BIS remained 
between 40 and 60, was calculated for each case. The global 
performance of the three closed-loop systems can be eval-
uated using prediction error (PE) and its derived median 
(absolute) prediction error [MD(A)PE], Wobble and Diver-
gence, as described in Appendix 1, and has been used previ-
ously during evaluation of intra-operatively used closed-loop 
systems [26].

For data with a normal distribution the student t test was 
employed and without normal distribution, we have applied 
the Mann–Whitney U test. Statistical significance was set 
at 5% and a Bonferroni correction was used to account for 
multiple comparisons. The corresponding p value of the tests 
is provided in the results. The software package R (R Foun-
dation for Statistical Computing, Vienna, Austria) was used 
to perform the statistical analysis.

Fig. 1   MPC-EPSAC strategy as a block scheme (MPC model predic-
tive control, EPSAC extended prediction self adaptive control)
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To investigate the dynamic variability of the system and 
the required “workload” of the closed-loop system to main-
tain a specific target, spectrogram analysis and its derived 
power spectrum density (PSD) has been used as described 
in Appendix 2.

As this was an observational, pilot-study, no formal 
power analysis was done and numbers of patients were arbi-
trary set.

3 � Results

Thirty-six patients were approached and agreed to partici-
pate in the study. In the EPSAC group, 16 patients were 
included. Two patients were excluded post-hoc due to a 
technical problem with the data recording. In each of the 
BAYES and the HUMAN group, 10 patients were included. 
The patient characteristics were similar between groups 
(Table 1). The total control time (percentage of case time 
closed-loop control was active) in closed loop was 93 ± 5.2% 
and 99 ± 0.7% in the EPSAC and BAYES groups, respec-
tively, and was not statistically significantly different (NS). 
The total case time was 339 ± 65 min, 361 ± 17 min and 
370 ± 6 min for EPSAC, BAYES and HUMAN, respectively 
(NS).

Table 1   Patient characteristics, APACHE II and Euro Score 
[mean ± SD or median (range)]

EPSAC BAYES HUMAN

Number 14 10 10
Gender (M/F) 12/2 8/2 9/1
Age (year) 66 ± 9 62 ± 7 65 ± 7
Weight (kg) 80 ± 13 80 ± 13 87 ± 13
Height (cm) 174 ± 10 171 ± 8 172 ± 10
APACHE II score 14 ± 4 13 ± 2 12 ± 4
Euro score 2 (0–7) 4 (1–7) 4(0–9)

Fig. 2   Time course for measured BIS, targeted BIS, predicted propo-
fol effect-site concentration (CePROP), and predicted remifentanil 
effect-site concentration (CeREMI) for the three groups. Blue line 

represents population mean value at every time point; grey lines are 
the data for each individual
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The time course of targeted and measured BIS is shown 
in Fig. 2. To enable comparison, target BIS for HUMAN 
was set as 50 being the nadir of the set target range between 
40 and 60. The time course of the PE for each controller is 
also shown in Fig. 2. The targeted and measured median 
BIS values are shown in Table 2. Similar results for BIS 
were observed between groups. Figure 3 depicts the detailed 
differences between controllers for BIS over time. Although 
some lower targets were set for EPSAC and BAYES than 
HUMAN, no differences in the time course of measured BIS 
values were observed between controllers.

Overall CePROP and CeREMI are shown in Table 2 
and the time courses of CePROP and CeREMI are plotted 
in Fig. 2. A higher median CePROP was required in the 
HUMAN group compared the BAYES and EPSAC, also 
observed in some temporary differences between groups in 
the course analyses of CePROP (Fig. 3). Although median 
CeREMI seemed similar among groups, time course analy-
sis of CeREMI (Figs. 2, 3) revealed a significant increase 
in CeREMI in the EPSAC group compared to BAYES and 
HUMAN during the case, resulting in significantly higher 
CeREMI for EPSAC after some hours of sedation.

Hemodynamic parameters were stable in the three groups, 
with a statistically, albeit not-clinically relevant, higher lev-
els of MAP for the EPSAC group (Table 2; Figs. 4, 5). As 
expected during mechanical ventilation, parameters for ven-
tilation (Table 2) were similar among groups.

The values for performance indicators are given in 
Table  3. Similar results between controllers were seen 
for MDPE and Wobble, however, the HUMAN control-
ler showed a significantly larger MDAPE. Divergence was 
negative in HUMAN and positive for EPSAC and BAYES. 
Percentage of case time of BIS with/without certain value 
ranges is given in Table 4. Percentage of time with accurate 
BIS control between 40 and 60 was similar between groups 
due to wide range of results, however, BAYES showed a 
trend towards better control. The results for the spectro-
gram and time signal for measured BIS in the three groups 
is shown in Fig. 6a–c. The result [median (min–max)] for the 
total PSD were 0.039 (0.0013–0.161), 0.037 (0.007–0.12), 
and 0.053 (0.0042–0.198) for EPSAC, BAYES and Human, 
respectively. PSD in HUMAN controlled patients was higher 
than EPSAC controlled patients (p < 0.008) and the BAYES 
controlled patients.

4 � Discussion

This observational study is an evaluation of the performance 
of three different control strategies for propofol-to-BIS post-
operative intensive care sedation. The experimental results 
indicate that both computer-based control systems are fea-
sible and robust to be used during ICU sedation with overall 
tighter control than HUMAN and even with lower required 
CePROP. EPSAC control required higher CeREMI than 
BAYES or HUMAN to maintain stable control.

BIS was used as the controlled variable in all groups and 
measured BIS values were similar between groups and rep-
resent adequate care in all patients. The period of adequate 
sedation (% time BIS between 40 and 60), seen as indicator 
of performance of the automated system was similar among 
groups, although trended to be higher in BAYES. Interest-
ingly, although BIS time courses are similar between groups, 
significantly higher CePROP was required to maintain accu-
rate control when using the HUMAN control strategy even 
with a similar CeREMI with BAYES. Eventhough similar 
overall CeREMI were co-administered for all control strat-
egies, studying detailed differences with the time-based 
analysis revealed some higher CeREMI when using EPSAC 
in the last 3 hours of control to enable accurate control. As 
higher CeREMI might make the controller task less chal-
lenging due to less incoming arousability triggering the BIS 
to increase, the need for higher CeREMI to stabilize con-
trol might indicate lower robustness of the EPSAC system. 
Additionally, changes in CeREMI will dynamically change 
the patient’s PD model for propofol in BAYES which favors 
robustness.

Hemodynamic alterations postoperative in these patients 
asks for specific care. However, hemodynamic results 
reflected by the MAP and HR were greatly as good for 

Table 2   BIS levels, drug usage, hemodynamics and respiratory 
parameters. Median (range)

CpPROP propofol estimated plasma concentration, CePROP propo-
fol estimated effect-site concentration, CpREMI remifentanil esti-
mated plasma concentration, CeREMI remifentanil estimated effect-
site concentration, CtREMI remifentanil target concentration. MAP 
mean arterial blood pressure, HR heart rate, EtCO2 end-tidal CO2, 
SpO2 oxygen saturation
*p < 0.017 between EPSAC and HUMAN control
**p < 0.017 between BAYES and HUMAN control
***p < 0.017 between BAYES and EPSAC control

EPSAC BAYES HUMAN

Number 14 10 10
BIS 42 (39–49) 43 (41–46) 43 (30–54)
BIS target 44 (42–50) 45 (43–50) NA
CpPROP (µg/ml) 1.7 (0.9–3.0)* 1.7 (1.0–2.8)** 2.6 (1.9–3.0)
CePROP (µg/ml) 1.8 (1.0–3.1)* 1.8 (1.1–2.7)** 2.6 (1.9–3.0)
CpREMI (ng/ml) 1.1 (0–3.0) 0.9 (0–1.3) 0.6 (0–1.5)
CeREMI (ng/ml) 1.1 (0–3.0) 0.9 (0–1.3) 0.6 (0–1.5)
CtREMI (ng/ml) 1.1 (0–3.0) 0.9 (0–1.3) 0.6 (0–1.5)
MAP (mmHg) 76 (70–95)*,*** 71 (63–80) 73 (61–81)
HR (beats/min) 78 (60–116) 77 (65–97) 78 (64–92)
EtCO2 (kPa) 4.1 (2.8–5.0) 4.2 (3.4–5.3) 4.0 (3.3–4.7)
SpO2 (%) 99 (95–100) 99 (98–100) 99 (98–100)
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EPSAC, BAYES and HUMAN. This hemodynamic stability 
in EPSAC and BAYES was created without changing levels 
of propofol, also indirectly proving the performance of these 
closed-loop systems. Results for EtCO2 and SpO2 are similar 
as can be expected when mechanical ventilation is used.

MDPE represents the direction (over- or under-control) 
of the performance errors rather than their size. A negative 
MDPE value indicates the controller tends to overdose, lead-
ing to BIS levels below target, a positive MDPE shows the 
tendency of a too light anaesthesia. Although no significant 
differences in average MDPE are observed between control-
lers, HUMAN shows a very wide range of results for indi-
vidual MDPE, indicating significant individual variability in 
bias during control. MDAPE represents inaccuracy of control 
or ‘the error of the system’ and is a necessary accompanying 
measure to MDPE which does not indicate the sign of a pos-
sible bias but describes both the amplitude of possible bias, 
as well as all other errors that prevent the controller from 
approaching the target. MDAPE was significantly different 
between both controllers, with the manual control showing 

overall larger inaccuracy than both EPSAC and BAYES 
controller. The results are comparable as for MDPE, with 
the worst results for HUMAN. Wobble is an indicator for 
intra-individual variability. Comparing the three groups and 
although not significant, BAYES has the lowest value, or the 
best result, probably indicating the integrating of the adaption 
inherent in the system to recent individual data of the patient. 
This result is the best also compared to the wobble obtained 
with other systems, previously published [30]. Divergence 
is obtained from linear regression of the absolute PE versus 
time. It indicates if positive, a progressive widening of the 
gap between BIStarget and BISmeasured. For all groups, diver-
gence is very low and not significantly different.

Spectrographic analysis of the system behavior [39] shows 
that a larger spectrum of frequencies are covered in BAYES 
and EPSAC than HUMAN, being an indication that the com-
puter-controlled closed loops uses a broader spectrum of pos-
sible inputs to obtain the optimal solution. Figures of PSD 
of BIS signal suggest that during time of operation, the vari-
ability of the BIS changes its main energy content (changes 

Fig. 3   Time-synchronized analysis of the differences between groups 
for measured BIS, targeted BIS, predicted propofol effect-site con-
centration (CePROP), and predicted remifentanil effect-site concen-

tration (CeREMI). Blue line represents the absolute difference of the 
means of both populations at every time point; dotted red lines repre-
sent upper and lower 95% confidence interval at every time point
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in color intensity). This can originate from patient artefacts, 
dynamic response variability, and a broader spectrum of input 
profiles (propofol) in closed loop compared to open. A greater 
versatility can be recognized in BAYES and EPSAC when 
compared to human, necessary since the automatic controller 
only “sees” the BIS signal, whereas the HUMAN has more 
accurate information on the patient state. The energy of BIS 
for the manually controlled patients is higher than closed loop, 
shown by the analysis of the Total PSD index derived from the 
BIS spectrograms, implying that the BAYES has the smooth-
est distribution of energy (i.e. frequency components), thus 
a more ‘patient-friendly’ approach. The justification is in the 
continuous adaption of the PD model when using BAYES, 
opposed to EPSAC or MANUAL.

However, the current study shows also shortcomings. 
This is a first-use and feasibility study and some of the non-
significances might be due to the small number of included 
patients per group. Nevertheless, significances in propofol 
use, MDAPE and PSD shows acceptable feasibility of both 
closed-loop systems. Additionally, the closed-loop controllers 

are not tuned here for cases when a priori known disturbances 
are included. For instance, if the surgical manoeuvres are 
known/predefined, a typical surgical stimulation signal could 
be constructed, fed to the controller and the optimal rates of 
propofol calculated with this additional information at hand. 
This is possible in the Bayesian Controller as a feedforward 
control scheme, and in the EPSAC controller as a dedi-
cated disturbance filter tuning parameter (additional degree 
of freedom in optimization process). Information on the 
feedforward control type of schemes have been extensively 
described elsewhere [40]. Further studies and bench testing 
are necessary before possible implementation.

5 � Conclusions

This observational, open-label, pilot study supports the 
claim that automatic guided sedation with both EPSAC 
and BAYES are feasible and robust to be used during 

Fig. 4   Time course of non-invasive mean arterial blood pressure (MAP) and heart rate (HR) for the three groups. Blue line represents population 
mean value at every time point; grey lines are the data for each individual
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Fig. 5   Time-synchronized analysis of the differences between groups 
for heart rate (HR) and non-invasive mean arterial blood pressure 
(NIBP). Blue line represents the absolute difference of the means of 

both populations at every time point; dotted red lines represent upper 
and lower 95% confidence interval at every time point

Table 3   Prediction error [median (minimum − maximum value)]

MDPE median prediction error for the individual patient, MDAPE median absolute prediction error for the individual patient
*p < 0.017 between EPSAC and HUMAN control
**p < 0.017 between BAYES and HUMAN control

EPSAC BAYES HUMAN

Median MDPE % − 4.2 (− 8.2 to − 0.5) − 6.7 (− 9.3 to − 4.4) − 14 (− 40.8 to 7.1)
Median MDAPE % 8.4 (4.9 to 15.4)* 9.4 (6.7 to 15)** 16 (7.4 to 41.2)
Median wobble % 7.3 (3.7 to 14.8) 6.2 (5 to 14.4) 9 (5.8 to 20.8)
Median divergence % 0.00325 (− 0.00998 to 0.04043) 0.00839 (− 0.00273 to 0.01709) − 0.005 (− 0.04742 to 0.07776)

Table 4   Percentage (%) [median 
(minimum − maximum)] of case 
time for specific BIS ranges

EPSAC BAYES HUMAN

% of casetime BIS < 40 27.9 (6.3–56) 21.3 (5.5–45.2) 19.9 (0–8.3)
% of casetime
40 < BIS < 60

67.8 (42.7–90.5) 75 (41.2–92.8) 68.4 (13.9–93.7)

% of casetime BIS > 60 4.1 (0–19.9) 3.7 (0–13.6) 6.9 (2.5–33.2)
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Fig. 6   Spectrogram and time signal for measured BIS values in open loop (left) versus closed loop. a: BAYES, b: EPSAC and c: HUMAN
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post-operative ICU sedation with overall tighter control than 
HUMAN and even with lower required CePROP. EPSAC 
control required higher CeREMI than BAYES or HUMAN 
to maintain stable control.
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