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Abstract
Extravascular lung water (index) (EVLW(I)) can be estimated using transpulmonary thermodilution (TPTD). Computed 
tomography (CT) with quantitative analysis of lung tissue density has been proposed to quantify pulmonary edema. We 
compared variables of pulmonary fluid status assessed using quantitative CT and TPTD in critically ill patients. In 21 inten-
sive care unit patients, we performed TPTD measurements directly before and after chest CT. Based on the density data of 
segmented CT images we calculated the tissue volume (TV), tissue volume index (TVI), and the mean weighted index of 
voxel aqueous density (VMWaq). CT-derived TV, TVI, and VMWaq did not predict TPTD-derived EVLWI values ≥ 14 mL/
kg. There was a significant moderate positive correlation between VMWaq and mean EVLWI (EVLWI before and after CT) 
(r = 0.45, p = 0.042) and EVLWI after CT (r = 0.49, p = 0.025) but not EVLWI before CT (r = 0.38, p = 0.086). There was 
no significant correlation between TV and EVLW before CT, EVLW after CT, or mean EVLW. There was no significant 
correlation between TVI and EVLWI before CT, EVLWI after CT, or mean EVLWI. CT-derived variables did not predict 
elevated TPTD-derived EVLWI values. In unselected critically ill patients, variables of pulmonary fluid status assessed using 
quantitative CT cannot be used to predict EVLWI.

Keywords  Extravascular lung water · Pulmonary vascular permeability · Tissue volume · Pulmonary edema

1  Introduction

Extravascular lung water (EVLW) is interstitial, intracel-
lular, alveolar, and lymphatic fluid in the lungs, and thus 
reflects the amount of water in the lungs outside the pulmo-
nary vasculature not including pleural effusions [1, 2]. In 
clinical practice, EVLW is indexed to biometric parameters 
(usually predicted body weight) to be able to use “normal 
ranges” of extravascular lung water index (EVLWI) despite 
inter-individual differences in biometric data [3, 4]. Accu-
mulation of EVLW is a hallmark of both acute respiratory 
distress syndrome (ARDS) and hydrostatic pulmonary 
edema [1, 5]. EVLW(I) has been demonstrated to have a 
high predictive value regarding patient outcome in surgical 
patients [6, 7] and critically ill patients including patients 
with sepsis and ARDS [8–11].

At the bedside, EVLW can be estimated using single-
indicator transpulmonary thermodilution (TPTD) [1]. 
TPTD is recommended for patients with circulatory shock 
not responding to initial therapy and shock complicated by 
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ARDS [12]. In addition to EVLW, TPTD can be used to 
assess the pulmonary vascular permeability index (PVPI) 
that allows differentiating the pathophysiologic reason for 
increased EVLW [13, 14].

Computed tomography (CT) with quantitative analysis of 
the density of lung tissue has also been proposed to quantify 
pulmonary edema [15]. Quantitative CT allows the assess-
ment of organ volumes and computation of the volume of 
gas, the volume of tissue, and the gas/tissue ratio [15]. CT of 
the chest has been suggested to quantify pulmonary edema 
both in experimental and clinical settings [16–18].

Diagnostic CT scans of the thorax are performed in many 
critically ill patients during intensive care unit (ICU) admis-
sion or treatment. To the best of our knowledge, there are 
no data in unselected ICU patients on the diagnostic value 
of quantitative CT analysis for the assessment of pulmo-
nary fluid status using CT scans obtained in clinical routine. 
Therefore, we aimed to compare variables of pulmonary 
fluid status assessed using quantitative CT and TPTD in a 
clinical study in unselected critically ill patients.

2 � Methods

2.1 � Study design and setting

This observational clinical study was performed in patients 
treated in the medical ICU of a German university hospi-
tal (Klinikum rechts der Isar der Technischen Universität 
München, Munich, Germany). The study was approved by 
the ethics committee (Ethikkommission der Fakultät für 
Medizin der Technischen Universität München) and writ-
ten informed consent was obtained from all patients or their 
legal representatives. Adult patients were eligible for study 
inclusion if they (a) were scheduled for CT scanning of the 
chest and (b) were monitored with TPTD (both for clini-
cal reasons unrelated to the study). According to the study 
protocol, TPTD measurements (details see below) were 
performed directly before and after the CT examination.

2.2 � Transpulmonary thermodilution measurements

We a priori defined TPTD as the reference method in our 
study. For TPTD we used the PiCCO system (Pulsion 
Medical Systems SE, Feldkirchen, Germany) as described 
previously [19, 20] with a 5-French thermistor-tipped cath-
eter (Pulsiocath PV2015L20; Pulsion Medical Systems 
SE) placed in the abdominal aorta via the femoral artery. 
TPTD variables were calculated based on the analysis of 
the thermodilution curve after injection of 15 mL of iced 
0.9% saline in the central venous circulation via a central 
venous catheter. The injection of the thermal indicator was 
performed in triplicate and each TPTD value represents the 

mean of the three consecutive measurements. EVLW was 
indexed to the predicted body weight resulting in EVLWI. 
As described previously [13] PVPI was calculated as the 
ratio of EVLW and pulmonary blood volume.

2.3 � Computed tomography and derived 
calculations

CT was the test method in our study. CT scans were per-
formed using a 64-slice multi-detector CT (Somatom AS, 
Siemens Healthcare GmbH, Forchheim, Germany). Chest 
CT was acquired with 120 kVp and automated tube current 
modulation. Images were reconstructed in transverse plane 
with a slice thickness of 3 or 5 mm. For this study, the CT 
scans were analyzed post hoc by two radiologists blinded 
to the clinical patient data and TPTD-derived parameters.

Manual segmentation was performed using Medical 
Imaging Interaction Toolkit (MITK) workbench (German 
Cancer Research Center, Heidelberg, Germany). Regions 
of interest (ROIs) were prescribed using the software’s 
region growing tool carefully excluding large vessels and 
extrapulmonary tissue. ROIs were prescribed individually 
for each axial slice and were initialized in well-ventilated 
lung tissue. Density of the lungs was determined in Houns-
field Units (HU). A value equal to 0 HU characterizes a 
voxel with a density equal to that of water and a value of 
− 1000 HU characterizes a voxel with a density equal to that 
of air. Based on the density data of the segmented images 
total lung tissue volume as well as percentages of hyper-
inflated (< − 900 HU), well-aerated (− 900 to − 500 HU), 
poorly aerated (− 499 to − 100 HU), and non-aerated (− 99 
to + 100 HU) regions were calculated.

As described in detail previously [16] we calculated the 
tissue volume (TV) as:

The tissue volume index (TVI) was obtained by indexing 
TV to predicted body weight.

In addition, we calculated the mean weighted index of 
voxel aqueous density (VMWaq) as a mathematical assump-
tion of the relative contribution of water in the HU frame:

TV = (volume of well-aerated lung tissue × 0.3)

+ (volume of poorly aerated lung tissue × 0.7)

+ (volume of non-aerated lung tissue × 1.0).

VMWaq = ((number (n) of well-aerated lung tissue voxels × 0.3)

+(n of poorly aerated lung tissue voxels × 0.7)

+(n of non-aerated lung tissue voxels × 1.0))∕

total number of voxels.
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2.4 � Statistical analysis

Statistical tests were conducted in an exploratory manner on 
a two-sided 5% significance level. For statistical analyses we 
used IBM SPSS Statistics for Windows, Version 23 (IBM 
Corp., Armonk, NY, USA).

Descriptive data are presented as absolute and relative 
frequencies (categorical data) or as median and 25th and 
75th percentile (continuous data).

We used the Spearman correlation coefficient to inves-
tigate bivariate correlations of quantitative measurements.

As primary endpoint we investigated the predictive value 
of the TVI for the prediction of EVLWI values of ≥ 14 mL/
kg using receiver operating characteristics (ROC) curve 
analysis. We chose to use an EVLWI threshold of 14 mL/kg 
because this cut-off value has repeatedly been shown to be 
associated with increased mortality [21]. Considering the 
allocation ratio of 0.62 (mean EVLWI ≥ 14 and < 14 mL/kg), 
defining “good prediction” as an area under the ROC curve 

(ROC-AUC) of ≥ 0.80, and applying a 5% significance level, 
this primary endpoint of our analysis including 21 patients 
had a post-hoc power of 80%. In addition, we used ROC 
analysis to assess the predictive value of TV and VMWaq 
for the prediction of EVLWI values of ≥ 14 mL/kg.

3 � Results

3.1 � Patients

We included 22 critically ill patients in this study. One 
patient was excluded from the analysis because of techni-
cal problems with the CT analyzing software. Thus, we 
included 21 patients in the final analysis. The patients’ 
characteristics are presented in Table 1.

Table 1   Patients’ characteristics

Data are presented as counts (percentages) or median 25th percentile–75th percentile

Basic demographic data
 Sex (female/male) 5/16
 Age, years 61 (56–70)
 Height, cm 174 (168–180)
 Actual body weight, kg 77 (60–85)
 Predicted body weight, kg 70 (62–75)
 Predicted body surface area, m2 1.9 (1.7–2.0)

Intensive care unit scores
 Acute physiology and chronic health evaluation II score, points 27 (24–33)
 Sequential organ failure assessment score, points 9 (7–12)
 Simplified acute physiology score II, points 38 (31–42)
 Therapeutic intervention scoring system, points 23 (18–28)

Clinical characteristics on day of study inclusion
 Catecholamine therapy, n (%) 10 (48)
 Renal replacement therapy during last 72 h, n (%) 4 (19)
 Need for mechanical ventilation, n (%) 14 (67)

Laboratory parameters
 Serum creatinine, mg/dL 1.0 (0.8–1.9)
 Blood urea nitrogen, mg/dL 29 (23–44)
 Serum bilirubin, mg/dL 0.9 (0.3–2.4)
 Aspartate aminotransferase, U/L 43 (25–102)
 Leukocyte count, G/L 13.4 (9.5–18.2)
 C-reactive protein, mg/dL 6.5 (4.7–11.0)

Reason for ICU admission
 Respiratory insufficiency/pneumonia, n (%) 12 (57)
 Acute circulatory failure/hypovolemic shock/septic shock 7 (33)
 Acute/acute-on-chronic liver failure, n (%) 1 (5)
 Acute pancreatitis, n (%) 1 (5)

Outcome
 Intensive care unit mortality, n (%) 8 (38)
 Hospital mortality, n (%) 8 (38)
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3.2 � Pulmonary fluid status assessed using 
quantitative computed tomography

Data from quantitative CT analysis including information 
on the distribution of hyperinflated, well-aerated, poorly 
aerated, and non-aerated lung tissue are shown in Table 2 
and Fig. 1.

Median TV was 733 (529–804) mL, median TVI was 
10.1 (7.0–11.5)  mL/kg, and median VMWaq was 0.32 
(0.27–0.35).

3.3 � Pulmonary fluid status assessed using 
transpulmonary thermodilution

Data on TPTD-derived EVLW, EVLWI, and PVPI are 
shown individually for each patient in Table 2.

Median EVLW before and after CT was 627 (526–959) 
and 751 (601–1100) mL, respectively. Median EVLWI was 
10 (8–17) mL/kg both before and after CT.

3.4 � Receiver operating characteristics curve 
analysis

According to ROC-AUC analysis, neither TV nor TVI (pri-
mary endpoint) significantly predicted EVLWI values of 
≥ 14 mL/kg (Table 3). For VMWaq, ROC analysis yielded 
ROC-AUCs of 0.76 (p = 0.062) and 0.79 (p = 0.030) regard-
ing an EVLWI value of ≥ 14 mL/kg before and after CT, 
respectively (for mean EVLWI ROC-AUC = 0.79, p = 0.030) 
(Table 3). Nevertheless, despite statistical significance, the 
ROC-AUCs were below the predefined threshold of 0.80.

3.5 � Correlation analysis

There was no significant correlation between TV and 
EVLW before CT (r = 0.13, p = 0.574), EVLW after CT 
(r = 0.05, p = 0.823), or mean EVLW (r = 0.05, p = 0.832).

There was no significant correlation between TVI and 
EVLWI before CT (r = 0.11, p = 0.626), EVLWI after CT 
(r = 0.06, p = 0.809), or mean EVLWI (r = 0.05, p = 0.840).

There was a statistically significant moderate positive 
correlation between VMWaq and mean EVLWI (EVLWI 
before and after CT) (r = 0.45, p = 0.042) and EVLWI after 
CT (r = 0.49, p = 0.025) but not EVLWI before CT (r = 0.38, 
p = 0.086).

4 � Discussion

In this clinical study in unselected critically ill patients, 
we compared variables of pulmonary fluid status assessed 
using quantitative CT and TPTD.

CT-derived variables did not predict elevated TPTD-
derived EVLWI values. In addition, there was no signifi-
cant correlation of CT-derived TV and TVI with EVLW 
and EVLWI assessed using TPTD. Thus, in this study in 
unselected critically ill patients, variables of pulmonary 
fluid status assessed using quantitative CT could not be 
used to predict EVLWI.

Our findings in unselected critically ill patients are in 
contrast to previous studies that evaluated quantitative CT 
to estimate pulmonary fluid status under highly standard-
ized conditions in experimental settings.

In an experimental study in 11 spontaneously breathing 
sheep, Kuzkov et al. [16] demonstrated that CT-derived 
TVI and EVLWI assessed using TPTD highly significantly 
correlated (r = 0.85, p < 0.001). CT scans in this study 
were performed during a 15-sec breath hold at functional 
residual capacity.

In a clinical study in 10 ARDS patients, Zhang et al. 
[18] also reported good correlation (r = 0.95, p < 0.0001) 
between TVI and EVLWI. In that study, all patients were 
mechanically ventilated and CT scans were performed dur-
ing an end-expiratory pause [18].

In another previous study, Patroniti et al. [22] assessed 
pulmonary fluid status using double-indicator transpul-
monary thermo-dye dilution (TPTDD; with indocyanine 
green dye in iced dextrose 5%) in 14 patients with ARDS 
and revealed that these measurements showed good cor-
relation with those by quantitative CT. For our pragmatic 
clinical study, we deliberately chose to use the single-
indicator TPTD method to estimate EVLWI because it is 
used in clinical practice to estimate EVLWI, has been vali-
dated against postmortem lung weight [23], and has been 
shown to reliably detect even small changes in lung water 
[24, 25]. One might, however, argue that single-indicator 
TPTD is not an established reference method to assess 
EVLWI. Indeed, it is important to understand that the 
TPTD method—in contrast to the TPTDD method—esti-
mates EVLWI assuming a fixed relation between intratho-
racic blood volume and global end-diastolic volume [26].

Given the promising results from these previous stud-
ies our aim was to further evaluate the applicability of CT 
for the assessment of the pulmonary fluid status in criti-
cally ill patients. In a previous clinical study in critically 
ill patients, we observed that the CT-based estimation of 
EVLWI without analyzing software (qualitative CT) is not 
accurate compared with TPTD [17].

As a next logical step, in the present study, we used 
quantitative CT analyses to assess pulmonary hydration 
under clinical routine conditions in unselected critically ill 
patients. In these patients, especially in mechanically ven-
tilated patients, diagnostic CT scans are usually performed 
without an end-expiratory respiratory pause under clinical 
routine conditions. To evaluate the clinical applicability of 
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quantitative CT under clinical routine conditions, we delib-
erately chose to perform CT scans without an end-expiratory 
pause and to include both mechanically ventilated and spon-
taneously breathing patients. To further complicate matters, 
some of the critically ill patients included in our study had 
large-volume pleural effusions. Pleural effusions, however, 
were not included in the CT calculation of lung volumes 
and pleural effusions do not markedly contribute to TPTD-
indicator dilution [2]. All but 2 CT-scans were performed 
with intravenous contrast agent (some with contrast agent 
bolus in the arteries/pulmonary arteries).

Therefore, CT-scans in the present study were performed 
according to clinical routine and not using a standardized 
protocol for study purposes. In this “clinical reality setting”, 
our results in unselected ICU patients indicate that quantita-
tive CT might not be valuable to assess pulmonary edema 
(as defined by TPTD-derived EVLWI measurements).

Of note, CT revealed very small lung volumes in some 
of the patients included in the study. This is in line with the 
concept of the “baby lung” in patients with ARDS, a con-
cept based on CT images of ARDS patients showing that 
ARDS not homogeneously involves the entire lung paren-
chyma but rather the dependent lung regions [27]. It has 
been shown that in ARDS—besides these dependent lung 
regions in which gas exchange is markedly impaired—there 
are normally aerated lung regions [27]. Because these nor-
mally aerated lung regions have been demonstrated to have 
dimensions of a 5- to 6-year-old child (300–500 g aerated 
tissue) the term “baby lung” was coined [27].

Differences between TV/TVI assessed using CT and 
TPTD-derived EVLW/EVLWI might also be explained by 
different measurement principles of the technologies. CT 
does not differentiate between lung compartments with 
interstitial fluid, pulmonary tissue, intravascular blood, 
and edema [16, 18] but detects fluid in the pleural space 
that is not detected by TPTD [1, 2].

Another explanation could be that the current interpre-
tation of quantitative CT attributes non-aeration mainly 
to an excess in pulmonary water content. In ARDS, how-
ever, increased density and non-aeration also result from 
atelectasis and aerated areas are not necessarily replaced 
by fluid. This would also explain that the association of 

TVI and EVLWI seems to be better in healthy or slightly 
impaired lungs than in lungs with major pathologies. 
Under these conditions, non-aeration may result from 
pulmonary edema as well as atelectasis, e.g., the associa-
tion of TVI and EVLWI in the animal study by Kuzkov 
et al. [16] seems to be better before induction of ARDS 
by oleic acid.

Besides using single-indicator TPTD as the reference 
method, our study has further limitations. Although the 
study was performed under routine clinical conditions the 
limited number of patients and the fact that all patients 
were treated in an ICU of a single university hospital 
might limit the generalizability of our findings.

5 � Conclusion

In this clinical study in unselected critically ill patients, 
we compared variables of pulmonary fluid status assessed 
using quantitative CT and TPTD.

CT-derived variables did not predict elevated TPTD-
derived EVLWI values. In addition, there was no signifi-
cant correlation of CT-derived TV and TVI with EVLW 
and EVLWI assessed using TPTD. Thus, in this study in 
unselected critically ill patients, variables of pulmonary 
fluid status assessed using quantitative CT could not be 
used to predict EVLWI. To make rigorous conclusions 
about the value of quantitative CT analysis for the assess-
ment of pulmonary fluid status more clinical data are 
needed.
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Table 3   Prediction of 
extravascular lung water 
index ≥ 14 mL/kg using receiver 
operating characteristics curve 
analysis

EVLWI extravascular lung water index, TV tissue volume, TVI tissue volume index, VMWaq mean 
weighted index of voxel aqueous density

EVLWI ≥ 14 mL/kg

EVLWI before CT EVLWI after CT Mean EVLWI

ROC-AUC​ p-value ROC-AUC​ p-value ROC-AUC​ p-value

TV 0.56 0.654 0.53 0.828 0.53 0.828
TVI 0.63 0.332 0.62 0.385 0.62 0.385
VMWaq 0.76 0.062 0.79 0.030 0.79 0.030
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